
IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017 1899

Security Vulnerabilities of Internet of Things:
A Case Study of the Smart Plug System

Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, Senior Member, IEEE, and Xinwen Fu

Abstract—With the rapid development of the Internet of
Things, more and more small devices are connected into the
Internet for monitoring and control purposes. One such type of
devices, smart plugs, have been extensively deployed worldwide
in millions of homes for home automation. These smart plugs,
however, would pose serious security problems if their vulner-
abilities were not carefully investigated. Indeed, we discovered
that some popular smart home plugs have severe security vul-
nerabilities which could be fixed but unfortunately are left open.
In this paper, we case study a smart plug system of a known
brand by exploiting its communication protocols and successfully
launching four attacks: 1) device scanning attack; 2) brute force
attack; 3) spoofing attack; and 4) firmware attack. Our real-world
experimental results show that we can obtain the authentication
credentials from the users by performing these attacks. We also
present guidelines for securing smart plugs.

Index Terms—Attacks, countermeasures, Internet of Things
(IoT), vulnerabilities.

I. INTRODUCTION

THE EMERGENCE of Internet of Things (IoT) provides
the capabilities of connecting smart devices, small actua-

tors, and people anywhere and anytime to the Internet. Gartner
forecasts that the number of IoT grows 31% from 6.4 billion
in 2016 to 8.4 billion in 2017, and will reach 20.4 billion
by 2020 [1]. Smart plugs, as one type of fast emerging IoT
devices, are gaining increasing popularity in home automa-
tion, with which users can remotely monitor and control their
homes. Fig. 1 shows an example smart plug, i.e., Edimax

Manuscript received January 14, 2017; revised May 3, 2017; accepted
May 7, 2017. Date of publication May 23, 2017; date of current ver-
sion December 11, 2017. This work was supported in part by the National
Natural Science Foundation of China under Grant 61502100, Grant 61632008,
Grant 61402104, Grant 61572130, Grant 61602111, Grant 61532013, and
Grant 61320106007, in part by the National Science Foundation under Grant
1461060, Grant 1642124, and Grant 1547428, in part by the Natural Sciences
and Engineering Research Council of Canada under Grant 261409-2013,
in part by the Jiangsu Provincial Natural Science Foundation of China
under Grant BK20150637 and Grant BK20140648, in part by the Jiangsu
Provincial Key Laboratory of Network and Information Security under Grant
BM2003201, in part by the Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China under Grant 93K-
9, and in part by the Collaborative Innovation Center of Novel Software
Technology and Industrialization. (Corresponding author: Zhen Ling.)

Z. Ling, J. Luo, and Y. Xu are with the School of Computer Science
and Engineering, Southeast University, Nanjing 211189, China (e-mail:
zhenling@seu.edu.cn; jluo@seu.edu.cn; ylxu@seu.edu.cn).

C. Gao and X. Fu are with the Department of Computer Science,
University of Massachusetts at Lowell, Lowell, MA 01854 USA (e-mail:
cgao@cs.uml.edu; xinwenfu@cs.uml.edu).

K. Wu is with the Department of Computer Science, University of Victoria,
Victoria, BC V8P 5C2, Canada (e-mail: wkui@uvic.ca).

Digital Object Identifier 10.1109/JIOT.2017.2707465

SP-2101W, and the iPad that is installed with the control appli-
cation, i.e., EdiPlug. Various applications can be implemented
over such a system. For instance, in winter time users can turn
on the heater with a smartphone in advance to warm up their
homes before they return home. They can also rely on smart
plugs with the energy management function to accurately mon-
itor the energy consumption. Medical equipment may also be
connected to smart plugs for smart health. Due to the tremen-
dous benefit, smart plugs have been deployed worldwide in
millions of homes.

Security concerns come along with the popularity of smart
plugs. Compromised smart plugs would lead to both security
and privacy breach of home users. If smart plugs are used in
commercial or industrial buildings for demand response [2],
the consequences of smart plugs being compromised and con-
trolled by attackers could be disastrous. A disrupted medical
equipment connected to smart plugs may threaten a patient’s
life. In recent years, the security concerns of smart plugs
have received substantial consideration in both industry and
academic communities [3], [4].

Despite the importance and broad concern of security prob-
lems in smart plugs, we found their vulnerabilities are still
prominently exposed. As an evidence, we in this paper case
study the security problems of a typical smart plug system, i.e.,
Edimax SP-2101W. With reverse engineering, we disclose its
entire communication protocols and identify its vulnerabili-
ties that could open the door to different attacks. We propose
four attacks: 1) device scanning attack; 2) brute force attack;
3) spoofing attack; and 4) firmware attack. Extensive real-
world experiments show that we can effectively and efficiently
obtain a victim’s authentication credentials via these attacks.
As a remedy, we present defense guidelines to mitigate these
attacks.

The goal of this paper is to send out a strong message to
the IoT community and hopefully to enforce smart plug man-
ufacturers/developers to put security at a higher priority. As
such, the code of our attacks will not be disclosed.

Our main findings regarding the vulnerabilities of the
Edimax plug system in question can be summarized as
follows.

A. Insecure Communication Protocols

Since the communication protocols do not rely on crypto-
graphic mechanisms, an attacker could capture network traffic
and reverse engineer the communication protocols. In this
case, the system is subject to various eavesdropping attacks.

2327-4662 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:zhenling@seu.edu.cn
mailto:jluo@seu.edu.cn
mailto:ylxu@seu.edu.cn
mailto:cgao@cs.uml.edu
mailto:xinwenfu@cs.uml.edu
mailto:wkui@uvic.ca
http://www.ieee.org/publications_standards/publications/rights/index.html


1900 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017

B. Lack of Device Authentication

The remote server used by an app communicating with
plugs does not authenticate the plugs. This widely opens the
door for an attacker to perform our four attacks.

1) The Edimax plug system uses the MAC address of a plug
as the identity of the plug. We are able to use the device
scanning attack and scan the MAC address space of the
vendor in order to find the online status of all smart plugs
made by the vendor. The device scanning attack can also
reveal if users use the default password of a plug since
many users do not change the default password of their
smart devices [3] due to lack of security awareness.

2) If the plug is online and the password is changed, we
can perform the brute force attack to infer the pass-
words. Given a default password of “1234,” it is likely
that a user may change it to a four-digit one since the
vendor does not explicitly list their password policy in
their documentation. The remote server does not limit
the password attempts by an app.

3) If long passwords are employed by users, we can launch
the device spoofing attack, which blocks the genuine
plug and pretends to be a legal one, waiting for the
remote application to send the authentication credential
of a user for login and use of the plug. In this attack, the
users leak their authentication credentials once opening
the plug control applications. The attack is also stealthy
and the users can hardly realize that they are attacked.
Using the credential, the attacker can completely control
the genuine plug.

4) Moreover, we study the firmware update process and
perform the firmware attack to upload a malicious
firmware to the plug. With such a malicious firmware,
an attacker can create a reverse tunnel from the plug to
a desired server and gain the root access on the plug
system.

For countermeasures to the potential attacks exploiting the
above vulnerabilities, we present the following guidelines to
protect smart plug systems, including secure communication
protocols to block eavesdropping attacks, mutual authentica-
tion between the control app and plug through the remote
server, intrusion detection system for abnormal behavior detec-
tion, anti-bot mechanisms, and validation of data integrity.

The rest of this paper is organized as follows. We give an
overview of our protocol analysis strategy and the discovered
Edimax plug system architecture in Section II. In Section III,
we present the detailed communication protocol, including the
registration phase, authentication phase, control phase, and
firmware update. In Section IV, we introduce four attacks.
In Section V, we perform extensive empirical experiments to
demonstrate the feasibility and effectiveness of our attacks.
In Section VI, we discuss the corresponding countermeasures.
Related work is presented in Section VII. Finally, we conclude
this paper in Section VIII.

II. PROTOCOL ANALYSIS OVERVIEW

In this section, we first briefly introduce the smart plugs we
will exploit. We then introduce our platform that is used to

Fig. 1. Edimax plug and iPad installed with the control application.

analyze this Edimax plug system. We also discuss strategies
to analyze the content of the communication traffic. Finally,
we introduce the big picture of the smart home plug system
architecture of interest.

A. Smart Plugs of Interest

A smart home plug is an electric device that can be plugged
into an ordinary outlet. It provides outlets for other electronic
devices, e.g., lamps and fans. It is often designed to connect to
the wireless home network so that a user can install an app on
her smart device, e.g., smartphone, and control the electronic
device plugged into the smart plug over the Internet. Smart
plugs are gaining popularity for building a home automation
system.

We selected a typical smart plug, i.e., Edimax SP-2101W,
as shown in Fig. 1. The device is available from Amazon and
Walmart and has a rating of more than 4.0 out of 5.0. The app
for controlling the plug supports both Android and iOS plat-
forms. The plug provides the power meter functionality and
allows users to manage the energy consumption. For instance,
a user can monitor the power usage of the plugged appliance
and make a schedule to turn on/off the appliance via the app.
Moreover, a user can set up email information, including user-
name, password, simple mail transfer protocol (SMTP) server,
etc., for the plug so that the plug can send alert emails to the
users.

B. Network Traffic Acquisition and Analysis Platform

To analyze the network traffic and learn the architecture of
the Edimax plug system, we establish an experiment network
platform to capture the traffic at both smart plug and app.
We use two machines to set up two wireless APs with wire-
less USB adapters. We install the Ubuntu 14.04 operation
system on these two machines, which are connected to the
Internet through Ethernet network cards to obtain public IP
addresses. To establish wireless local area network (WLAN),
the network address translation (NAT) function is configured
using the Linux firewall, i.e., iptables. Moreover, we set up a
dynamic host configuration protocol (DHCP) service to auto-
matically assign local IP addresses to the devices connected to



LING et al.: SECURITY VULNERABILITIES OF IoT: CASE STUDY OF SMART PLUG SYSTEM 1901

our APs. We then use the network traffic sniffer, tcpdump, to
capture the incoming and outgoing traffic at the smartphone
and the smart plug.

One of these two APs is used for the smart plug while
the other is for the smartphone. Since these APs obtain two
different public IP addresses, we can use the platform to study
the remote control communication protocol of the Edimax plug
system. We can also connect the smartphone directly to the
AP used by the smart plug in order to investigate the local
control communication protocol of this plug system.

C. Reverse Engineering Smart Plug
Communication Protocols

We observed two types of network traffic in the Edimax
plug communication, i.e., the plaintext packets and obfuscated
packets. We first study the plaintext packets and then present
the solution to decode obfuscated packets.

1) Analyzing Plaintext Packets: When the plug and the con-
troller are located in the same WLAN, we find that the traffic
between the plug and the controller is not encrypted. HTTP is
used as the communication protocol between the plug and con-
troller. The plug uses the HTTP basic authentication method
to authenticate the controller.

The controller sends an HTTP POST request that contains
an authentication field. The authentication field contains the
username and password that are concatenated with a single
colon and are encoded with the Base64 scheme. The URL link
in the HTTP header is http://host:10000/smartplug.cgi, where
host is the local IP address of the plug.

The payload of the HTTP POST packet contains a plaintext
message encapsulated in the XML format. The message con-
sists of several fields, including command, the state of device,
power, current, schedule, time, SMTP server information, and
so on. By enumerating all of the plug operations, we can learn
the entire control protocol when the plug and the controller
are in the same WLAN. To be specific, the controller sends
two types of command messages, the get command and the
setup command, where the former is used to obtain informa-
tion from the plug and the latter is to control the plug, e.g.,
turning it on/off. The plug will respond with the corresponding
messages to the command messages from the controller. The
plaintext messages also help us decode the obfuscated packets
among the remote servers, the plug, and the controller.

2) Decoding Obfuscated Packets: We study the firmware of
the plug and find that the messages are not encrypted. Since
the latest firmware can be downloaded from the plug’s official
website, we can extract the binary code that is responsible for
communication between a plug and remote servers. We use
IDA Pro to carefully inspect the binary code and find that bit-
wise shifting is used to obfuscate the messages. The message
is encapsulated using the XML format. Brackets “<>” are
used to separate key-value pairs. The first byte of the mes-
sage is <. To obfuscate the message, a sender (e.g., the plug
or the controller) randomly selects the number of positions,
between 1 and 7, and then performs the bitwise right shift
operation to the message except the first byte <. She then
adds the number of positions for the left shifting to the ascii

Fig. 2. Architecture of the Edimax plug system.

code of <. A receiver (e.g., the controller or the plug) com-
pares the first byte of the content with the ascii code of <

to derive the number of positions for right shifting, and then
performs the corresponding right shifting for the rest of the
bytes in the message in order to decode the entire message.

D. Architecture of Smart Home Plug System

By analyzing the communication between the plug and
smartphone, we find that the Edimax plug system consists of
three components: 1) smart plugs; 2) controllers; and 3) remote
cloud servers. Fig. 2 illustrates the architecture of the Edimax
plug system. The plug can connect to a wireless home access
point (AP) for Internet access. The controller is a smart device,
e.g., smartphone, that is installed with the plug app. If the
controller and the plug are in the same local network, the app
can directly communicate with the plug through the local AP.
If the controller and the plug are in different networks, the
controller can communicate with the smart plug through the
cloud servers on Amazon EC2. We find two types of servers
in the cloud, i.e., authentication server and command relay
server. The authentication server is used to authenticate both
plug and controller. Since most of the plugs located in home
networks are behind an NAT, the command relay server can
work as a relay server to forward command messages between
the plug and the controller.

III. DETAILED COMMUNICATION PROTOCOL

OF SMART PLUG SYSTEM

By performing extensive exploratory experiments, we find
that the communication protocol of the Edimax plug system
has three phases: 1) smart plug registration phase; 2) authen-
tication phase; and 3) communication phase. In this section,
we present these three phases in detail.

A. Smart Plug Registration Phase

When the plug connects to an outlet and powers up for the
first time, it works as a wireless AP. We call it the plug AP to
differentiate it from a home wireless router. A user can use her
smartphone to connect to the plug AP. After the smartphone is
associated with the plug AP, the smartphone searches the home
wireless router and can connect the plug to the home wireless
router. Once the plug can access the Internet, it will register
with a remote authentication server. The detailed procedure is
introduced as follows.

http://host:10000/smartplug.cgi


1902 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017

Step 1: The smart plug establishes a TCP connection to
www.google.com. In this step, the smart plug performs the
network reachability test to check if the plug can access the
Internet. If it could not access the Google website, the plug
will stop working. Apparently, this strategy of testing Internet
connection is not robust since a number of countries such as
China block Google services [5].

Step 2: The smart plug connects to a time server
pool.ntp.org, using the network time protocol (NTP) to syn-
chronize the clock of the plug. A synchronized clock is
necessary since the plug system uses the time informa-
tion for its communication and task scheduling service, e.g.,
periodically turning on/off the plug on time.

Step 3: The smart plug sends datagram packets to a remote
server and registers with the server. According to our analysis,
this remote server is deployed on Amazon EC2 and is only
used for relaying UDP packets for authentication, we call it
the authentication server. The UDP port of the authentication
server for the plug is 8765.

The smart plug sends two consecutive UDP packets to the
authentication server. The content in these packets are encap-
sulated using the XML format. The first datagram packet sent
by the plug contains a value of “3000” in the “code value”
field to inform the authentication server for the registration.
This field is referred to as “command type” in this paper.
The second datagram packet includes a command type of
“1010” and the plug information including the plug model,
MAC address, type, alias, LAN IP address and port of this
plug and device firmware version. The second packet is used
to notify the authentication server that the plug is online. The
plug sends a 1010 datagram packet every 20 min periodically
to keep the server informed of the online status of the plug.

Step 4: Upon receiving the messages with the command
type 1010 from the plug, the authentication server sends a
response UDP packet. The command type of this response
packet is “1020.” This packet contains the smart plug’s MAC
address (sent to the server in step 3) and the status value.

B. Authentication Phase

There are two different scenarios in the authentication
phase. In the first scenario, the plug and the controller are
located in different networks. In the other scenario, they are in
the same WLAN. We elaborate the communication procedure
of these scenario.

1) Plug and Controller in Different Networks: Fig. 3 illus-
trates the authentication procedure between the smart plug and
the controller that are in different networks. For example,
the smart plug is located in the home network and con-
nects to the home WLAN while the controller accesses the
Internet through the cellular network or another WLAN. In
this case, the smart plug authenticates the controller via the
authentication server.

Step 5a: The controller sends a UDP request with a com-
mand type of “1030” to the authentication server. The UDP
port of the authentication server for the controller is 8766.
The request packet contains a credential in the “auth value”
field for authentication and information of the MAC address.

Fig. 3. Edimax plug and controller in different networks.

The value of the credential is hashed with the MD5 hash-
ing algorithm. The credential consists of the user account and
password. The format of this value is username:password. The
default username and password is admin and 1234, respec-
tively. A user can change the password via the app installed on
the smartphone. However, the username, i.e., admin, is hard-
coded into the application. The request packet also contains
the plug’s MAC address and timestamp.

Step 6a: In this step, the authentication server processes
the UDP request and forwards it to the right smart plug. Once
receiving the datagram request from the controller, the authen-
tication server first checks the status of the plug with the
MAC address sent from the controller. If the plug is online
at that point, the server changes the command type to “1040”
and then adds additional information to the original request
and forwards it to the smart plug. The additional informa-
tion includes the IP address and port of the controller, the
IP address and port of the command relay server, the relay
ID, and the credential from the controller. The relay ID is a
24 character hex string that is generated by the authentication
server. It is used at the control phase to correlate the TCP
connections between the controller and the plug. If the plug
is offline, the authentication server will send back a datagram
packet with a command type “5000” to the controller.

Step 7a: In this step, the smart plug authenticates the con-
troller and sends back a datagram response to the authentica-
tion server. After receiving the request from the authentication
server, the smart plug will check the credential to authenticate
the identity of the remote controller. If the credential from
the controller is correct, the plug will send a response packet
with a command type “1060.” The 1060 packet includes the IP
address and port of the command relay server, relay ID, etc.
If the credential is incorrect, the plug will send a datagram
packet with a command type of “1120” to the authentication
server. However, the server will not forward this message to
the controller.

Step 8a: In this step, the authentication server forwards this
datagram response packet (except the 1120 packet) to the con-
troller. Upon receiving the UDP response from the plug, the

http://www.google.com
http://pool.ntp.org


LING et al.: SECURITY VULNERABILITIES OF IoT: CASE STUDY OF SMART PLUG SYSTEM 1903

Fig. 4. Edimax plug and controller in the same WLAN.

authentication server modifies the command type to “1070,”
adds additional information, and then forwards the response
package to the controller. The additional information includes
the IP address and port of both plug and command relay server,
the relay ID, and the information of the plug including the
model, type, alias, firmware version, etc. Once the controller
receives this 1070 packet, the entire authentication procedure
between the plug and the controller completes.

2) Plug and Controller in the Same WLAN: Assume that
the plug and controller are in the same WLAN as shown in
Fig. 4. The detailed authentication process between the plug
and the controller is introduced below.

Step 5b: Once a controller manages to connect to a WLAN,
the controller broadcasts two consecutive 22-byte datagram
packets in order to determine if the plug and the controller are
in the same WLAN. These packets are used for discovering
the plug, in case both plug and controller are located in the
same WLAN. The destination port of this broadcast packets is
20 560. The controller also continues the authentication phase
introduced in Section III-B1 sending the credential to the smart
plug via the remote authentication server.

Step 6b: Upon receiving the broadcast datagram packets, the
plug will respond immediately. The plug sends back a data-
gram packet to the controller. The information in the packet
includes model, MAC address, IP address, firmware version,
and alias of this plug. In this way, both plug and controller
know that they are located in the same WLAN.

Step 7b: The controller establishes a TCP connection to a
server deployed on the plug and leverages the HTTP protocol
to communicate with the local smart plug. The destination port
of this HTTP server is 10 000. Once the TCP connection is
built, the controller sends the authentication information, i.e.,
user name and password, using the HTTP basic authentication
method. The payload contains a get command to obtain the
state of the plug so that the app will be able to display the
current status of the plug.

Step 8b: The smart plug responds with an HTTP packet to
the controller. The message shows the state of the power, (i.e.,
on or off). The controller obtains this response message and

shows the information to the user via the app. Therefore, after
the authentication phase, the user can perform various control
operations through the app. For instance, the user can reset
the password or the SMTP server.

C. Control Phase

In the control phase, if the controller and the plug are
located in the same WLAN, they can directly communi-
cate with each other using the HTTP protocol introduced in
steps 7b and 8b. If the controller and the plug are in differ-
ent networks, the communication traffic between the controller
and the plug passes through a remote server as shown in
Fig. 3. The command messages are encapsulated using the
XML format. The content of the traffic from and to the plug,
the controller, and the server is obfuscated but not encrypted.

Step 9a: Both smart plug and controller establish TCP con-
nections to a rendezvous server deployed in the Amazon cloud.
We call this server as a command relay server as it is used
to relay the commands between plugs and controllers. Recall
that authentication server selects this rendezvous server and
generates a relay ID, and then sends the relay ID to both plug
and controller. Thus, after the plug and the controller build the
connections to the command relay server, both plug and con-
troller send a message composed of the MAC address of the
plug and the relay ID to the command relay server. The relay
server correlates these two TCP connections using the relay
ID and MAC address. The relay server does not respond to
either the plug nor the controller after receiving the messages.

Step 10a: After sending the relay ID and plug MAC address
to the relay server, the controller sends a command to the relay
server. The message uses the XML format that is the same as
the one used in the WLAN. For instance, to get the status of
the plug, the controller will send a get command to the relay
server. After receiving the command from the controller, the
relay server will forward the command message to the plug
without any change.

Step 11a: Upon obtaining the message from the con-
troller, the plug responds to this command. According to
the command message, the plug sends back the correspond-
ing information to the relay server. For example, the plug
may report the state of the plug. The command relay server
forwards the response to the controller without any change.

The controller can send a setup command to control the
plug. For instance, if the state of the plug is on, the con-
troller can send an off command to the plug through the relay
server in order to change the plug’s state. The plug executes the
setup command and turns off the plug after receiving the com-
mand message. The plug will then send the execution result
to the controller via the relay server to inform that the setup
command has been successfully executed. After the controller
receives the execution result from the relay server, the control
phase completes.

D. Firmware Update

The firmware of the plug can be updated through a firmware
upgrade tool, which is designed for the Microsoft Windows
operating system. The Windows system and the plug should



1904 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017

connect to a same local network. Once the tool is opened,
it performs the operation in step 5b to determine if the plug
and the controller are in the same WLAN. The plug performs
step 6b to send the information of the plug to the tool. After
receiving the plug information, the tool displays the plug model,
MAC address, IP address, firmware version, and the upgrade
status. If a new version is available, the upgrade status shows
that a new firmware version can be used. The user can click the
new version on the tool, which pops up a prompt box and asks
the user to input the password of the plug. After gaining the
password from the user, the firmware upgrade tool generates
a firmware (i.e., a Linux bin file) in a temp file folder and
then uploads this firmware to the HTTP server on this plug.
The password is encoded in the HTTP header using the HTTP
basic authentication method. The plug installs this firmware
after receiving the file and restarts. Once this firmware upgrade
process is completed, the plug automatically connects to the
AP and the user can use the controller to access the plug again.

IV. SECURITY VULNERABILITIES OF SMART PLUG

In this section, we introduce four attacks, i.e., device scan-
ning attack, brute force attack, device spoofing attack, and
firmware attack in detail. We also discuss the possible impact
after an attacker can access the plugs. Please note that we use
our own smart plugs for security analysis in order to avoid
legal issues.

A. Device Scanning Attack

In a device scanning attack, the attacker can scan all plugs
by enumerating possible MAC addresses of the smart plugs
from this vendor. According to recent research [3], many users
do not change the default password after deploying their IoT
devices. They expect the vendor takes care of the security.
Recall that in the authentication phase between the plug and
the controller, the controller can receive the 1070 packet as
discussed in step 8a if the plug is online and the password
is correct. An attacker can craft an authentication message
that specifies the plug MAC address, the default username
and password, i.e., admin : 1234, and check if any victim is
using a plug with the specified MAC and the default password.
Here “admin” is hard coded and actually does not play the role
as a username since the username is not used to differentiate
different controllers or users. The MAC address of the plug
works as kind of username.

The key to a successful device scanning attack is to know
the MAC address space of the smart plug. Luckily for the
attacker (unluckily for the manufacturer), MAC addresses are
predictable. We can search the MAC address spaces allocated
to a company/manufacturer on the Internet [6]. The first six
digits of an MAC address indicate the device manufacturer
and the other six digits refer to a specific MAC address given
to the manufacturer. A manufacturer often gives a block of
sequential MAC addresses to the same product. Therefore, if
we buy a few smart plugs, we can guess at least portions of
MAC addresses allocated to smart plugs of this model. The
attacker can enumerate the whole MAC address space of a
manufacturer in a brute force attack.

TABLE I
RESPONSE TO CONTROLLER THAT SENDS

AUTHENTICATION MESSAGES TO PLUG

Table I shows the possible responses to a controller that
sends an authentication message to a plug with a specified
MAC address and password. If the plug with the specified
MAC address is online and the password is correct, the adver-
sarial controller can receive the 1070 packet. If the plug with
the specified MAC address is online and the password is
wrong, the plug sends a packet with a command type of 1120
to the authentication server and the authentication server will
not forward the message to the controller. To deal with this
case in programming, the attacker should set a timer and try
more times if the attacker does not obtain a response packet
in case that the 1070 UDP packet is lost during the transmis-
sion. If the plug with the specified MAC address is offline or
does not exist, the authentication server sends a 5000 packet
to the attacker. Therefore, when a 5000 packet is received,
the attacker cannot tell if the plug with the specified MAC
address is offline or there is no plug with that MAC address.
However, this does not affect the device scanning attack. Based
on Table I, the attacker can leverage the server response in
order to find plugs with default passwords and plugs not using
the default password/specified password.

B. Brute Force Attack

After deploying the scanning attack, the attacker can dis-
cover all the online plugs using nondefault passwords. Then
the attacker can select those plugs, construct 1030 packets,
and enumerate all possible passwords. The attacker just needs
to wait until she receives the right response. At the time of the
writing, our experiments show that the authentication server
does not block this brute force password attack.

However, our experiments show that the Edimax plug
system actually allows a password of 20 characters, includ-
ing digits and upper- and lower-case alphabetic letters. This
password policy is not written in any of the provided manual
and we cannot find it online either. If a user indeed inputs a
long and complicated password, the brute force attack does
not work anymore. Unluckily, the plug system suffers from
the following device spoofing attack, which can expose any
plug credential.

C. Device Spoofing Attack

1) Attack Process: In the device spoofing attack, we create
a software bot that mimics a plug and performs the authen-
tication with the remote controller in order to directly obtain
the credential from the controller. It works as follows.

1) The attacker first selects a target plug with a specific
MAC address. Recall the attacker knows this plug is
online and this plug does not use the default password
by using the device scanning attack. If the attacker has



LING et al.: SECURITY VULNERABILITIES OF IoT: CASE STUDY OF SMART PLUG SYSTEM 1905

sufficient resources, she can simultaneously choose as
many targets as she wants.

2) The attacker registers the spoofed plug by performing
step 3 in Section IV. In particular, the attacker can emu-
late the communication behavior of a real plug and send
a packet with a command type of 1010 to the authen-
tication server. Since the server does not provide any
authentication method to authenticate the plug, it reg-
isters this spoofed plug and sends back the response
packet with the command type of 1020 as introduced in
step 4 in Section IV. At this point, the spoofed plug is
online.

3) When a victim opens her app on the smartphone,
the app will automatically send the 1030 packet to
the authentication server as introduced in step 5a in
Section IV. The authentication server will forward this
message to the attacker’s spoofed plug as introduced
in step 6a in Section IV. Since the 1030 packet con-
tains the credential, the attacker can effectively derive
the credential.

4) To keep the victim from discovering the abnormal
authentication process, the attacker continues to execute
step 7a in Section IV. The app will receive the desired
packet as introduced in step 8a in Section IV. At this
time, the entire authentication phase completes.

Regardless of whether the plug and the controller are in the
same WLAN or not, the controller always authenticates with
the plug through the remote authentication server! As a result,
the spoofed plug can always derive the credential during the
authentication phase.

If the attacker wants to hide the spoofing attack from the
victim, more has to be done by the spoofed plug. There are
two cases. In the first case, the real plug and the controller are
in the same WLAN. In this case, actually, the spoofed plug
will not affect the real plug control procedure at all, since the
controller will authenticate with the real plug in the WLAN
as introduced in steps 5b and 6b in Section IV. The con-
troller can control the plug with steps 7b and 8b in Section IV.
Consequently, the victim will not realize this attack at all.

In the second case, the plug and controller are in different
networks. In this case, when the spoofing attack is deployed,
the victim controller communicates with the spoofed plug. The
challenge for the attack being stealthy is how the spoofed plug
relays the victim’s commands to the real plug so that the plug
control looks normal to the victim, who will not realize she
is being attacked. To this end, the attacker first needs to stop
sending the 1010 packets to the authentication server. This is
to stop the spoofing attack and allow the real plug to register
to the authentication server as soon as possible. The attacker
should then move on to build a TCP connection to the com-
mand relay server and send the MAC address of the target plug
and the right relay ID with step 9a in Section IV. Therefore,
the victim will send the command message to the spoofed
plug. The attacker should record the victim’s operations, e.g.,
turning on/off the plug. Recall that the real plug sends a
1010 packet every 20 min with step 3 in Section IV. When
the authentication server receives this packet, the real plug is
online again. At this time, the attacker can then access the real

Fig. 5. Example of device spoofing attack.

plug using the credential and replay the victim’s commands
to the real plug.

2) Issues: In the spoofing attack, the real plug sends the
1010 packet to the authentication server every 20 min in order
to keep its online status. To address this issue, the attacker
should periodically send 1010 packets to the authentication
server so as to keep the spoofed plug online. The attacker
may want to keep the spoofed plug online as long as possible
in order to increase the success rate of the attack.

We now compute the attack success rate when a user opens
the plug control app. Denote x as the time between the first
1010 packet from the attacker and the first 1010 packet of the
genuine plug sent during the attack process, where x < 20.
Denote y as the time interval between two consecutive 1010
datagram packets sent by the attacker. During the spoofing
attack, assume that the total number of 1010 datagram packets
sent by the genuine plug is n. Then the total time of this attack
is �(x + 20 ∗ n)/y� ∗ y. As shown in Fig. 5, the shaded parts
marked with solid lines and dashed lines are controlled by
the genuine plug, while the blank parts are controlled by the
spoofed plug. The time duration corresponding to the shaded
parts can be computed by

n−1∑

i=0

T(i) =
n−1∑

i=0

min{�(x + 20i)/y�y − (x + 20i), 20}. (1)

The time duration corresponding to the dashed line shaded
part can be computed by

T(n) = �(x + 20n)/y�y − (x + 20n). (2)

Hence, we can derive the average online rate of the genuine
plug during the attack by

G =
∫ 20

0

n−1∑
i=0

T(i) + T(n)

20�(x + 20n)/y�y
dx, (n ≥ 1). (3)

We define the success rate of this attack as the online time
of the spoofed plug over the length of the attack process. The
success rate evaluates the probability that the spoofed plug
gets a victim’s credential when the victim randomly wakes up
and sends a command during the attack process. Therefore,
success rate S can be computed as follows:

S = 1 − G. (4)

We will evaluate the success rate in Section V.

D. Firmware Attack

The attacker can install a malicious firmware on the smart
plug so that she can remotely control it. Once the malicious
firmware is installed to the plug, it can establish a reverse
tunnel back to a remote malicious server and open a reverse
shell. Therefore, the attacker can remotely access the plug



1906 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017

system and perform further attacks, e.g., installing various mal-
ware into the plug. In this attack, we assume the attacker can
access the local network of the plug and monitor the traf-
fic between plug and controller so as to derive the encoded
WiFi username and password in the HTTP header as presented
in step 7b. The attacker can then leverage the username and
password for the authentication purpose and upload the mali-
cious firmware to the HTTP server on the plug as illustrated
in Section III-D.

The attacker is capable of modifying the firmware in order
to add the malicious functionality since the vendor of the
smart plug provides the open source code of the firmware. We
find that some of the crucial functionalities of the plug, e.g.,
the light weight HTTP server and communication protocol
of the plug, is prebuilt so as to hide the plug communica-
tion protocol and functionalities to some extent. Moreover,
we find that BusyBox is used to provide some basic Linux
tools and its source code is available. As a result, we can
reconfigure BusyBox to enable Netcat. To establish a reverse
tunnel to the attacker’s desired server, she can utilize a Netcat
command like nc [IP address] [port]-e/bin/sh, where the
IP address and the port are those of the attacker’s remote
server.

The attacker can embed a piece of malicious code into the
source code of the DHCP service so that the DHCP can exe-
cute the malicious command of Netcat at startup. We find that
the system of the plug uses the DHCP service provided by
BusyBox to assign an IP address to the associated controller.
Consequently, the attacker can modify the source code of the
DHCP service to add the malicious code and then recompile
the source code of the firmware. In this way, the attacker can
have a customized firmware and upload it to the HTTP server
of the plug. The plug will automatically install the malicious
firmware and restart the system. The DHCP service automat-
ically starts at the boot up time and executes the malicious
command of Netcat.

V. EVALUATION

We have implemented the four attacks introduced in
Section IV and performed real-world experiments to demon-
strate the feasibility and effectiveness of the attacks against
the Edimax plug of interest. In this section, we first intro-
duce the experiment setup and then present the experimental
results.

A. Experiment Setup

We deployed five plugs and connected them to the Internet
via wireless routers. Three plugs were deployed on a university
campus in North America while the rest were deployed in
Asia. iPads are installed with the plug control app and are
used as the controller. Our attack program was implemented
in Python.

B. Experimental Results

We first test the scanning attack on the five plugs. Two plugs
use the default password, i.e., 1234, two plugs use nondefault
passwords, and the fifth plug is not connected to the Internet.

Fig. 6. Relationship between the success rate and the time interval.

Our Python controller program sends the 1030 packet to the
authentication server every 10 s if the program cannot obtain a
response packet within 20 s. The total number of transmissions
is limited to five times. From our experimental results, we
can obtain the correct response from the two plugs using the
default password and obtain the 5000 packet when scanning
the offline plug. It is also observed that we do not get response
packets from the plugs that do not use the default password.
These results verify the findings in Section IV-A.

We then perform the brute force attack against the two plugs
not using the default password. Since the default password
1234 includes only numbers and the length is 4, it may mislead
users to set a four-digit passcode. Therefore, we give the two
plugs a password of four random numbers. Our Python con-
troller program performs the brute force attack and we can get
the right response within several minutes. This demonstrates
the feasibility of the brute force attack. Recall that as a matter
of fact, the maximum length of the password is 20. The brute
force attack would be ineffective if such long passwords are
used for plugs.

Finally, we perform the device spoofing attack using our
own plugs in case that long passwords are used for plugs and
the brute force attack does not work practically. We evaluate
the feasibility of this attack in two scenarios.

1) The plug and the iPad located in the same network.
2) The plug and the iPad located in different networks.

The experimental results show that, in both scenarios, our
Python program that works as a spoofed plug, denoted as
Python plug, can obtain the credential from the controller as
described in Section IV-C whatever the password is.

Fig. 6 illustrates the relationship between the success rate
and the time interval of sending the 1010 packets by our
Python plug. As shown in Fig. 6, the faster the transmis-
sion frequency, the higher the success rate. For instance, if the
time interval of sending the 1010 packets is 3 min, the chance
of successfully obtaining the credential from the controller is
above 90%.

We are able to perform the firmware attack as introduced
in Section IV. The firmware can be customized with various
applications including netcat. With such a malicious firmware,
an attacker can create a reverse tunnel from the plug to a
desired server and gain the root access on the plug system.
However, this firmware attack has to be deployed locally at
this time.



LING et al.: SECURITY VULNERABILITIES OF IoT: CASE STUDY OF SMART PLUG SYSTEM 1907

VI. DEFENSE STRATEGIES

In this section, we present guidelines of the defense strate-
gies to mitigate the risks from the Edimax plug vulnerabilities
exposed in this paper.

A. Secure Communication Protocol

Cryptography has to be employed to encrypt communica-
tion. Encoding and obfuscation are not enough to provide
secret communication. In this paper, we can see that an
attacker can crack the obfuscation algorithm by analyzing
the network traffic. With an eavesdropping attack, she can
observe all the plaintext transmitted between the plugs and
the controller. To mitigate these threats, secure communica-
tion protocols should be adopted, e.g., DTLS, TLS/SSL, and
HTTPS, to encrypt the content transmitted between the plug,
the controller, the authentication server, and the command
relay server.

B. Mutual Authentication Between Plugs and Servers

The spoofing attack stems from the fact that the authentica-
tion server does not authenticate the genuine plug. The attacker
only needs to send a legitimate datagram using a command
type of 1010 and the MAC address of the victim’s plug in
order to fool the authentication server. The device authenti-
cation mechanism should be adopted at both server side and
plug side. For example, the device vendor can assign a pub-
lic/private key pair to a device before it leaves the factory.
The authentication server hosts a database of public keys of
all the plugs. Therefore, the authentication server can adopt the
public-key authentication to authenticate the genuine devices.

There is a possibility of spoofed server attacks against the
authentication server and relay server. An attacker may employ
DNS poisoning or man-in-the-middle attacks and pretend to
be the two servers. To counter the attack, plugs and control
apps should be preinstalled with public keys of the two servers
and verity certificates of the two servers before transmitting
authentication credentials and data.

C. Intrusion Detection System

To thwart the scanning attack, an intrusion detection system
should be employed at the server side. The intrusion detection
system should be able to identify extensive scanning attacks.
For example, it should detect the continuous and rapid pass-
word attempts. Moreover, the intrusion detection system can
be used to detect abnormal behaviors. For instance, during
the spoofing attack, the authentication server can identify the
attack by simply tracking the geolocation of the registered
plugs. If the geolocation information shows that two consec-
utive physical locations of a registered plug is far away in a
short time period, the spoofing attack may be underway.

D. Anti-Bot Mechanisms

To prevent the brute force attack, the authentication server
should adopt methods to determine if the login is performed
by a human or a bot. For instance, the CAPTCHA can be
used to mitigate the brute force attack conducted with bots.

Limiting the number of login attempts can be an effective way
to prevent this type of attack.

E. Data Integrity

According to our experiments, we can change the IP address
of the rendezvous server, i.e., the command relay server. Recall
that the authentication server generates the IP address of the
rendezvous server and the relay ID in step 6a. If the mes-
sage is received by our spoofed plug, we can modify the IP
address of the rendezvous server and send the message back to
the authentication server. The server does not check the data
integrity. As a result, the controller receives the IP address of
our desired server and then establish a TCP connection to our
server. This attack is possible since an attacker can tamper
with the data from the authentication server at the spoofed
plug side. Message authentication codes should be adopted.

VII. RELATED WORK

IoT systems are similar to traditional information systems
that consist of software, hardware, data, communication, and
end users. Therefore, IoT systems are subject to the similar set
of attacks against traditional information systems. In a typical
smart home automation system [4], the components such as the
smart device, house gateway, cloud server, API, mobile device,
and application, may all cause security and privacy prob-
lems. Existing work relevant to this paper roughly fall into the
following categories: software-related attacks, hardware-level
attacks, data-related attacks, communication-related attacks,
and end users-related attacks.

Software-related security issues [7], [8] are similar to the
traditional computer systems. For example, a buffer overflow
exploit is found by analyzing home network administration
protocol [7] so that it can be used to execute any code on the
device. A stack-based buffer overflow of the general library,
glibc [9], is exploited to attack several home hubs [8].

Hardware-level attacks [10]–[12] concentrate on compro-
mising the hardware, e.g., tampering external flash memories
and glitching address lines. For instance, Hernandez et al. [10]
used an USB stick connecting to a home automation device,
the nest thermostat, so that the device will load the code
stored on the stick without any check. Thus, an attacker could
exploit the security hole to install a malware on the device.
Wurm et al. [11] studied the Itron Centron smart meter. They
found that the device ID is stored in an external EEPROM
that does not provide read/write protection. By rewriting the
ID on the EEPROM, they can use one meter to forge another
meter.

Data-related security problems are investigated as
well [13]–[17]. For example, Ronen and Shamir [16]
exploited the smart lights to establish a covert light channel
to leak data from a secure place. The receiver could be
deployed at a long distance.

Communication-related security vulnerabilities have also
been substantially studied [3], [18]–[24]. For instance,
Rouf et al. [18] reverse-engineer the unsecured wireless com-
munication protocol of automatic meter reading and discov-
ered the lack of security mechanisms to protect user security



1908 IEEE INTERNET OF THINGS JOURNAL, VOL. 4, NO. 6, DECEMBER 2017

and privacy. Dhanjani [19] hacked the Phillips Hue lightbulb
system and finds that the authentication mechanisms are not
strong. Molina [20] exploited the KNX, a standardized home
automation communication protocol, and finds that the lack of
authentication and encryption allows an attacker to remotely
control the appliances in a hotel. Rahman et al. [21] found
the communication protocol vulnerabilities of the wearable
device (Fitbit). Various attacks, e.g., eavesdropping and injec-
tion, could be performed to impair the security and privacy
of the victim. By automatically analyzing the applications and
forging the authentication messages, Zuo et al. [24] designed
an authentication message generator to perform brute force
attacks against the corresponding remote application server.
Obermaier and Hutle [22] investigated the vulnerabilities of
communication protocols of four surveillance camera systems.

End users-related security threats often come from various
side channel attacks, e.g., vision-based attacks [25], [26] and
residues-based attacks [27], [28], to obtain users’ passwords.
For example, Yue et al. [26] investigated attacks that can cap-
ture a victim’s password without observing the text on the
screen of a smart device. Zhan et al. [28] utilized the finger-
print powder to derive the tapped keys on the surface of a
mobile device and infer the victim’s password.

To mitigate these threats, researchers also propose various
guidelines [29]–[32]. For example, an overview of security
and privacy of cyber physical systems can be found in [32].
A security architecture [33]–[35] for IoT systems can be used
to provide comprehensive security protection. Secure hard-
ware [36] and trusted [37], [38] software can be applied
to provide data integrity verification to defend against mal-
ware. The security of end users can be significantly improved
by educating users to employ a secure input method [26]
to enhance the interface security between human and IoT
systems. To address the device authentication issues, the
device fingerprinting [39], [40] from different layers could
be leveraged to identify the genuine smart device for fraud
protection.

VIII. CONCLUSION

In this paper, we send out a strong warning message on
the security problems of Edimax plug system and hope that
Edimax plug and other IoT device manufacturers enhance the
security of their systems. We study the vulnerabilities of a
smart plug system by reverse engineering its communication
protocols. After we obtain the details of its communication
protocols, we are able to identify several security vulnera-
bilities, including insecure communication protocols, lack of
device authentication, and a weak password policy. We pro-
pose four attacks, device scanning attack, brute force attack,
device spoofing attack, and firmware attack, to demonstrate the
severity of these security risks. We have implemented these
attacks and performed real-world experiments. Our analysis
and experimental results show that an attacker is able to control
these smart plugs completely. The device scanning attack can
find all online plugs. The brute force attack and device spoof-
ing attack can obtain the device password whatever it is. The
firmware attack can obtain the root access on the plug system.

To thwart these serious threats, we present the guidelines for
corresponding countermeasures.

ACKNOWLEDGMENT

Any opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] Gartner. (Feb. 2017). 8.4 Billion Connected ’Things’ Will be in
use in 2017, up 31 Percent From 2016. [Online]. Available:
http://www.gartner.com/newsroom/id/3598917

[2] P. Siano, “Demand response and smart grids—A survey,” Renew.
Sustain. Energy Rev., vol. 30, pp. 461–478, Feb. 2014.

[3] M. B. Barcena and C. Wueest. (2015). Insecurity in the Internet
of Things. [Online]. Available: https://www.symantec.com/content/dam/
symantec/docs/white-papers/insecurity-in-the-internet-of-things-en.pdf

[4] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk analysis of a
smart home automation system,” Future Gener. Comput. Syst., vol. 56,
pp. 719–733, Mar. 2016.

[5] Google. (Aug. 2016). Known Disruptions of Traffic to Google
Products and Services. [Online]. Available: https://www.google.com/
transparencyreport/traffic/disruptions/#group=REGION

[6] A. John. (Aug. 2016). MAC Address and OUI Lookup. [Online].
Available: http://aruljohn.com/mac.pl

[7] /DEV/TTYS0. (2014). Hacking the D-Link DSP-W215 Smart
Plug. [Online]. Available: http://www.devttys0.com/2014/05/
hacking-the-d-link-dsp-w215-smart-plug/

[8] M. Smith. (2015). Security Holes in the 3 Most Popular Smart
Home Hubs and Honeywell Tuxedo Touch. [Online]. Available:
http://www.networkworld.com/article/2952718/microsoftsubnet/security-
holes-in-the-3-most-popular-smart-home-hubsand-honeywell-tuxedo-
touch.html

[9] (2015). Critical Security Flaw: Glibc Stack-Based Buffer
Overflow in Getaddrinfo() (CVE-2015-7547). [Online]. Available:
https://access.redhat.com/articles/2161461

[10] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest ther-
mostat: A smart spy in your home,” in Proc. Black Hat USA, 2014,
pp. 1–8.

[11] J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, and Y. Jin, “Security
analysis on consumer and industrial IoT devices,” in Proc. 21st Asia
South Pac. Design Autom. Conf. (ASP-DAC), 2016, pp. 519–524.

[12] O. Arias, J. Wurm, K. Hoang, and Y. Jin, “Privacy and security in
Internet of Things and wearable devices,” IEEE Trans. Multi-Scale
Comput. Syst., vol. 1, no. 2, pp. 99–109, Apr./Jun. 2015.

[13] J. Lin, W. Yu, X. Yang, G. Xu, and W. Zhao, “On false data injection
attacks against distributed energy routing in smart grid,” in Proc. 3rd
ACM/IEEE Int. Conf. Cyber-Phys. Syst. (ICCPS), Beijing, China, 2012,
pp. 183–192.

[14] Q. Yang et al., “On false data-injection attacks against power system
state estimation: Modeling and countermeasures,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 717–729, Mar. 2014.

[15] J. Lin, W. Yu, and X. Yang, “Towards multistep electricity prices in smart
grid electricity markets,” IEEE Trans. Parallel Distrib. Syst., vol. 27,
no. 1, pp. 286–302, Jan. 2016.

[16] E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices:
The case of smart lights,” in Proc. IEEE Eur. Symp. Security Privacy
(EuroS P), Saarbrücken, Germany, 2016, pp. 3–12.

[17] J. Lin et al., “A survey on Internet of Things: Architecture, enabling
technologies, security and privacy, and applications,” IEEE Internet
Things J., to be published, doi: 10.1109/JIOT.2017.2707465.

[18] I. Rouf et al., “Neighborhood watch: Security and privacy analysis of
automatic meter reading systems,” in Proc. 19th ACM Conf. Comput.
Commun. Security (CCS), Raleigh, NC, USA, 2012, pp. 462–473.

[19] N. Dhanjani. (2013). Security Evaluation of the Philips hue Personal
Wireless Lighting System. [Online]. Available: http://www.dhanjani.com/
docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf

[20] J. Molina. (2014). Learn how to Control Every Room at a Luxury
Hotel Remotely. [Online]. Available: https://www.defcon.org/
images/defcon-22/dc-22-presentations/Molina/DEFCON-22-Jesus-
Molina-Learn-how-to-control-every-room-WP.pdf

http://www.gartner.com/newsroom/id/3598917
https://www.symantec.com/content/dam/symantec/docs/white-papers/insecurity-in-the-internet-of-things-en.pdf
https://www.symantec.com/content/dam/symantec/docs/white-papers/insecurity-in-the-internet-of-things-en.pdf
https://www.google.com/transparencyreport/traffic/disruptions/#group=REGION
https://www.google.com/transparencyreport/traffic/disruptions/#group=REGION
http://aruljohn.com/mac.pl
http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/
http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/
http://www.networkworld.com/article/2952718/microsoftsubnet/security-holes-in-the-3-most-popular-smart-home-hubsand-honeywell-tuxedo-touch.html
http://www.networkworld.com/article/2952718/microsoftsubnet/security-holes-in-the-3-most-popular-smart-home-hubsand-honeywell-tuxedo-touch.html
http://www.networkworld.com/article/2952718/microsoftsubnet/security-holes-in-the-3-most-popular-smart-home-hubsand-honeywell-tuxedo-touch.html
https://access.redhat.com/articles/2161461
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf
http://www.dhanjani.com/docs/Hacking%20Lighbulbs%20Hue%20Dhanjani%202013.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Molina/DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room-WP.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Molina/DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room-WP.pdf
https://www.defcon.org/images/defcon-22/dc-22-presentations/Molina/DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room-WP.pdf


LING et al.: SECURITY VULNERABILITIES OF IoT: CASE STUDY OF SMART PLUG SYSTEM 1909

[21] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks
and defenses for a health monitoring device,” in Proc. 6th Workshop
Hot Topics Privacy Enhancing Technol. (HotPETs), 2013, pp. 1–12.

[22] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-
based video surveillance systems,” in Proc. 2nd ACM Int. Workshop IoT
Privacy Trust Security (IoTPTS), Xi’an, China, 2016, pp. 22–28.

[23] H. Li et al., “Demographics inference through Wi-Fi network traffic
analysis,” in Proc. 35th IEEE Int. Conf. Comput. Commun. (INFOCOM),
San Francisco, CA, USA, 2016, pp. 1–9.

[24] C. Zuo, W. Wang, R. Wang, and Z. Lin, “Automatic forgery of cryp-
tographically consistent messages to identify security vulnerabilities in
mobile services,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS),
2016, pp. 1–17.

[25] F. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and S. Zanero, “A fast
eavesdropping attack against touchscreens,” in Proc. 7th Int. Conf. Inf.
Assurance Security (IAS), 2011, pp. 320–325.

[26] Q. Yue et al., “Blind recognition of touched keys on mobile devices,”
in Proc. 21st ACM Conf. Comput. Commun. Security (CCS), Scottsdale,
AZ, USA, 2014, pp. 1403–1414.

[27] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proc. Workshop Offensive
Technol. (WOOT), Washington, DC, USA, 2010, pp. 1–7.

[28] Y. Zhan et al., “Fingerprint attack against touch-enabled devices,” in
Proc. 2nd Workshop Security Privacy Smartphones Mobile Devices
(SPSM), Raleigh, NC, USA, 2012, pp. 57–68.

[29] R. Romana, J. Zhou, and J. Lopez, “On the features and challenges of
security and privacy in distributed Internet of Things,” Comput. Netw.,
vol. 57, no. 10, pp. 2266–2279, Jul. 2013.

[30] J. S. Kumar and D. R. Patel, “A survey on Internet of Things: Security
and privacy issues,” Int. J. Comput. Appl., vol. 90, no. 11, pp. 20–26,
2014.

[31] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: The road ahead,” Comput. Netw.,
vol. 76, pp. 146–164, Jan. 2015.

[32] H. Song, G. A. Fink, and S. Jeschke, Security and Privacy in Cyber-
Physical Systems: Foundations, Principles and Applications. Chichester,
U.K.: Wiley, 2017.

[33] J. Noorman et al., “Sancus: Low-cost trustworthy extensible networked
devices with a zero-software trusted computing base,” in Proc. USENIX
Conf. Security, Washington, DC, USA, 2013, pp. 479–494.

[34] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite:
A security architecture for tiny embedded devices,” in Proc. Eur.
Conf. Comput. Syst. (EuroSys), Amsterdam, The Netherlands, 2014,
Art. no. 10.

[35] F. Brasser, B. E. Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “TyTAN: Tiny trust anchor for tiny devices,” in Proc. Design
Autom. Conf. (DAC), San Francisco, CA, USA, 2015, pp. 1–6.

[36] K. Eldefrawy, A. Francillon, D. Perito, and G. Tsudik, “Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust,” in
Proc. Netw. Distrib. Syst. Security Symp. (NDSS), 2012, pp. 1–15.

[37] A. Seshadri et al., “Pioneer: Verifying code integrity and enforcing
untampered code execution on legacy systems,” in Proc. ACM Symp.
Oper. Syst. Principles (SOSP), Brighton, U.K., 2005, pp. 1–16.

[38] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla, “SCUBA:
Secure code update by attestation in sensor networks,” in Proc. ACM
Workshop Wireless Security (WiSec), Los Angeles, CA, USA, 2006,
pp. 85–94.

[39] A. Bates, R. Leonard, H. Pruse, K. R. Butler, and D. Lowd, “Leveraging
USB to establish host identity using commodity devices,” in Proc. Netw.
Distrib. Syst. Security Symp. (NDSS), 2014, pp. 1–14.

[40] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. Beyah, “Who’s
in control of your control system? Device fingerprinting for cyber-
physical systems,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS),
2016, pp. 1–15.

Zhen Ling received the B.S. degree from the
Nanjing Institute of Technology, Nanjing, China,
in 2005, and the Ph.D. degree from Southeast
University, Nanjing, in 2014, both in computer
science.

He is an Assistant Professor with the School
of Computer Science and Engineering, Southeast
University. His current research interests include
network security, privacy, and Internet of Things.

Dr. Ling was a recipient of the ACM China
Doctoral Dissertation Award in 2014, and the China

Computer Federation Doctoral Dissertation Award in 2015.

Junzhou Luo received the B.S. degree in applied
mathematics and the M.S. and Ph.D. degrees in com-
puter network from Southeast University, Nanjing,
China, in 1982, 1992, and 2000, respectively.

He is a Full Professor with the School of
Computer Science and Engineering, Southeast
University. His current research interests include
next generation network architecture, network secu-
rity, cloud computing, and wireless LAN.

Dr. Luo is a member of the IEEE Computer
Society and ACM, the Co-Chair of the IEEE SMC

Technical Committee on Computer Supported Cooperative Work in Design,
and the Chair of ACM SIGCOMM China.

Yiling Xu received the B.S. degree in digital media
technology from Jiangnan University, Wuxi, China,
in 2016. She is currently pursuing the M.S. degree
in computer science and engineering with Southeast
University, Nanjing, China.

Her current research interests include Internet of
Things, privacy, and security.

Chao Gao received the B.S. degree in electrical
engineering from Xi’an Jiaotong University, Xi’an,
China, in 2011, and the M.S. degree in electrical and
computer engineering from Northeastern University,
Boston, MA, USA, in 2015. She is currently pur-
suing the Ph.D. degree in computer science at the
University of Massachusetts at Lowell, Lowell, MA,
USA.

Her current research interests include Internet of
Things and network security and privacy.

Kui Wu (SM’07) received the B.Sc. and M.Sc.
degrees in computer science from Wuhan University,
Wuhan, China, in 1990 and 1993, respectively, and
the Ph.D. degree in computing science from the
University of Alberta, Edmonton, AB, Canada, in
2002.

He joined the Department of Computer Science,
University of Victoria, Victoria, BC, Canada, in
2002, where he is currently a Professor. His cur-
rent research interests include network performance
analysis, online social networks, Internet of Things,

and parallel and distributed algorithms.

Xinwen Fu received the B.S. degree from the
University of Science and Technology of China,
Hefei, China, in 1995, the M.S. degree in electrical
engineering from Xi’an Jiaotong University, Xi’an,
China, in 1998, and the Ph.D. degree in computer
engineering from Texas A&M University, College
Station, TX, USA, in 2005.

He is an Associate Professor with the Department
of Computer Science, University of Massachusetts
at Lowell, Lowell, CA, USA. His current research
interests include network security and privacy, digi-

tal forensics, wireless networks, and network QoS. His research was reported
by various media such as Wired and aired on CNN and CCTV 10.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


