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Abstract—IoT security and privacy has raised grave concerns.
Efforts have been made to design tools to identify and under-
stand vulnerabilities of IoT systems. Most of the existing protocol
security analysis techniques rely on a well understanding of the
underlying communication protocols. In this article, we system-
atically present the first manual reverse engineering framework
for discovering communication protocols of embedded Linux-
based IoT systems. We have successfully applied our framework
to reverse engineer a number of IoT systems. As an example,
we present a detailed use of the framework reverse engineering
the WeMo smart plug communication protocol by extracting the
firmware from the flash, performing static and dynamic analysis
of the firmware, and analyzing network traffic. The discovered
protocol exposes severe design flaws that allow attackers to con-
trol or deny the service of victim plugs. Our manual reverse
engineering framework is generic and can be applied to both
read-only and writable embedded Linux filesystems.

Index Terms—Communication protocols, IoT

system, reverse engineering.

firmware,

I. INTRODUCTION

S ECURITY of IoT products has received increasing
scrutiny as IoT is being pervasively deployed [1]-[5]. For
example, smart plugs and routers may be fully controlled by
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buffer overflow or command injection attacks [6]-[8]. Security
vulnerabilities also exist in popular IoT platforms, such as
AWS IoT [3], [5].

Efforts have been made to design tools to identify and
understand vulnerabilities of IoT systems. For example,
Chen et al. [9] proposed an automatic fuzzing framework
to find the memory corruption vulnerabilities caused by the
software and firmware of IoT devices. Given a well-formed
protocol, formal and heuristic methods could be used to
study security and identify the vulnerabilities of the protocol
[10]-[14]. For example, Kim et al. [10] used formal sym-
bolic modeling to automatically analyze the frequently used
IoT protocols, such as CoAP and MQTT. Only when these
protocols have been formally verified (mathematically proved)
could they be considered as secure. However, the challenge
of automatic protocol verification relies on a well understood
protocol.

In this article, we propose a framework of manually reverse
engineering communication protocols of embedded Linux-
based IoT systems so that automation techniques can be
applied over the discovered protocols for vulnerability dis-
covery and security analysis. We focused on the embedded
Linux-based IoT system given its popularity. We find most
10T devices (more than 71%) are installed with Linux, accord-
ing to the Eclipse IoT developer survey [15]. Our framework
adopts network traffic analysis and static analysis and dynamic
analysis of the app and device firmware to understand spe-
cific details, such as fields of the communication. Our manual
reverse engineering framework works as follows.

1) Obtaining the app and firmware of the device.

2) Collecting network traffic generated by the device and

app with testbeds.

3) Defeating traffic protection by using the man-in-the-
middle (MITM) proxy, static analysis, and dynamic
debugging to defeat traffic encryption and obfuscation.

4) Discovering the communication protocol through traffic
analysis, static analysis, and dynamic analysis of the app
and firmware.

We have applied our framework and reverse engineered a
number of IoT systems, including smart plugs, IP cameras,
and air quality monitoring sensors. As an example, this article
presents a detailed case study of the popular WeMo smart plug
from Belkin. The plug system involves three parts: 1) smart
plugs; 2) smartphones; and 3) two cloud servers. A smartphone
can communicate with a smart plug via the cloud servers. The
cloud servers distribute keys to the smartphone and smart plug,
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Fig. 1. Simplified architecture of an IoT system.

and authenticate them based on the distributed keys. Once
the communication protocol of the smart plug is discovered,
we are able to identify a serious design flaw that allows two
attacks: 1) a malicious software smartphone bot could be used
to control victim plugs and 2) a fake smart plug can pretend to
be a real one and kick the real one offline. We also successfully
demonstrated reverse engineering of a Xiongmai camera and a
Haier camera and won us an Award of Excellence at GeekPwn
2020.

Contribution: Major contributions of this article can be
summarized as follows.

1) We are the first to systematically propose a framework
to manually reverse engineer communication protocols
of IoT systems.

2) We have applied this framework to successfully reverse
engineer a number of IoT systems. As an example,
this article presents a complete protocol analysis of the
WeMo smart plug and identifies severe design flaws that
allow attackers to control victim plugs and deny the ser-
vice of victim plugs. We also briefly discuss how we
apply the framework to a few other IoT systems.

3) Our communication protocol, reverse engineering frame-
work, is generic and can be applied to both read-only and
writable Linux filesystems. We collected the firmware of
514 popular IoT devices on the market and showed that
our framework is applicable to them.

Road Map: The remainder of this article is organized as
follows. In Section II, we briefly introduce background knowl-
edge. In Section III, we present our communication protocol
reverse engineering framework. In Section IV, we present a
case study of the WeMo smart plug using the proposed frame-
work. In Section V, we discuss the generality and limitations
of our framework. Related work is presented in Section VI
and we conclude this article in Section VII.

II. BACKGROUND

In this section, we present a brief introduction to the
architecture of an IoT system and terms used in this article.

A. Architecture of IoT System

Fig. 1 shows a typical IoT communication system based on
our experiments and previous researches [3], [13], [14], [16].
The system consists of three components: 1) an IoT device;
2) a controller; and 3) a cloud server. The IoT device imple-
ments specific functionalities, such as medical monitoring and
electrical control. The controller, such as a smartphone app, is
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used to control the IoT device. The cloud server is used to relay
messages between the controller and the IoT device. The cloud
server may provide other services, including device manage-
ment, data storage, and analysis. For a smart plug system, the
smart plug is the IoT device while the smartphone app is the
controller. When the controller and IoT device are located in
the same network, the smart plug’s official app could be used
to directly communicate and control the plug through WiFi. If
the controller and IoT device are in different networks, a cloud
server could be adopted to transmit the message between the
controller and the IoT device so as to traverse the network
address translation (NAT).

B. Communication Protocols and Terms

An IoT communication system may realize complicated
communication protocols and various functionalities. We have
identified four common phases of an IoT communication
protocol, including paring, binding, authentication, and con-
trolling [13], [17], which are crucial for the overall system
security.

1) Pairing: To bootstrap and configure an IoT device, a

user often needs to connect a controller (e.g., an app on
a smartphone) to the IoT device via various communi-
cation venues. For example, the IoT device can work
as a WiFi access point (AP) so that the controller can
connect to it. The controller can also connect to the IoT
device via Bluetooth. We denote this connecting process
as pairing. This is relevant to security since the pairing
process may be under malicious sniffing and anyone may
get access to the IoT device, particularly in the cases that
the device is deployed in public.

2) Binding: When pairing is completed, a binding mech-
anism is often employed so that the cloud server can
associate the controller and IoT device, and relay mes-
sages between them.

3) Authentication: The controller, device, and cloud server
often need to authenticate each other to defeat various
threats and abuses.

4) Controlling: After authentication, the controller can take
control of the IoT device via a cloud server or a local
network.

III. FRAMEWORK OF MANUALLY REVERSE ENGINEERING
10T COMMUNICATION PROTOCOLS

In this section, we will present the assumption about
capabilities of security analysts, and our manual reverse
engineering framework.

A. Capabilities of Security Analyst

We adopt the term “security analyst” to refer to those
who would use our framework to reverse engineer third-party
IoT products. We make the following assumptions about the
capabilities of the security analyst.

1) To the best of our knowledge, most IoT vendors pro-
vide both Android and iOS apps. The communication
protocol of both the Android app and iOS app is the
same, for their functionality is similar. The analyst can
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analyze either the Android app or the iOS app to extract
the communication protocol between the controller and
the cloud server. Since there are more existing reverse
engineering tools for the Android apps than those for
the i0OS apps [18]-[20], we choose the Android app as
an example of the controller in this article.

2) We focus on IoT devices that use the popular and open-
source-embedded Linux-based operation system (OS).

B. Overview

Fig. 2 illustrates the workflow of our manual reverse engi-
neering framework: obtaining the app and device firmware,
collecting network traffic, defeating traffic protection, and
discovering the communication protocol.

1) Obtaining the App and Device Firmware: The app is
often free and can be downloaded from Google Play
(or Apple App Store). The device firmware may be
obtained from the manufacturer’s website, over-the-air
(OTA) update process [21] (i.e., firmware update pro-
cess), or reading the flash chip as discussed later in this
section. The first two approaches are straightforward.
However, they may not be always available.

2) Collecting Network Traffic: In this step, we particularly
want to collect network traffic and understand secu-
rity related phases of the IoT communication protocols.
During the pairing process, the IoT device may work
as a WiFi AP and the controller connects to this AP. A
sniffer is needed to dump the pairing traffic. After pair-
ing, the device and controller will connect to the Internet
through a router/switch/AP. For simplicity, we will use
AP to refer to router/switch/AP. To intercept the traffic
after pairing, we set up our own APs. The controller and
IoT device connect to our APs and communicate with
each other through either the local network or Internet.
The traffic of interest can be collected from these APs.

3) Defeating Traffic Protection: Some vendors may adopt
TLS/SSL encryption or obfuscation to protect the com-
munication. The analyst can defeat the TLS/SSL encryp-
tion with an MITM proxy. Obfuscation algorithms can
be disclosed through static analysis and dynamic debug-
ging of the app and firmware.

4) Discovering the Communication Protocol: Through the
combination of traffic analysis, static analysis, and
dynamic analysis of the app and firmware, the com-
munication protocol can be discovered. Based on the
discovered communication protocol, the analyst may
use either heuristic methods or formal methods to find
vulnerabilities of the protocol. In this article, we use
heuristic methods to demonstrate the feasibility of the
reverse engineering approach.

C. Obtaining the App and Device Firmware

The app is often free and can be downloaded from Google
Play. However, it can be a challenge to extract the firmware
from the flash chip, which often involves the following
steps. First, we take apart the physical device and identify
the device’s flash chip model (e.g., NOR flash and NAND
flash) and packaging type [e.g., small-outline package (SOP),
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quad flat package (QFP), and ball grid array (BGA)]. The
information can be found on the surface of the chip or the
case of the IoT device. With such information, we can deter-
mine which type of surface-mount packaging is applied to the
device’s flash chip accordingly. For example, if the flash uses
SOP that often exposes the flash pins, we can connect Bus
Pirate [22] to the corresponding pins via a test clip and an
adapter in order to read the firmware image from the flash.
However, with a particular packaging technology, for exam-
ple, BGA, a flash chip may not expose its pins. In such a case,
we may desolder the flash chip by using a surface mount tech-
nology (SMT) rework station [23]. After obtaining the flash
chip, a flash engineering programmer such as StarProg-F [24]
may be used to read the firmware image from the flash.

D. Collecting Network Traffic

In the pairing phase, some IoT devices may work as an
AP so that the controller can connect to it and deliver pair-
ing information. To collect the network traffic in the pairing
phase, a wireless network card supporting the monitor mode
can be used as a sniffer to dump the WiFi traffic. Besides,
we find there are another five methods can be used to trans-
mit pairing information, i.e., SmartConfig, QRcode, Bluetooth,
voice, and Ethernet cable connection. In these cases, the pair-
ing information can be analyzed by dynamically hooking the
functions used for encoding the pairing information in the
controller app. We will discuss this in Section III-E2.

In order to dump the network traffic during binding, authen-
tication, and controlling phases, we build an AP equipped with
wireless network cards and Ethernet cards. To build our own
AP or a wireless router, we install Hostapd [25] on a com-
puter with a wireless network card supporting the AP mode.
The computer is also equipped with an Ethernet card connect-
ing to the Internet. Some IoT devices only support Ethernet.
In such a case, we equip the computer with a second Ethernet
card connecting to such an IoT device. In this way, the passing
traffic can be intercepted by the computer.

E. Defeating Traffic Protection

We now discuss how to defeat encryption and obfuscation
that are used to protect traffic from the app and IoT device.

1) Encryption: Network traffic can be encrypted by TLS/
SSL. Todecryptthe traffic,a MITM transparent proxy is installed
in front of the smartphone (i.e., controller) or IoT device. The
proxy is used to relay or manipulate the traffic between the device
and remote server, or the traffic between the smartphone and
remote server. With proper configuration, the MITM proxy can
decrypt the passing traffic. Specifically, we use an open-source
tool “mitmproxy” [26] as our MITM proxy.

We now show how to replace the target root certificate issued
by a trusted certificate authority (CA) or a self-signed private
root certificate with the forged root certificate on a controller.
Take Android as an example. From our empirical analysis, the
certificate can be located in three places as follows.

i) The trusted CA  certificate is stored in
“/system/etc/security” as an individual file [27].
In this case, we can just add the forged root certificate
to the Android system.
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ii) The private root certificate can be packaged as a file in
an app. In this case, we use APKTool [28] to unpack
the APK package and replace the original certificate
with the forged root certificate. We then recompile and
sign the APK [29].

iii) The private root certificate can also be hard coded in
the format of a string in the app code. In this case,
we decompile the original app into smali code, identify
and replace the original hard-coded root certificate, and
finally generate a new app.

We now discuss how to replace the original root certificate
with the forged root certificate on an IoT device. This case is
more complicated.

i) We first search the root certificate in the filesystem of
the obtained firmware. The original certificate can be
a standalone file or hard coded in a binary file. The
certificate often has a set of features. For example,
if the certificate is encoded in privacy-enhanced mail
(PEM) [30] format, it contains a header (- ---- BEGIN
CERTIFICATE- - - - - ). Therefore, we can locate the
certificate by searching the header.

ii) Once we locate the root certificate, we need to identify
which type of filesystem is used by the firmware so
that a specific replacement method can be applied. An
open-source tool named Binwalk [31] is introduced to
identify the filesystem type, either a writable filesystem,
such as JFFS2 and UBIFS or a read-only filesystem,
such as SquashFS and CramFS.

For a read-only filesystem, the replacement cannot be made
directly since modification is not allowed. We can reflash a
customized firmware with the forged root certificate into the
device. We may need to generate the cyclical redundancy
check (CRC) and append it to the customized firmware to pass
the chip’s integrity check. For a writable filesystem, there are
two ways to replace the original certificate as follows.

i) If we can get into the console of the IoT device system,
for example, by using universal asynchronous receiver—
transmitter (UART), and locate file transfer tools like a
ftp client, we can replace the original certificate directly
via file transfer tools.

ii) We can replace the original certificate directly by
mounting the writable filesystem segmented from the
firmware onto a Linux computer. We then repackage
a new firmware with the modified filesystem and flash
the new firmware into the device.

There are two ways to flash a modified firmware with the
forged root certificate into an IoT device.

i) We can flash the firmware back using Bus Pirate or a
flash engineering programmer. If the flash chip is desol-
dered for reading the firmware [23], we need to resolder
it back to the circuit board.

ii) We can also flash the firmware back to the chip via the
firmware upgrading interface like the OTA interface.

2) Obfuscation: An IoT system may protect its traf-
fic by obfuscation. Traffic obfuscation is used to make
communications more complicated. Unlike encryption,
obfuscation does not require a key to encrypt or decrypt the
traffic [32]. Static analysis and dynamic analysis may be
adopted to counter traffic obfuscation.
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Fig. 2. Workflow of communication protocol reverse engineering framework

;// # virtual methods

;// .method protected onCreate(Landroid/os/Bundle;)V
o invoke—static {}, Landroid/os/Debug;—>
waitForDebugger ()V

a=0
a=0
a=0

Listing 1. Add waitForDebugger function to entry activity of app.

To deobfuscate traffic from a controller, for example, an
Android app, we first need to understand how the obfuscated
traffic is generated and then write a deobfuscation algorithm.
To this end, we first need to check if the app is packed. For a
packed app, we can unpack it [33]-[35]. Then, we can extract
the smali code using Apktool. We analyze the workflow of the
traffic obfuscation algorithm by reading the extracted smali
code. We may use Smali2Java [36] to decompile the smali
code into the Java format for easy understanding. We can also
dynamically debug the smali code by using Android SDK and
Android Studio [37] as follows.

i) We add a new field “android:debuggable = true” in
the tag of Android manifest file “application” to enable
debugging.

ii) We locate the function of the entry activity, “onCreate,”
and add a line of smali code at the beginning of this
function as shown in List 1 to make the app wait for
the debug signal after being started.

iii) We repackage the modified APK and install it in the
smartphone.

iv) Now, once we start the app, we can use Android
Studio to add break points and monitor the functions
of interest.

However, the method above will fail when Java Native
Interface (JNI) is applied. To address this issue, we introduce
IDA pro [38], a multiplatform tool that offers both static and
dynamic analysis functionalities.

i) We first enable USB debugging on the tested smart-
phone.

i) We copy the binary file of IDA pro, “android_server,”
to the smartphone and run it via the Android Debug
Bridge (adb) [39].

iii) We map a port on the computer to a port on the
smartphone so that they can communicate with each
other.

iv) We run the app in debug mode, and start the IDA pro
client on the computer. The smartphone then forwards
the debug log to the computer via the configured port.
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Dynamic hooking tools (e.g., “Xposed” [40] and
“Frida” [41]) can also be used to dynamically analyze
the obfuscation algorithm. We can first generate the function
call graph with FlowDroid [42] and IDA pro. Then, we
statically analyze the function call graph to locate the
potential functions related to network communication APIs
that may be used to obfuscate the traffic. Next, we use these
dynamic analyzing tools to hook the functions to record the
arguments and return values. In this way, we can heuristically
locate the obfuscation function by comparing the obfuscation
traffic and the recorded log. Finally, static analysis can be
used to extract the obfuscation algorithm in the obfuscation
function. The hooking methods are also used to analyze the
pairing information and discover the communication protocol
demonstrated in Section III-F.

We now discuss how to deobfuscate traffic from an loT
device. We need to identify the algorithm that obfuscates the
messages and write a deobfuscation algorithm. The obfusca-
tion algorithm is usually stored in a particular binary file.
Therefore, the first step is to identify this file in the firmware.
We compare the information from the analysis of dumped
network traffic with the IoT device’s runtime system log. If a
match is discovered, the file can then be identified. To obtain
the log, we first need to obtain the console of the IoT device
system. If we can locate the UART port on the board of IoT
device, we can connect it to the debugging computer using a
UART-to-USB bridge with a correct baud rate. User authenti-
cation may be required to login into an IoT device system via
UART. The login passwords are often stored in “/etc/shadow”
file or “/etc/passwd” file. In these cases, there are two solutions
as follows.

i) We can try to extract the password hashes from the
flash and crack them.

ii) If password racking fails because of long and complex
passwords, we can use the repacking method introduced
in Section III-E1 to modify the files and remove the
login password so as to bypass the login authentication.

Otherwise, we can embed a backdoor, such as telnet into
the IoT device firmware and update the device with the new
firmware. A telnet app that is often hidden in an IoT device
maybe for the purpose of debugging by the manufacturer and
can be utilized too. We can then log in the IoT device system
through the backdoor from the debugging computer. The log
can then be shown in the console of the computer after the
IoT device starts. For example, we are often interested in the
design flaws in authentication of the controller and IoT device.
Hence, we perform the authentication phase repeatedly and
compare the ports used in each process in the runtime system
log with the port of intercepted obfuscated traffic. If the ports
match, we find the target binary file. Afterward, we extract the
binary file with Binwalk from the firmware of the IoT device
as discussed in Section III-C.

Once obtaining the binary file, in order to obtain the
obfuscation algorithm, we can analyze it as follows.

i) We can perform static analysis to disassemble the
binary file with IDA pro.

ii) We can also dynamically analyze it on the IoT
device using binary instrumentation [43] by inserting
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additional code into the executable binary file to
observe or modify the behavior of the binary file.
Binary instrumentation allows us to trace functions
of interest, and follow the workflow of the inputs
and outputs. To use binary instrumentation, we need
to modify the firmware with the method proposed in
Section III-E1.

iii) We can also use the GDB client and GDBserver [44] to
remotely debug the binary program of the IoT device
from a computer. We first need to cross compile the
GDBserver and embed the GDBserver into the firmware
of the target IoT device and run the GDB client in our
debugging computer. By configuring the IP address and
port of the GDBserver, we can use the GDB client to
dynamically debug the target binary file and identify
the traffic obfuscation algorithm.

F. Discovering the Communication Protocols

Through traffic analysis, we may understand the basics of
the communication protocols. However, there are some cryp-
tographic fields and obfuscated fields that should be further
analyzed. For cryptographic fields, we perform the following
procedure to understand them.

1) We may measure the entropy of the bytes of the traffic to
determine whether the command or data are created with
cryptographic operations, such as encryption and hash.
High entropy beyond a threshold indicates the data are
encrypted or hashed.

2) We may also search cryptographic APIs within the
firmware to determine if encryption is used and also
identify cryptographic functions that are used. At the
controller side, the developers may encrypt or hash
the application layer data using cryptographic APIs of
Android SDK or C/C++ libraries. We can use dynamic
hooking tools introduced in Section III-E2 to analyze the
frequently used cryptographic APIs [45]. Once a specific
cryptographic function is called, the information of this
function is recorded. Therefore, we know which function
is used. At the device side, we can employ static data
flow analysis to identify a cryptographic function [46].

3) Once we locate the target cryptographic function, we
can obtain the original command or data and the key
for the cryptographic function by dynamically debug-
ging the binary file and analyzing the inputs of the
target cryptographic function with the method intro-
duced in Section III-E. Specifically, we can use the
“Xposed” and “Frida” at the controller side and use
the GDB debugging tool at the device side, respectively.
For the obfuscated fields, we can use the deobfuscation
methods for countering traffic obfuscation introduced in
Section III-E2 to deobfuscate these fields.

G. Exploring Vulnerabilities

After obtaining a well-discovered protocol using the frame-
work, we can employ heuristic methods or formal methods
to perform security analysis of the discovered communica-
tion protocol. The security analyst may focus on the four

Authorized licensed use limited to: Southeast University. Downloaded on April 28,2021 at 13:09:12 UTC from IEEE Xplore. Restrictions apply.



6820

Fig. 3. Flash of WeMo plug.

Fig. 4. Reading flash by bus pirate.

phases of the communication protocol (i.e., pairing, binding,
authentication, and controlling) introduced in Section II
while performing vulnerability assessment of IoT systems.
According to our research [13], [14] and related work [3],
we find that these four phases are often vulnerable and can
cause severe privacy and security issues. For example, in
[13], we find every online Edimax camera can be remotely
controlled by attackers using the vulnerabilities in binding,
authentication, and controlling phases of its protocol.

IV. CASE STUDY: SMART PLUGS FROM BELKIN WEMO

The manual reverse engineering framework introduced in
Section III-C is the result of our reverse engineering of a num-
ber IoT devices, including our previous research [13], [14]. In
this section, we present a case study of reverse engineering
the WeMo smart plug using the framework and the discov-
ered communication protocols. We will also introduce novel
attacks against the plug based on the discovered protocols.

A. Reverse Engineering WeMo Smart Plug

We present the workflow of reverse engineering the WeMo
smart plug.

1) Obtaining the App and Device Firmware: The official
app of the smart plug is free to download while the firmware
is publicly unavailable. The flash chip of the smart plug is
shown in Fig. 3 and it is packaged with SOP. As shown in
Fig. 4, we can use Bus Pirate to read the firmware from the
flash chip with an SOP16 clip and an adapter, which are shown
in Fig. 5.

2) Collecting Network Traffic: A testbed is deployed to
eavesdrop on the network traffic of interest. As shown in
Fig. 6, during the pairing phase, the smart plug works as
an AP and we collect the pairing traffic with a sniffer. We
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Fig. 5. Adapter and SOP16 clip.
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intercept the traffic between the smartphone, smart plug and
cloud server by introducing two APs, as shown in Fig. 7.

3) Defeating Traffic Protection: The primary challenge of
decrypting encrypted traffic is to replace the original certificate
of the firmware and controller app with our forged one.

i) We first replace the certificate of the smartphone.
We find that the original certificate is stored in
“/system/etc/security.” Therefore, on the smartphone,
we can download the forged root certificate gener-
ated by the MITM proxy through a Web browser and
Android will prompt us to install the certificate.

ii) We then replace the original CA certificate in the
firmware of the smart plug. We find a UART port on
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Fig. 9. Open a console of WeMo plug system by UART.

the chip as shown in Fig. 8, where the UART port has
four pins, including TX, RX, GND, and VCC. We use
a UART-to-USB bridge to open a console of the smart
plug’s embedded Linux system, as shown in Fig. 9,
and find a ftp client in the system. We put the forged
root certificate on a ftp server and download it to the
plug system through the discovered ftp client, so as to
replace the original CA certificate. The forged certifi-
cate will be preserved in the device even after the device
reboots. This shows the plug’s filesystem is writable. By
using Binwalk, we find that the firmware actually con-
tains a read-only SquashFS filesystem and a writable
JFFS2 filesystem. The plug system implements a vir-
tual filesystem, “mini_fo,” which merges the read-only
SquashFS filesystem and the writable JFFS2 filesys-
tem. When a file is changed, the new file is written
to the writable JFFS2 filesystem while the read-only
SquashFS filesystem still keeps the original file.

iii) After the certificate is successfully replaced, we can

eavesdrop on connections with “mitmproxy.”

4) Discovering the Communication Protocol: We now
present how to reverse engineer the smart plug’s applica-
tion layer protocol. Based on traffic analysis, we are able to
identify strings that start with “MESSAGE-INTEGRITY” or
“Authorization,” but other fields of such strings are unreadable.
We find that these fields are generated with the HMAC-
SHAI1 algorithm [47] by using the methods in Section III-F.
These fields actually contain authentication materials, which
are crucial for our security analysis.

B. Communication Protocols of WeMo Smart Plug

We now present the discovered architecture of the WeMo
smart plug system and its communication protocols.

1) Architecture of WeMo Smart Plug System: The WeMo
smart plug system contains three components: 1) two cloud
servers (a traversal using relays around NAT (TURN) server
and a HTTPS server); 2) smart plugs; and 3) smartphones. A
smart plug and a smartphone can communicate with each other
via the cloud servers, as shown in Fig. 10. Since a smart plug
is often behind a WiFi router using the NAT, the TURN [48]
server is used to perform the NAT traversal for the plug so
that a user on the Internet can send a command to the plug.
The HTTPS server has three functionalities, including bind-
ing, authentication, and controlling (i.e., command relay and
information update).
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2) Pairing: In the pairing phase, the plug works as an AP
and the smartphone connects to it. The smartphone sends a
request to the plug to obtain basic information of the plug, such
as the MAC address and serial number. After receiving such
information, the smartphone sends the plug its identification
(ID) and description, a timestamp 7.5, and the home AP’s WiFi
credentials entered by the user. Then, the plug can access the
Internet via the home AP.

3) Binding: The smartphone and smart plug are bound to the
HTTPS sever as shown in Fig. 11. The smart plug first sends
the binding request, including MAC address, smartphone’s
ID and description of the plug, SSID and MAC address of
WiFi, and timestamp 7S to the HTTPS server, which can now
bind (associate) the particular plug and smartphone together
on the basis of the received information. Based on materials
contained in the binding request, the HTTPS server produces
two keys: 1) the smart plug key and 2) the smartphone key.
The HTTPS server then sends these two keys to the smart
plug. After obtaining the two keys, the smart plug sends the
smartphone key to the smartphone via the local WiFi network.
If the smart plug and smartphone are not in the same local
network, the smartphone can obtain the smartphone key by
sending a request to the HTTPS server that knows the particular
smartphone is bound to the particular plug. The request also
contains a message authentication code, as introduced below.

4) Authentication: Fig. 12 summarizes the authentication
phase. Within the local network, there is no authentication for
a smartphone app to control the plug. When the smartphone
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Controller

Fig. 13. Remote controlling phase.

and smart plug are not in the same local network, they
need to communicate through the HTTPS server. In each
message from the plug to the HTPPS server, the HTTP mes-
sage header includes an “Authorization” field, which contains
authentication data. The authentication data are generated by
the HMAC-SHA1 algorithm over the plug key and other
shared information with the HTTPS server. The HTTPS
server authenticates the smartphone in a similar way. The
TURN server obtains the smart plug key from the HTTPS
server and authenticates the plug via the challenge handshake
authentication protocol (CHAP) [49].

5) Remote Controlling: After authentication, the smart-
phone and smart plug can communicate with the cloud servers
as illustrated in Fig. 13. The smart plug periodically synchro-
nizes its status with the HTTPS server. To remotely control
the plug, the smartphone first obtains the status of the smart
plug by sending a request to the HTTPS server. The status can
be either switch_off (integer “0”) or switch_on (integer “1”).
When the device is offline, the status is unavailable (inte-
ger “3”). Then, the smartphone can send control commands
to switch on/off the smart plug via the HTTPS server. The
HTTPS server actually forwards the commands to the TURN
server, which uses the NAT traversal to send the command
through the wireless router to the plug.

C. Attacks Against WeMo Plugs

Once the IoT communication protocols are discovered, we
can now move forward with security analysis of pairing,
binding, authentication, and controlling phases introduced in
Section II-B. We discovered two novel attacks against the
WeMo smart plug: 1) sharing attack and 2) connection hijack-
ing attack. With the sharing attack, an attacker can remotely
control a victim smart plug. The connection hijacking attack
allows a DOS attack against a plug. It is worth noting that all
the experiments are conducted on the plugs that we purchase.

1) Sharing Attack: We first introduce the details of the
binding phase, which involves two binding requests from the
plug. The authorization value in the first binding request is
“dummy,” as the plug key is not derived yet. After receiv-
ing the first binding request, the HTTPS server sends back a
temporary key. The authorization value in the second binding
request from the plug is generated using the temporary key.
After receiving the second binding request, the HTTPS server
sends the plug key and smartphone key to the plug.

To explore the smart plug resetting phase, we first press the
reset button on a smart plug and then bind a new smartphone to
the plug. We find now both the original and new smartphones
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can remotely control the plug. That is, the original and new
smartphones now share the plug. Through traffic analysis, we
find the plug sends only one binding request, which is regarded
as rebinding request, to the HTTPS server. The rebinding
request contains a new field, “reRegister.” The authorization
value is generated using the original plug key. It can be
inferred that the original plug key is not erased after resetting.

We find that if we set the authorization value as “dummy”
in the rebinding request to pretend that the smart plug loses
its key, the HTTPS server will send the original plug key and
a new smartphone key to the plug. Once the new smartphone
obtains the new smartphone key, the smartphone can pass the
authentication of the HTTPS server and access the plug.

Once we understand the plug sharing phase, we are able
to bind a victim smart plug to a malicious smartphone. The
details of the sharing attack are introduced as follows.

i) To deploy the attack, the attacker needs to obtain
the victim plug’s MAC address and serial number,
as well as the home AP’s SSID and MAC address.
One limitation of this attack is that the attacker has
to use wardriving or other means to get the victim
plug’s MAC address and home AP’s SSID and MAC
address. In wardriving, the attacker drives around and
performs wireless sniffing. Blocks of MAC addresses
are allocated to every manufacturer (Belkin in our case),
which can be obtained from the Internet. Therefore,
the attacker will be able to identify Belkin smart
plugs through wardriving. We also find that a plug’s
serial number is predictable based on its MAC address.
Therefore, the attacker can remotely attack the victim
plug after obtaining the needed information.

ii) The attacker can now implement a fake software smart
plug that pretends to be the real one. The fake plug
sends a rebinding request with the authorization value
“dummy” and fabricated smartphone information to the
HTTPS server to get a temporary key. Once the plug
receives the key, it resends a rebinding request with the
authorization value that is generated by the temporary
key, and then obtains the original plug key and a new
smartphone key.

iii) The attacker now creates a fake software smartphone,
which uses the new smartphone key and sends com-
mands with correct authorization value to the HTTPS
server. It is worth noting that the HTTPS server has
already bound the victim plug and the fake smartphone
together. In this way, the attacker can remotely control
the target WeMo smart plug while the victim user can-
not discover the attack for the sharing feature of the
WeMo plug.

2) Connection Hijacking Attack: Once obtaining the plug
key through the sharing attack, a fake smart plug can pretend
to be the real device so as to hijack the connection between
the victim user and the real plug. The details of the attack
process are presented as follows.

i) The attacker first creates a fake smart plug that pretends
to be the real one and uses it to deploy the sharing attack
in Section IV-C1. In this way the attacker obtains the
victim smart plug key.
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TABLE I
FILE SYSTEM OF 10T DEVICES (CRAMFS, SQUASHFS, AND ROMFS ARE READ-ONLY FILE SYSTEMS AND JFFS2 1S A WRITABLE FILE SYSTEM)

. Manufacturer Axis | Asmnet | D-Link | TP-Link | Netgaer | Netis | Asus | Total
File System

CramFS 45 0 0 0 0 0 0 45
JFES2 33 1 0 0 0 0 0 34

SquashFS 0 9 35 13 34 29 57 177

CramFS&JFFS2 249 0 0 0 0 0 0 249

RomFS 6 3 0 0 0 0 0 9
Total 333 15 35 13 34 29 57 514

ii) Since the fake smart plug has the original smart plug
key, the fake smart plug can perform the authentication
process with the plug system’s TURN server to request
a relay port, which is shared with the HTTPS server.
Therefore, the HTTPS server knows that the fake plug
uses that specific TURN server port.
Now, a control command from a victim smartphone is
sent from the HTTPS server to the relay port of the fake
plug on the TURN server. The command is relayed to
the fake plug instead of the real one. The traffic from
the smartphone is hijacked by the attacker, who denies
the service of the victim smart plug as a matter of fact.
3) Discussion: At the time of writing this article, Belkin
has added a security patch trying to defeat our sharing attack.
With the patch, if the public source IP address of the rebinding
request sent from a plug is changed, the HTTPS server will not
send the original plug key, but generate a new smart plug key.
Since the victim plug still keeps the old plug key, it will not
be able to pass the authentication of the HTTPS server and
the TURN server, and cannot be controlled by a controller
anymore. Therefore, our sharing attack becomes a DoS attack
under the security patch. If a user wants to reuse the victim
plug, he/she has to reset the plug.

iii)

V. EVALUATION

In this section, we evaluate the generality of our commu-
nication protocol reverse engineering framework, present our
reverse engineering of a number of real-world IoT system, and
discuss the limitations of the proposed framework.

A. Generality of Our Manual Reverse Engineering
Framework

The most challenging part of reverse engineering an IoT
device is firmware analysis. The firmware may be from dif-
ferent vendors with high customization. Table I shows the
mainstream manufacturers and the file systems used by their
products. We collected 514 firmware from seven vendors by
crawling the Internet. By analyzing these firmware with bin-
walk, we can identify the file systems used in these firmware.
For example, out of the 333 firmware published by Axis, 6 of
them use RomFS, 45 use CramFS file system, 33 use JFFS2
file system, and 249 use both CramFS and JFFS2 file systems.
The file system can be read-only (e.g., CramFS, SquashFS, or
RomFS) or writable (e.g., JFFS2). To reverse engineer these
types of firmware, we often need to change the firmware, for
example, embedding a fake CA certificate for mitmproxy or a
GDBserver for debugging. We can perform such changes with

Fig. 14.  IoT devices analyzed with our framework. (a) WeMo plug.
(b) D-Link camera. (c) Haier camera. (d) Xiongmai camera. (¢) Edimax
camera. (f) Edimax plug. (g) PurpleAir sensor.

approached introduced in Section III-E. Therefore, we will
be able to reserve engineer all the devices listed in Table I
while the actual manual reverse engineering tasks may last
long given the complexity.

B. Reverse Engineering Real-World IoT Products

Fig. 14 shows all devices we have reverse engineered,
including Edimax camera [13], Edimax smart plug [14], and
PurpleAir air quality monitoring sensor [50], [51] in our
previous work. The PurpleAir air quality monitoring sensors
are actually bare metal systems based on microcontrollers
(MCUs) without an OS like Linux. Now, our manual reverse
engineering framework is still valid. Particularly, OpenOCD
and GDB can be used to debug the MCU firmware through
JTAG. We now briefly introduce how we used the framework
to analyze the other devices that we are the first to have reverse
engineered.

We reverse engineered the communication protocol of the
D-Link cloud camera system. The camera uses a read-only
filesystem and we are able to find the CA certificate. As
proposed in Section III-C, we replace the certificate by gener-
ating a new firmware with a forged root certificate and flash the
new firmware into the target camera through the device man-
agement interface. Therefore, we can decrypt the TLS/SSL
encrypted traffic, and finally find that the camera is also under
the risk of spoofing attacks.
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We reverse engineered the communication protocol of the
Haier IP camera and the Xiongmai IP camera and find they are
vulnerable to the spoofing attack and the Xiongmai IP camera
also under an unauthorized access attack.

1) For the Haier IP camera, we find the app is packed to
hide the executable files, i.e., dex files. To extract the
dex files from the packed app [33], we use Xposed and
Fdex2 [52], which is a module of Xposed, to hook the
loadclass function and extract the dex files. Then, we can
hook the app with Xposed and Frida, and perform static
data flow analysis and dynamic debugging to the binaries
of IoT device using GDB to discover the communication
protocol, as shown in Section III-F.

2) For the Xiongmai IP camera, we diassemble the camera
app for static analysis and use code instrumentation tech-
niques, such as hooking through Frida [41] to analyze
the app side communication protocol. We also disas-
semble the firmware, embed gdbserver onto a flash and
use GDB to dynamically debug the binary files of the
firmware.

C. Limitations

Our communication protocol, reverse engineering frame-
work, has the following limitations. If an IoT device employs
secure boot and the firmware image verification key is in
secure storage, such as e-fuse, we may not be able to change
the firmware of the device, since secure boot will detect the
change and refuse to start the device. Similarly, if flash encryp-
tion is enabled and the related keys are in secure storage, we
cannot change the device firmware since we cannot obtain
these keys. However, we find few IoT products use such secure
boot and flash encryption.

VI. RELATED WORK

In this section, we review the existing technologies for
analyzing the security of IoT devices and Android apps.
Particularly, we divided the state of the art into three cat-
egories, i.e., static analysis, dynamic analysis, and hybrid
analysis approaches.

Static Analysis: Some static analysis approaches have
been proposed to analyze the security of the IoT device
firmware [13], [53]-[57] and Android apps [58]-[63]. For
example, Costin et al. [53] preformed a large-scale static anal-
ysis of IoT device firmware with correlation engine that could
evaluate the similarity between the target IoT device firmware
and the vulnerable ones so as to determine whether the target
firmware contains existing vulnerabilities. Nirumand et al. [61]
proposed a model driven reverse engineering (MDRE)-based
static analysis method to discover the security risks in the
Android app communication. The static analysis approaches
are fast and can reach comprehensive code coverage of
the firmware or app [64], [65]. However, some IoT device
firmware and Android apps are obfuscated or encrypted, which
cannot be disassembled and statically analyzed [66], [67]. In
addition, the runtime behavior, such as user input could not
be statically determined and static analysis may cause false
positives and false negatives [64], [65], [68].
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Dynamic Analysis: Dynamic analysis approaches could
observe the runtime behavior of the target app and IoT device
firmware and could be used to verify the correctness of
the results of static analysis approaches by running the app
or IoT device firmware with test cases [64]. For Android
apps, Zheng et al. [65] proposed a dynamic analysis frame-
work based on ptrace (process trace), which is a system
call that could be used by one process to control another.
The framework uses ptrace to monitor selected system calls
to dynamically analyze malicious behaviors of the binary.
The frameworks of dynamic analysis methods for IoT device
firmware can be divided into two categories, i.e., software
emulator-based frameworks as well as the real IoT device
hardware and the emulator-based frameworks. For the first
category, the IoT device firmware is performed on a software
emulator and applied the dynamic analysis methods [69]-[71].
For example, Chen et al. [69] presented FIRMADYNE, which
is a dynamic debugging framework based on the emulator
with an instrumented kernel. Fourteen previously unknown
vulnerabilities were discovered by using FIRMADYNE with
automated webpages analysis and manual analysis.

Since the IoT device hardware is fairly diverse, it is non-
trivial to emulate various IoT device hardware with software
emulators [72]. To address this problem, some frameworks
have been proposed, which relay I/O accesses between real
10T device hardware and the emulator [72]—[74]. For instance,
Zaddach et al. [72] presented Avatar, which is a framework
that dynamically analyzes the IoT devices by combining the
emulator and the real hardware. The framework forwards
the I/O accesses from the emulator to the real IoT device.
The framework was evaluated with KLEE symbolic execution
engine and existing fuzzing tools. However, dynamic analysis
is time consuming as it requires numerous test cases to ensure
a certain degree of credibility for vulnerability detection. In
addition, it is difficult to generate valid test cases [64], [68].

Hybrid Analysis: Hybrid analysis methods, which com-
bines the static and dynamic analysis technologies, have
been proposed [16], [64], [67], [68], [75]-[78] to improve
the accuracy of vulnerability discovery. For example,
Martinelli et al. [67] proposed a framework to detect mali-
cious apps by performing both static and dynamic analyzing
approaches. They evaluated the framework using 2794 mali-
cious apps with high detection accuracy. Palavicini et al. [77]
performed static analysis on IoT firmware to avoid path
explosion when dynamically analyzing complex binaries with
symbolic execution using a software emulator. Yao et al. [16]
identified a previously unknown vulnerability, which is known
as privilege separation vulnerability. They leveraged firmware
loading information extraction, library function recognition,
and symbolic execution methods to analyze the IoT device
firmware and located 69 of 106 firmware containing privilege
separation vulnerabilities.

Those existing technologies could not be used to probe
into the various vulnerabilities located in the communication
protocol of IoT systems [3], [56], [57], [79] and there is lit-
tle systematically communication protocol reverse engineering
approaches, since it is a great challenge to reverse engineer
these protocols given the diversity of protocol implementation.
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For example, Papp et al. [56] and Shwartz et al. [57] proposed
the methods for reverse engineering IoT devices. They only
focus on discovering the vulnerabilities in the firmware of
IoT device instead of the security analysis of the communi-
cation protocol between the controller and device. To tackle
this problem, we propose a framework to reverse engineer-
ing communication protocols of Linux-based IoT systems for
further protocol security analysis in this article.

VII. CONCLUSION

In this article, we proposed a framework to manually reverse
engineer the communication protocols of IoT devices so that
the discovered protocol can be used for further security anal-
ysis. The framework works as follows: obtaining the app and
firmware of an IoT device, collecting network traffic gener-
ated by the device and control app, defeating traffic protection,
and discovering the communication protocol through traffic
analysis, static analysis and dynamic analysis of the app and
firmware. We presented a case study of using the frame-
work to reverse engineer the communication protocols of the
WeMo smart plug. Once the plug’s communication protocols
are discovered, we are able to identify a crucial authentica-
tion vulnerability that allows the plug sharing attack to control
victim plugs and connection hijacking attack for DoS. We
demonstrated our framework is generic and could be applied to
a variety of embedded Linux-based IoT systems using either
read-only or writable filesystems. We also briefly discussed
how we applied the framework to a few other real-world
IoT products and systems. We are the first to systemati-
cally propose such a manual communication protocol reverse
engineering framework.
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