DEMO: How Privacy Leaks from Bluetooth Mouse?

Xian Pan Zhen Ling Aniket Pingley
UMass Lowell Southeast University _Intel Inc., USA
xpan@cs.uml.edu zhenling@seu.edu.cn aspingley@gmail.com
Wei Yu Nan Zhang Xinwen Fu
Towson University George Washington University UMass Lowell

wyu@towson.edu

ABSTRACT

Raw mouse movement data can be sniffed via off-the-shelf
tools. In this demo, we show that such data, while seem-
ingly harmless, may reveal extremely sensitive information
such as passwords. Nonetheless, such a Bluetooth-mouse-
sniffing attack can be challenging to perform mainly because
of two reasons: (i) packet loss is common for Bluetooth traf-
fic, and (ii) modern operating systems use complex mouse
acceleration strategies, which make it extremely difficult,
if not impossible, to reconstruct the precise on-screen cur-
sor coordinates from raw mouse movements. To address
those challenges, we have conducted an extensive and care-
ful study, over multiple operating systems, on the recon-
struction of mouse cursor trajectory from raw mouse data
and the inference of privacy-sensitive information - e.g., user
password - from the reconstructed trajectory. Our experi-
mental data demonstrate the severity of privacy leaking from
un-encrypted Bluetooth mouse. To the best of our knowl-
edge, our work is the first to retrieve sensitive information
from sniffed mouse raw data. Video links of successful replay
attack for different target OS are given in Section 3.2.

Categories and Subject Descriptors

B.4.3 [Hardware]: Input/Output and Data Communica-
tions—Interconnections

Keywords

Bluetooth, privacy, mouse, sniffing, passwords

1. INTRODUCTION

Many mouse manufacturers and users believe that mouse
data is not as sensitive as other HID devices such as key-
boards. For example, Logitech made the following statement
in a white paper published on Mar. 2, 2009 [4]: “Since the
displacements of a mouse would not give any useful informa-
tion to a hacker, the mouse reports are not encrypted.” In
this demo, we show mouse movement information can leak
extremely sensitive information such as passwords.

The attack of Bluetooth communication begins with sniff-
ing Bluetooth mouse communication. Various off-the-shelf
tools are available to perform the Bluetooth sniffing. In
particular, USRP2 (Universal Software Radio Peripheral 2)

Copyright is held by the author/owner(s).
CCS’12, October 16-18, 2012, Raleigh, North Carolina, USA.
ACM 978-1-4503-1651-4/12/10.

nzhang10@gwu.edu

xinwenfu@cs.uml.edu

[1] is a software-defined radio device, which can be tuned
to any Bluetooth frequency with a 2.48GHz daughterboard.
To sniff Bluetooth communication in its entirety (i.e., across
all frequency channels), four USRP2s are needed. Tools like
Ubertooth [5, 6, 7] can be used to determine the MAC ad-
dress of undiscoverable devices, which can in turn be fed into
FTS4BT [2], a commercial product that is able to synchro-
nize with victim Bluetooth devices, follow the Bluetooth fre-
quency hopping sequence, and thereby sniff the entire com-
munication session. With customized antennas, packet loss
can be reduced with USRP and Ubertooth.

Once raw mouse movements are eavesdropped, we intro-
duce a trajectory-reconstruction technique, which reconstructs
the on-screen mouse cursor trajectory and the topology formed
by the positions where mouse clicks occur i.e., the clicking
topology. Such clicking topology may reveal sensitive infor-
mation such as user behavior (e.g., applications which a user
interacts with) and passwords. To the best of our knowledge,
our work is the first to retrieve sensitive information from
sniffed mouse raw data. Our major contributions can be
summarized as follows:

e We examine mouse data semantics and investigate how
mouse events are processed in an operating system, for
the purpose of reconstructing an on-screen mouse cur-
sor trajectory from sniffed raw mouse movements. For
reconstructing on-screen mouse cursor trajectory, we
can either predict the trajectory from raw mouse data
or replay the raw data on the same type of computer
as the target.

e By analyzing the reconstructed cursor trajectory, we
can infer much information about a user’s interaction
with a computer. To demonstrate the severity of such
privacy leakage, we study a soft-keyboard-based au-
thentication scheme used by many security-critical web-
sites [3, 8] and propose two approaches, basic approach
and smart approach, to map a clicking topology to a
password sequence entered by the user using the soft
keyboard. Our experimental results demonstrate that
privacy leaking from Bluetooth mouse can be severe
and mouse data encryption should be mandatory. The
basic approach has a success rate of more than 98% de-
tecting the passwords while the smart approach has a
success detection rate of more than 95%.

At the conference, we will demo Bluetooth sniffing and
our replay attack for inferring passwords. In the rest of this
writing, we will briefly introduce our attack strategy in Sec-
tion 2, present preliminary results in Section 3 and conclude



in Section 4. Because of space limit, we skip detailed algo-
rithm presentation and analysis.

2. MOUSE CURSOR TRAJECTORY

In this section, we first discuss how to reconstruct the
mouse trajectory on screen from sniffed raw mouse data and
then discuss how to infer a clicked character sequence from
clicking points in the reconstructed trajectory.

2.1 Trajectory Reconstruction

An OS may use an acceleration algorithm to calculate the
cursor position based on the raw mouse movement data. We
define two acceleration strategies based on whether the time
of arriving packets is considered in the calculation of mouse
acceleration on screen. Lightweight Acceleration Strategy
does not consider the time of arriving packets, and it is
used in Linux OS with Xserver version before 1.5. Com-
plex Acceleration Strategy uses the time of arriving packets
to determine the cursor acceleration, and it is adopted in
Linux OS with Xserver version after 1.5, current Windows
and Mac OS X.

To reconstruct an on-screen mouse cursor trajectory from
sniffed raw mouse packets, we propose prediction attack and
replay attack. Given raw Bluetooth mouse movement data,
if an attacker knows the mouse acceleration algorithm of
the victim OS, the attacker can predict the cursor trajec-
tory on the target display of the victim system. However,
the attacker may not know the mouse acceleration algorithm
before-hand, particularly if the operating system is propri-
etary. It is not always trivial to reverse engineer those op-
erating systems and derive the hidden mouse acceleration
algorithm. Therefore, we also propose the replay attack.

The basic idea of the replay attack is to replay sniffed
Bluetooth packets to an impersonating computer, which uses
the same OS as the victim computer of interest and observes
the motion of the cursor from the impersonating computer
directly. For example, we can use Computer B to imperson-
ate the victim Bluetooth mouse and connect to the imper-
sonating Computer A. After setting up the connection, the
fake mouse, i.e., Computer B will replay the sniffed Blue-
tooth mouse packet according to their timestamps. There-
fore, the cursor movement on Computer A is the recon-
structed mouse trajectory that we want. We have imple-
mented the replay attack against Linux, Windows and MAC
OS X and our fake mouse can emulate various mouse brands.
To guarantee that replayed packet timing is accurate, we use
the high resolution timer (nanosleep and real time clock) in
Linux and implement the fake mouse.

The benefit of replay attack is that we do not need to
understand the complex acceleration algorithm on the vic-
tim computer if we can impersonate the victim computer in
terms of the operating system. We can know the type of op-
erating system on the victim computer by various scanning
software such as nmap and Nessus.

2.2 Inferring Character Sequence

Cursor clicking topology is formed by connecting all click-
ing points in the reconstructed trajectory. Recall that the re-
construction can be conducted by either prediction or replay
attack from raw mouse movements. We consider the sce-
nario of inferring character sequences from a reconstructed
cursor clicking topology when a user is clicking on an on-

1014

screen soft keyboard, and will evaluate how well we can infer
passwords based on the reconstructed clicking topology.

We now introduce the basic approach to infer the charac-
ter sequence from a cursor clicking topology. The basic ap-
proach directly maps the clicking topology to an on-screen
keyboard. Assume that we have derived the raw mouse data
containing clicks on a software keyboard, we can derive the
clicking topology. However, we do not know the exact start-
ing point of the trajectory, and therefore cannot determine
which keys are clicked in the topology. To derive all candi-
dates (i.e., all possible character sequences corresponding to
the trajectory), we move the cursor clicking topology from
top left to bottom right in the area of the on-screen key-
board. Every time the topology moves, the clicking points
produce a character sequence. We record all different char-
acter sequences. Therefore, a set of character sequences
based on a cursor clicking topology can be derived. We
denote the set of character sequences as candidate character
sequences. The true character sequence must be one of the
candidates if there is no packet loss and packet timing is
correct. Nonetheless, the problem of this approach is that
it may generate a large number of candidates.

In order to reduce the number of candidate character se-
quences, a smart approach is proposed to utilize the statis-
tical information of the area people click on the on-screen
keyboard. Intuitively, when hitting a key, the user tends
to click in the middle region (rather than edge) of the area
corresponding to the key - which we refer to as the hot area
for the key. Since the size of keys on the software keyboard
is different, to derive a normalized hot area, we first obtain
more than 1000 clicking positions for different characters on
the same on-screen keyboard, and then normalize the rect-
angle area of a key to a 1 x 1 square area. The hot area is
the area that contains 99% of the clicked positions. After
obtaining the hot area, we map a cursor clicking topology
to an on-screen keyboard from top left to bottom right, and
a character sequence will be considered as a candidate se-
quence only if all the characters’ clicking positions are in
the hot area. With the hot area, the number of candidate
character sequences will sharply decrease. For example, our
experiments show that the smart attack has the number of
candidate passwords smaller than 4 on average. The benefit
of the smart approach is that the uncertainty of the clicked
character sequence is significantly reduced. This is what the
attacker prefers.

3. PRELIMINARY RESULTS

We now present preliminary results on reconstructing cur-
sor trajectory so that an attacker can compromise sensi-
tive information of a user. To quantify the results, we in-
fer password input via a software keyboard. We have con-
ducted extensive experiments and attacks were successful
under Linux, Windows and Mac OS X. Because of the space
limitation, we show selected results under Linux to illustrate
the feasibility. We randomly generated 100 passwords of 8
characters length (including uppercase letters, lowercase let-
ters, and numbers), and used a Bluetooth mouse (Logitech
MX 5500) to click on a on-screen virtual keyboard, zvkbd, in
order to input those passwords at a computer installed with
openSUSE 11.1, which uses the lightweight mouse accelera-
tion strategy. We also evaluated the success rate of inferring
passwords with the complex acceleration on Fedora Core 13
and the replay attack. Success rate is defined as the per-



Table 1: Password Detection Rate for Lightweight and Complex Acceleration Algorithms

Basic Inferring

Smart Inferring

small keyboard | large keyboard

small keyboard | large keyboard

100%
99%

Lightweight Acceleration
Complex Acceleration

99% 99%
98% 95%

100%
98%

centage of real passwords that are included in the set of
candidate passwords generated by our prediction algorithm.

3.1 Prediction Attack

The packet arrival timing affects the attack accuracy on
reconstructing the mouse cursor trajectory on screen for op-
erating systems using the complex acceleration strategy. We
conducted extensive experiments on Fedora Core 13, which
uses complex acceleration strategy, to investigate how much
packet timing can affect the result of inferring passwords.
To reduce the impact from timing, we should use the data
starting at the time when the first click of passwords hap-
pens and this reduces the prediction error.

Table 1 compares the results of inferring passwords for
lightweight and complex acceleration strategies. A small
virtual keyboard zvkbd has a size of 449 x 149. The large
version of the keyboard has a size of 896 x 254. We have
observed in the experiments for the large size keyboard with
the basic inferring method that 98% of password clicking
processes have a topology deviation in the range [0,25] pix-
els in both X and Y axes. In only one case, the deviation
is 52 pixels on the X direction and 9 pixels in the Y direc-
tion. However, the large deviation does not always lead to
a failure of password inference, because the predicted click-
ing topology may be still in the characters’ areas on the
software keyboard. We have observed similar results in ex-
periments on the small size keyboard. Table 1 shows that
passwords can be successfully derived for complex acceler-
ation strategies by using approaches we developed. One
reason for the high success rate is that mouse movement
for entering passwords (clicking an on-screen keyboard) is
different from mouse movement in other situations. Each
character on the on-screen keyboard corresponds to a small
area. Users always take caution when inputting passwords
and will not move the mouse too fast to miss a key. Hence,
mouse movement is slow when users input their passwords
on an on-screen keyboard. This slow movement reduces the
impact of packet timing on mouse acceleration and favors
reconstructing a correct clicking topology.

3.2 Replay Attack

We now show the results of replay attack. The attack
computer is installed with Ubuntu 8.04 and the target com-
puter is installed with Fedora Core 13. Our experiments
show that because of more impact from replayed Bluetooth
packet timing, the performance of the replay attack is not as
good as prediction attack. Bluetooth packet timing is seri-
ously distorted during the replay. However, a detection rate
of 69% is still achieved when the basic inferring is used. The
detection rate for smart inferring is 31%. Therefore, basic
inferring is recommended for the replay attack.

Here are videos of successful replay attack for different tar-
get OS: Fedora Core 13 http://www.youtube.com/watch?
v=qnjqgCCTVTk Windows 7 default installation http://www.
youtube. com/watch?v=FVJK_m3UPjO Mac OSX 10.6.5 http:

1015

//wuw.youtube.com/watch?v=iFJoHBiYDWg. These videos
show the whole replay attack process, and do not include
the sniffing process. The attack computer is always installed
with Ubuntu 8.04. It replays the sniffed raw mouse data of a
real login session of WESTPAC online bank [8] on the same
OS as the victim computer. From these videos, we can see
that a victim’s password can be disclosed.

4. CONCLUSION

In this demo, we demonstrate privacy leakage from unen-
crypted Bluetooth mouse traffic. By reviewing the process
of establishing Bluetooth connections, we demonstrated how
one can sniff Bluetooth traffic via multiple sniffers or a single
sniffer. We examined the Bluetooth mouse packet semantics
and discussed how raw mouse movements could be mapped
to on-screen cursor trajectories when lightweight or com-
plex cursor acceleration strategies are being used. Finally,
we conducted an extensive evaluation of an application of
Bluetooth mouse sniffing - the inference of passwords that
a user enters via an on-screen soft keyboard. Specifically,
we proposed two approaches for password inference: a ba-
sic approach to enumerate all candidate passwords from the
clicking topology and a smart approach that utilizes the sta-
tistical distribution of human clicking patterns to reduce the
number of candidate passwords from a clicking topology.
Our experimental results demonstrated the seriousness of
privacy leakage from unencrypted Bluetooth mouse. Thus,
we recommend the encryption of Bluetooth mouse traffic to
be mandatory.

5. REFERENCES

[1] M. Ettus. Usrp produce. http://www.ettus.com/,
2012.
[2] Frontline Test Equipment, Inc. . Ftsdbt bluetooth
protocol analyzer and packet sniffer.
http://www.fte.com/products/ftsdbt.aspx, 2012.
HSBC. Security key demo. http://www.banking.us.
hsbc.com/personal/demo/cam/cam_demo.htm, 2012.
Logitech. Logitech advanced 2.4 ghz technology,
revision 1.1h. http://www.logitech.com/images/pdf/
roem/Logitech_Adv_24_Ghz_Whitepaper_BPG2009.pdf,
March 2009.
M. Ossmann. Project ubertooth.
http://ubertooth.sourceforge.net, 2012.
D. Spill. Final report: Implementation of the bluetooth
stack for software defined radio, with a view to sniffing
and injecting packets.
www.cs.ucl.ac.uk/staff/a.bittau/dom.pdf, 2007.
D. Spill and A. Bittau. Bluesniff: Eve meets alice and
bluetooth. In Proceedings of USENIX WOOT, 2007.
WESTPAC. Westpac online banking. http://wuw.
westpac.com.au/personal-banking/westpac-online/,
2012.

3]





