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a b s t r a c t 

Energy disaggregation helps to identify major energy guzzlers in the house without introducing extra 

metering cost. It motivates users to take proper actions for energy saving and facilitates demand re- 

sponse programs. To reduce the computational complexity of pure energy disaggregation, we propose an 

occupancy-aided energy disaggregation (OAED) approach in this paper. Specifically, we make use of the 

occupancy information (whether or not the house/room is occupied by users) and classify the whole time 

interval into occupied and unoccupied periods. In unoccupied periods, we perform lightweight energy 

approximation; in occupied periods, we apply energy disaggregation with existing methods. Real-world 

experiments are conducted in an apartment hosting typical household appliances. Comparing with en- 

ergy disaggregation without considering occupancy information, our occupancy-aided approach can sig- 

nificantly reduce the computational overhead while ensuring the accuracy of energy disaggregation. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Based on the energy flow in the United States, the commercial

and residential buildings consumed as much as 74% of the total

electricity in 2013, and the residential buildings alone consumed

over 38% of the overall usage [1] . To effectively cut down the elec-

tricity bill for residential customers as well as facilitate demand

response (DR) programs for the utilities, it is meaningful to moni-

tor the energy consumption of individual appliances in residential

houses [2] . With the feedback of appliance level energy consump-

tion, the residential consumers can not only be motivated to cut

down energy usage automatically [3] , but also make more intelli-

gent decisions towards energy saving [4,5] . 

Energy disaggregation, also known as non-intrusive load moni-

toring (NILM), aims to identify major energy guzzlers by referring

to the measurements only from a single meter of the household. As

no extra metering cost is incurred, the technique is regarded as the

most economical way to obtain appliance level energy information

and has been well explored since 1980s [6] . Because of the cost

saving, energy disaggregation has drawn tremendous effort s and

investments from both academia and industry, and a broad spec-

trum of approaches have been attempted [7,8] . 
∗ Corresponding author. Fax: +12504725708. 
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While broadly investigated, energy disaggregation is still chal-

enging and has much room to improve. As one of the key prob-

ems, the computational complexity of energy disaggregation is

sually high. For the disaggregation approaches based on appli-

nces’ electrical signatures, it has to traverse the whole load curve

o search for the appliance signature one by one [9,10] . Other dis-

ggregation approaches based on state transition of appliances,

uch as hidden Markov model (HMM) as well as its variants, are

P-hard when they discover the most likely state sequences of ap-

liances [11,12] . Consequently, approximations and heuristics were

eveloped to reduce the complexity, leading to less accurate re-

ults. 

Is there any way that can reduce the computational complex-

ty while still ensuring the accuracy for energy disaggregation?

n a typical household, the occupancy states (whether someone

s at home) play a significant role in energy consumption. As a

eal-world case shown in Fig. 1 , we can observe that: i) most ap-

liances’ activities are triggered during occupied periods of the

ouse; ii) there are quite few appliances (only one in our case)

unning in unoccupied periods of the house. Therefore, when per-

orming energy disaggregation, we can focus on the occupied pe-

iods while roughly estimating the energy consumption of certain

ppliances running in unoccupied periods. By cutting out the unoc-

upied periods from the whole time interval, we can significantly

educe the computational complexity, especially when the unoccu-

ied periods are dominated. 

http://dx.doi.org/10.1016/j.comnet.2016.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.11.019&domain=pdf
mailto:guoming@uvic.ca
http://dx.doi.org/10.1016/j.comnet.2016.11.019
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Fig. 1. Correlation between appliances’ activities and the occupancy states of the house. Occupied periods of the house are illustrated by shaded areas. 
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To reduce the computational complexity of energy disaggrega-

ion while ensuring its accuracy, we make the following contribu-

ions in this work: 

• We propose an occupancy-aided energy disaggregation (OAED)

framework based on non-intrusive occupancy inference for the

residential house. The framework draws a general picture of

how occupancy information can be leveraged in the energy dis-

aggregation process and can be easily adopted by any pure en-

ergy disaggregation approaches. 

• To reduce the computational complexity of energy disaggrega-

tion by OAED, we first infer the occupancy states of the house

based on the analysis of collected load curve data; then by ap-

plying occupancy inference, we provide energy approximation

for the appliances running in the unoccupied periods, and per-

form energy disaggregation techniques for the appliances work-

ing in occupied periods. 

• We conduct extensive experimental evaluations over a real-

world residential energy monitoring platform and validate the

effectiveness and robustness of the occupancy-aided approach.

The performance results demonstrate that our occupancy-aided

approach can much reduce the computational overhead with

ensured accuracy of energy disaggregation. 

The rest of our paper is organized as follow: In Section 2 , we

eview current energy disaggregation approaches based on their

ethodology and utilized information. In Section 3 , we draw the

ramework of occupancy-aided energy disaggregation (OAED). The

echnical details about occupancy inference, energy approxima-

ion and energy disaggregation are introduced in Section 4, Sec-

ion 5 and Section 6 , respectively. Section 7 and Section 8 show

ow we implement the OAED idea over a real-world energy moni-

oring platform and how we evaluate the effectiveness and robust-

ess of the OAED approach. The paper is concluded in Section 10 . 

. Related work 

In this section, we discuss the related work in two aspects: (i)

ure energy disaggregation in which no context information is uti-

ized, and (ii) context-aware energy disaggregation where the con-

extual knowledge e.g., appliance location and related information

f occupants’ activities, is taken into consideration. 

.1. Pure energy disaggregation 

.1.1. Signature based approaches 

Signature based energy disaggregation approaches exploit var-

ous appliance running features, e.g., real or reactive power, cur-

ent, and voltage, to classify and identify various household ap-

liances. In detail, the aforementioned features are regarded as

he signatures of different appliances in load curve and treated as

he target events with certain searching strategies. Then, the de-

ected appliance activities (events) are assigned with (estimated)

nergy values to obtain the disaggregation result. As one of the
nitial tries in [6] , the two-dimensional signature space with re-

pect to both real and reactive powers was explored for energy

isaggregation. Recently, the authors in [10] investigated the high

otential of high frequency electromagnetic interference (EMI) sig-

als in distinguishing ON/OFF states of appliances, and the authors

n [13] explored the feasibility of V-I trajectory (i.e., the mutual

ocus of instantaneous voltage and current waveforms) in distin-

uishing difference appliances. In addition to the signatures ex-

racted from the time domain, spectral features in frequency do-

ain were also studied for energy disaggregation [9,14–16] . Gen-

rally speaking, the signature based approaches went through two

rocedures: appliance ON/OFF state switching event detection us-

ng the load curve data [17–19] and specific appliance identifica-

ion in the household through these detected events [9,14,15] . 

.1.2. State transition based approaches 

The state transition patterns of appliances were investigated for

nergy disaggregation. As a typical model to imitate the activi-

ies of individual appliances, Hidden Markov Models (HMMs) were

idely adopted. Specifically, the ON/OFF state transition probabili-

ies of appliances are estimated through parameter learning meth-

ds (e.g., Maximum Likelihood or Maximum A Posteriori). Then the

bserved power emissions are feed into the inference algorithms

e.g., Viterbi) along with the state transition probabilities to infer

he hidden states of individual appliances. The HMM based energy

isaggregation approaches were utilized in [20–22] , in which each

ppliance was treated as a single hidden Markov chain. In addi-

ion, the variants of HMM were proposed for energy disaggrega-

ion, e.g., FHMM [23,24] , AFMAP [12] , and CFHSMM [11] , where

articular generation patterns of the power emissions, character-

stics of appliance activities, and even human factors/involvements

ere incorporated with the original HMM model. Recently, there

ere also methods making use of particular properties during ap-

liances’ state transition, such as the sparsity of state switching

25–27] . A comprehensive survey of state transition based meth-

ds can be found in [8] . 

.2. Context-aware energy disaggregation 

Besides appliance running features and state information, ad-

itional information can be used to enhance the accuracy of en-

rgy disaggregation, referred to as context-aware energy disaggre-

ation in this paper. In [28] , location information of appliances

as taken into consideration when deriving appliance level en-

rgy consumption, and the accuracy of energy disaggregation was

mpirically validated across multiple datasets. In addition, an in-

irect approach for infer occupancy information was applied using

iFi/Bluetooth signals collected from the smartphones and wear-

ble devices of occupants. A hybrid system called AARAP was pro-

osed in [29] to exploit various mobile sensors so as to infer high-

evel activities information of residential customers and reduce the

umber of candidate appliances for energy disaggregation. To this

nd, the residential customers have to carry their smartphones all
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Fig. 2. Framework of occupancy-aided energy disaggregation. 
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1 In this paper, we make use of the real power readings while the applied prin- 

ciples can be easily adapted to other signals. 
the time for collecting persistent WiFi signals and smartphone ac-

celerometer data. As extra examples employing information from

other sensors, [30] used the electromagnetic field (EMF) sensing in

the surrounding to determine the state changes of appliances; the

authors of [31] placed low-cost sensors near the household appli-

ances and estimated their power consumption referring to the am-

bient signals of the sensors. 

Different from the above approaches in contextual information

collection, we derive the occupancy information directly from the

load curve data rather than relying on any other hardware devices.

It significantly reduces the hardware cost incurred in context-

aware energy disaggregation and eliminate the influence from in-

accurate hardware measurements. 

3. OAED framework 

In this section, we introduce our framework for occupancy-

aided energy disaggregation. The framework consists of three ma-

jor components given the aggregated load curve data: occupancy

inference, energy approximation, and energy disaggregation, as

shown in Fig. 2 . Specifically, based on the collected aggregated load

curve data (power consumption signal in this paper) of a house,

we first infer the occupancy states of the house by analyzing load

curve variations or recovering human actions ( Section 4 ). Accord-

ing to the inferred occupancy states, we estimate the energy con-

sumption for the appliances working during the unoccupied peri-

ods by using either approximation based on coarse-grained power

information or a lightweight energy disaggregation scheme as de-

scribed in Section 5 . Meanwhile, we perform transitional energy

disaggregation for the appliances running in the occupied periods

as illustrated in Section 6 . Finally, we derive the appliance level

energy consumption during the whole time interval. 

4. Occupancy inference 

There are diverse approaches to inferring occupancy based

on either intrusive or non-intrusive sensing. For intrusive sens-

ing based occupancy detection, additional sensors or dedicated

devices are installed in the house, e.g., passive infrared/motion

sensors [32] , acceleration sensors [33] , or cameras [34] . In this

work, to avoid extra sensor/device deployment, we apply the non-

intrusive occupancy detection (NIOD). Specifically, we focus on

two types of NIOD approaches, i.e., supervised [35] and unsuper-

vised [36] NIOD approaches using load curve data. 

4.1. Supervised NIOD 

Given that the ground-truth occupancy information can be col-

lected and used as a training dataset, we can apply supervised

learning for occupancy detection. Instead of applying sophisticated
upervised machine learning methods [37] , we adopt a simple yet

ffective NIOD approach based on the previous work [35] . 

We utilize statistic power features during a time period to de-

ect occupancy state. We first evenly divide the whole time inter-

al (e.g., one day) into smaller time windows. Considering a time

indow τ starting from time 1 to n , we represent the aggregated

ower readings 1 of a house by the following vector: 

 := [ x 1 , x 2 , . . . , x n ] T
 . (1)

hus, the t th (1 ≤ t ≤ n ) element of x denotes the aggregated

ower value of the house at time t . Then, three metrics are defined

o infer the occupancy states of the house in τ : 

• Average power value: N avg := avg ( x ); 

• Standard power deviation: N std := std ( x ); 

• IQR power range: N rng := Q 3 (x ) − Q 1 (x ) . 

Here, Q 1 and Q 3 denote the lower and upper quartiles, defined

s the 25th and 75th percentiles of all samples, respectively. Note

hat in previous work of [35] , the third metric was max power

ange and defined by the difference between maximum and min-

mum power values. We modify the metric to interquartile (IQR)

ange due to its robustness to the influence of outliers in load

urve data. 

Then, the occupancy state o (which is a binary variable) of the

ouse in the time window τ is determined by the following con-

itions: 

 τ = 

{
1 , N a v g ≥ P a v g or N std ≥ P std or N rng ≥ P rng 

0 , otherwise . 
(2)

here P avg , P std , and P rng represent the thresholds for average

ower, power deviation, and power range, respectively. 

A following key step is to perform extensive empirical ex-

eriments to collect the data and select appropriate values for

he thresholds in (2) to accurately infer occupancy. Given the

raining dataset of ground-truth occupancy information, the cross-

alidation technique can be applied to choose the most effective

hresholds in our context. Once the tuned threshold values are ob-

ained, they can be used for occupancy inference for the specific

ouse, based on the determination conditions in (2) . 

Nevertheless, there are situations where the training data is dif-

cult to obtain, e.g., without collaboration of occupants. Therefore,

n this case, an unsupervised NIOD approach without relying on

raining process may be more helpful. 



G. Tang et al. / Computer Networks 117 (2017) 42–51 45 

4

 

o  

c

 

p  

C  

o  

m  

p  

r  

p  

a  

a  

w  

u

 

a  

t

 

r  

s  

u  

t  

i  

v  

l  

v  

u

 

m  

s  

i  

a  

w  

e  

k  

d  

a  

d

5

 

d  

F  

r  

w  

a  

m  

t

5

 

a  

(  

u  

u  

s  

m

 

c  

e  

t  

u

 

e  

c

e

w  

 

(  

t  

e

5

 

“  

o  

c

 

t

w  

n  

i

i

 

p  

t  

i  

O  

t

6

 

c  

e  

o  

i  

 

m  

L  

b

6

 

i  

a  
.2. Unsupervised NIOD 

Our unsupervised NIOD approach in this work is based

n [36] that relies on the load curve data and appliance power

onsumption information. 

Preliminaries: Assume that a list of m (major) appliances ap-

earing in the house is given by the appliance set M ( | M| = m ).

onsidering that most household appliances work under multiple

perating modes, we further assume that appliance i can work in

 i different modes. Then, the rated power (or mean power) of ap-

liance i working under mode j can be denoted as μ(i ) 
j 

, and cor-

esponding power deviation can be estimated as δ(i ) 
j 

. Thus, the

ower consumption of appliance i working under mode j at any

rbitrary instant falls into [ μ(i ) 
j 

− δ(i ) 
j 

, μ(i ) 
j 

+ δ(i ) 
j 

] with a high prob-

bility. For the ON/OFF state of mode j of appliance i at time t ,

e denote it by s (i ) 
j 

(t) , where s (i ) 
j 

(t) = 1 if appliance i is running

nder mode j at time t ; otherwise s (i ) 
j 

(t) = 0 . 

With the notations in preliminaries, an optimization problem

iming at decoding the mode states of all appliances over the in-

erested time interval τ, (| τ | = n ) can be formulated as: 

min 

s (i ) 
j 

(t) 

n ∑ 

t=1 

m ∑ 

i =1 

m i ∑ 

j=1 

∣∣s (i ) 
j 

(t + 1) − s (i ) 
j 

(t) 
∣∣

s.t. (μ(i ) 
j 

− δ(i ) 
j 

) s (i ) 
j 

(t) ≤ x t ≤ (μ(i ) 
j 

+ δ(i ) 
j 

) s (i ) 
j 

(t) , 

s (i ) 
j 

(t) ∈ { 0 , 1 } , 
m i ∑ 

j=1 

s (i ) 
j 

(t) ≤ 1 . 

(3) 

In the above optimization problem, the objective function rep-

esents the total variation norm (or TV norm) of appliances’ mode

tates between adjacent time instants. The TV norm was originally

sed as an approach to signal denoising, while we apply it here

o decode the appliances’ mode states. The first three constraints

n the problem represent the facts that: (i) the aggregate power

alue at any time instant falls into the summation of all appliances’

ower power bounds and upper power bounds, (ii) the mode state

ariables are binary values, and (iii) each appliance can only work

nder one mode at each time instant, respectively. 

By solving the state decoding problem in (3) , we can get the

ode states of each appliance at each time instant. Thus, the mode

witching events of each appliance over the time of τ can be eas-

ly derived by performing subtraction between the state values of

djacent time instants. Next, among the mode switching events,

e find out those human-activated ones (i.e., the mode switching

vent has to be accomplished with the human action) with prior

nowledge about appliances’ mode switching. Then, the house is

etermined to be occupied at the moment when the human-

ctivated switching events (named recovered human actions ) are

etected. 

. Energy approximation 

We have observed that there are quite few appliances running

uring the periods when the house is unoccupied, as shown in

ig. 1 . Those appliances that are left running in the unoccupied pe-

iods are usually “always-on” appliances, such as refrigerator and

ater cooler/heater. Due to the small number of running appli-

nces in unoccupied periods, we can apply simple approximation

ethods to estimate their energy consumption. Here we provide

wo kinds of energy approximation. 
.1. ECR based approximation 

To estimate the energy consumption of the “always-on” appli-

nces, we can simply use the metric of energy consuming rate

ECR), e.g., hourly energy usage. This metric can be found in the

ser’s manual or technique specifications of the appliance, and is

sually evaluated by the ENERGY STAR agency [38] . In case that

uch information is not readily-available, we can also easily esti-

ate it using extra devices, e.g., plug-in power meters. 

In the unoccupied periods without interference from residential

ustomers, the ECR metric of an appliance is relatively accuracy in

valuating its energy consumption. For example, in our evaluation,

he accuracy of energy approximation in the unoccupied periods

sing hourly energy usage is as high as 87%. 

Considering an “always-on” appliance (indexed by k ) with en-

rgy consuming rate r k , we can approximate the appliance’s energy

onsumption e k during the unoccupied periods T̄ as: 

 k = r k × | ̄T | , (4) 

here | ̄T | denotes the total length of the unoccupied time periods.

Then, with the ECR information of the “always-on” appliances

either provided by the vendors or measured by the customers),

heir energy approximation during the unoccupied periods can be

asily calculated. 

.2. CO based approximation 

Considering that most “always-on” appliances just repeat the

ON-OFF” state transition pattern, we can apply the combinatorial

ptimization (CO) [6] to estimate their ON/OFF states and then cal-

ulate their individual energy consumption. 

To estimate the ON/OFF states of the “always-on” appliances,

he CO model can be formulated as: 

min 

s (i ) 
t 

| ̄T | ∑ 

t=1 

∣∣∣∣∣x t −
k ∑ 

i =1 

μ(i ) s (i ) 
t 

∣∣∣∣∣
s.t. s (i ) 

t ∈ { 0 , 1 } , 
(5) 

here x t is the aggregated power consumption at time t, k is the

umber of (“always-on”) appliances, μ( i ) is the rated power of the

 th appliance, | ̄T | is the total length of unoccupied periods, and s (i ) 
t 

s the ON/OFF state of the i th appliances at time t . 

After obtaining the ON/OFF states of appliances over the time

eriod T̄ , we can approximate their individual energy consump-

ion in terms of their rated powers. Since the number of appliances

s small and the multi-mode states of appliances are reduced to

N/OFF ones, the CO based energy approximation is, to some ex-

ent, lightweight energy disaggregation. 

. Energy disaggregation 

To disaggregate energy from multiple appliances in the oc-

upied periods, we need carefully designed disaggregation mod-

ls/approaches. In this paper, since we focus on the contribution of

ccupancy information to energy disaggregation, we just adopt ex-

sting disaggregation approaches rather than developing new ones.

Two different energy disaggregation approaches are imple-

ented for our testing: the signature based approach using the

east Square Estimation (LSE) model [15] and the state transition

ased approach applying an iterative HMM model [21] . 

.1. Signature based disaggregation 

The signature based approach applying LSE model was adopted

n [15] for energy disaggregation. The current waveform of each

ppliance was extracted and stored beforehand, and then used as
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Table 1 

Parameter setting for supervised NIOD. 

Parameter Notations Setting value 

Inference time window τ 15 min 

Average power threshold P avg 125 W 

Standard power deviation threshold P std 72 W 

IQR power range threshold P rng 108 W 
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its signature for appliance identification. In this paper, we make

use of the power signal instead of the current waveform, due to (i)

the difficulty in obtaining the current waveform in our situation,

and (ii) the suitability of power signal for energy disaggregation

using our model. 

The LSE model for energy disaggregation in the occupied peri-

ods T is formulated as: 

min 

s (i ) 
j 

(t) 

|T | ∑ 

t=1 

( 

x t −
m ∑ 

i =1 

m i ∑ 

j=1 

μ(i ) 
j 

s (i ) 
j 

(t) 

) 2 

s.t. s (i ) 
j 

(t) ∈ { 0 , 1 } , 
m i ∑ 

j=1 

s (i ) 
j 

(t) ≤ 1 , 

(6)

where x t is the aggregated power consumption at time t, m is the

number of all appliances in the house, m i is the number of work-

ing modes of appliance i , μ(i ) 
j 

is the rated power (or mean power)

of appliance i working under the j th mode, |T | is the total time

length of occupied periods, and s (i ) 
j 

(t) is the state value (either 1

or 0) of mode j of appliance i at time t . 

6.2. State transition based disaggregation 

As a state transition based method, the iterative HMM was pro-

posed for energy disaggregation in [21] . We implement this model

in three phases: 

• Modeling phase: each appliance is modelled as a prior differ-

ence HMM, which is defined by: 

λ := { A, B, π} , (7)

where A is the prior state transition probability distribution,

B is the emission probability distribution, and π is the start-

ing state distribution of the appliance. In particular, (i) A is

initialized with the transition probabilities proportional to the

time spent in each state, and (ii) for any state change between

modes j and k of the i th appliance, its corresponding emission

probability in B is defined by a Gaussian distributed power con-

sumption N (μ(i ) 
j 

− μ(i ) 
k 

, δ(i ) 
j 

+ δ(i ) 
k 

) . 

• Training phase: we apply the expectation maximization (EM)

algorithm over the collected load curve data. The EM algorithm

is initialized with the prior state transition matrix A and indi-

vidual appliances’ rated power. It terminates when a local op-

tima in the log likelihood function is found or the maximum

number of iterations (100 in our implementation) is reached. 

• Inference phase: the extended Viterbi algorithm shown

in [21] was applied to infer each appliance’s mode state, consid-

ering the constraints of aggregated power and power changes

at each time instant. 

By applying the above energy disaggregation models, we can

get the mode state of each appliance at each time instant and thus

can estimate the energy consumption of each appliance by refer-

ring to its rated power. Since the length of occupied periods (i.e.,

|T | ) is expected to be much shorter than the whole time interval

in consideration, the computational complexity in the disaggrega-

tion models can be much reduced. 

7. Implementations 

In this section, we show our implementation of a smart home

energy monitoring platform, under which we collect real-world

dataset for occupancy inference and energy disaggregation. 
.1. Experimental platform 

We established a smart home energy monitoring platform in an

partment. As illustrated in Fig. 3 , the apartment is built with one

edroom, one living room, one kitchen and one bathroom. Note

hat although the platform is established in a small apartment, it

s built with typical rooms and has most representative household

ppliances. 

.2. Data collection 

We collected the power reading data from an apartment using

ff-the-shelf measuring devices from CurrentCost . 2 Two power sen-

or jaws were installed at the power entrance to measure the ag-

regated power consumption of the apartment. All the measure-

ent data were sent to a sink node with frequency of 0.1 Hz and

hen forwarded to a data harvest computer. For evaluation purpose,

e also record individual power consumption of ten major appli-

nces using plug-in power meters (as shown in Fig. 3 ). By com-

aring to the monthly electricity bill, these major appliances un-

er our consideration, including stove, refrigerator, microwave, etc.,

onsume over 85% of the total energy. 

We also collected and labeled the ground-truth occupancy in-

ormation as training dataset for supervised occupancy inference.

he Google mobile app named Google+ 3 was installed on the mo-

ile phones (with GPS module) of each occupant to gather the lo-

ation information, from which we infer whether or not the oc-

upant is at home. One-month power consumption and occupancy

nformation were collected and used for the performance evalua-

ion in Section 8 . 

.3. Parameter setting 

The detailed power information (rated power and power devi-

tion) of all appliances under consideration was measured by the

lug-in power meter, and used in the procedures of unsupervised

IOD, energy approximation and energy disaggregation. In specific,

or supervised NIOD, we carefully trained the inference parameters

ntroduced in Section 4.1 using the ground-truth occupancy infor-

ation. Ten-fold cross validation was applied to find the most ap-

ropriate threshold values, as shown in Table 1 . Note that in our

ccupancy inference, the load silence periods (e.g., when the occu-

ants are sleeping) are recognized/treated as unoccupied periods. 

. Evaluations 

In this section, using the real-world data collected from our en-

rgy monitoring platform, we perform extensive experiments to

valuate our occupancy-aided energy disaggregation approach and

ake comparison with the pure energy disaggregation ignoring oc-

upancy states. 
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Fig. 3. Floor plan of an apartment and our smart home energy monitoring platform. 
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Table 2 

Performance results of occupancy inference: 

supervised NIOD vs. unsupervised NIOD. 

Supervised Unsupervised 

Precision 87 .7% 90 .3% 

Recall 73 .9% 78 .8% 

F-measure 80 .2% 84 .2% 

Table 3 

Accuracy comparison of occupancy-aided energy disaggregation (OAED) and pure 

energy disaggregation (Pure ED). 

OAED Pure ED 

Disaggregation model (Unoccupied Per./Occupied Per./Overall) (Overall) 

LSE model 86 .33% / 62.17% / 68.20% 67 .01% 

HMM model 86 .33% / 77.46% / 80.07% 78 .87% 
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.1. Performance metrics 

Based on the results of occupancy inference, we first cal-

ulate the true/false positive ( TP / FP ), i.e., the number of points

hat are correctly/incorrectly identified as occupied states, and

rue/false negative ( TN / FN ), i.e., the number of points that are cor-

ectly/incorrectly identified as unoccupied states. Then, using TP,

P, TN , and FN , we evaluate the accuracy of occupancy inference by

he following broadly-used metrics: 

• P recision = 

T P 
T P+ F P as a measure of exactness, 

• Recall = 

T P 
T P+ F N as a measure of completeness, 

• F-measure = 

2 ·Precision ·Recall 
Precision + Recall 

as a harmonic mean between preci- 

sion and recall. 

To evaluate results of energy disaggregation, we use the perfor-

ance metric of energy disaggregation accuracy (EDA) defined by:

DA := 1 −
∑ m 

i =1 

∥∥x (i ) − ˆ x (i ) 
∥∥

1 

‖ 

x ‖ 1 

, (8) 

here x, x ( i ) , and ˆ x (i ) represent the aggregated power readings,

round-truth power readings of appliance i , and estimated power

eadings of appliance i , respectively. Thus, the EDA metric indicates

he accuracy of assigning correct power values to corresponding

ppliances along the time line. 

.2. Performance evaluation 

.2.1. Accuracy of occupancy inference 

Supervised NIOD : We first validate the effectiveness of super-

ised non-intrusive occupancy detection introduced in Section 4.1 .

sing the tuned threshold values given in Table 1 , we infer the

ccupancy state of the apartment during the one-month time in-

erval. Fig. 4 shows an example of the occupancy inference result

or a period of one day. 

Unsupervised NIOD : Without using the ground-truth occu-

ancy information for training, we also test the unsupervised NIOD

pproach introduced in Section 4.2 . Fig. 5 illustrated the occupancy

nference result for the same day shown in Fig. 4 . 
The occupancy inference accuracy for both approaches during

he one-month time interval is summarized in Table 2 . From the

esults, we can see that the occupancy inference is relatively ac-

urate in both supervised NIOD and unsupervised NIOD, with an

verage F-measure value of 82.4%. 

.2.2. Accuracy of energy approximation & disaggregation 

With the inferred occupancy states from the previous step, we

erform an energy approximation for unoccupied periods and en-

rgy disaggregation for occupied periods, respectively. Specifically,

he ECR based approximation is used for appliance level energy es-

imation during the unoccupied periods, and both LSE and HMM

odels are adopted for appliance level energy estimation during

he occupied periods. Furthermore, the overall (average) accuracy

f both energy approximation and disaggregation during the whole

ime interval is calculated. 

As a comparison, we also perform pure energy disaggregation

using LSE and HMM models) for the same time interval and

ecord the resulted accuracy. The performance results from our

ccupancy-aided energy disaggregation (OAED) and the pure en-

rgy disaggregation (pure ED) are summarized in Table 3 . 
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Fig. 4. Ground-truth occupancy states and estimated occupancy states from supervised NIOD. 

Fig. 5. Ground-truth occupancy states, recovered human actions, and estimated occupancy states from unsupervised NIOD. Note that the human actions recovered from false 

positive results have been filtered before being used for occupancy inference. 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Overhead comparison of occupancy-aided energy disaggrega- 

tion (OAED) and pure energy disaggregation (Pure ED). 

OAED Pure ED 

Disaggregation model (Elapsed time) (Elapsed time) 

LSE model 379 .66 s 588 .09 s 

HMM model 2097 .74 s 3051 .10 s 

 

b  

v  

t  

c

From the comparison, we can find that the two energy dis-

aggregation routines result in comparable accuracy for appli-

ance level energy estimation. Furthermore, in our situation, the

occupancy-aided approach is slightly more accurate than the raw

one, as the energy approximation in unoccupied periods is quite

accurate. 

8.2.3. Computational complexity 

To measure the computational complexity of the two energy

disaggregation routines, we refer to running time as overhead

when solving the disaggregation models (i.e., LSE and HMM mod-

els). Both energy disaggregation models were implemented and

run under MATLAB 8.5, with PC configuration of 32-bit Windows

OS, 3.4 GHz CPU and 4 GB RAM. Corresponding elapse time is

recorded and shown in Table 4 . 
According to the overhead shown in Table 4 , we can see that:

y cutting out the unoccupied periods from the whole time inter-

al, the OAED is much faster than the pure ED, i.e., the computa-

ional complexity of energy disaggregation is much reduced. In our

ase, the running time of each model is shortened by over 30%. 
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Fig. 6. Correlation between the accuracy of OAED and accuracy of occupancy infer- 

ence. 
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.2.4. Fault-tolerance testing 

We further analyze the fault tolerance of our OAED approach to

ccupancy inference results. In specific, we answer questions like

will inaccurate occupancy inference degrade the accuracy of energy

isaggregation? ” and “how sensitive the OAED accuracy is to the oc-

upancy inference accuracy? ”. 

To obtain more sample cases, we enlarge our experimental

ataset and extend the time interval from one month to two

onths. Then, the fault-tolerance testing is performed as the fol-

owing three steps: 

• For the load curve data in each day, we infer the occupancy

states of the apartment using the techniques introduced in

Section 4 and calculate the metric value of inference accuracy

(denoted by A NIOD ). 

• Then, we perform energy approximation and disaggregation

based on the inferred occupancy result of each day and calcu-

late the overall accuracy of energy disaggregation (denoted by

A OAED ). 

• Last, we draw a scatter plot with the values of A NIOD and A OAED 

(i.e., each point in the scatter plot is denoted by ( A NIOD , A OAED ))

and analyze the correlation between the two metrics. 

The scatter plot is shown in Fig. 6 . By correlation analysis be-

ween the accuracy of OAED and the accuracy of occupancy infer-

nce, we can find that there is no apparent correlation between

hese two metrics, nor is the former sensitive to the latter. 

Actually, since inference of non-occupancy always indicates low

ower consumption where only very few (“always-on”) appliances

re running, whether or not the inference is correct does not

ake big a difference to the overall energy disaggregation accu-

acy. Thus, this makes our OAED approach fault-tolerant to occu-

ancy inference. 

. Further discussions 

.1. Parallelization of computation 

By dividing the whole time interval into (occupied/unoccupied)

eriods, we can perform energy disaggregation for all periods in

arallel. Such parallel computing is expected to speed up the en-

rgy disaggregation process, which is the bonus when applying our

AED approach. 

.2. Energy disaggregation in unoccupied periods 

We can perform sophisticated energy disaggregation ap-

roaches instead of approximation for the appliances running in

noccupied periods. This can be adopted under the situation that
i) the number of “always-on” appliances are large, and (ii) the en-

rgy consuming rate is either inaccurate or difficult to measure. 

.3. Impact of household types 

Our approach is usually effective since most households have

eriods when there is no one at home or the load curve is “in si-

ence”. Nevertheless, for those households that the occupancy pe-

iods are dominated (e.g., the house is always occupied), the effec-

iveness of our approach may not be that obvious. 

0. Conclusions and future work 

In this paper, we developed an occupancy-aided approach to

ut down the computational complexity of energy disaggregation.

 three-step routine was proposed for occupancy-aided energy dis-

ggregation: (i) occupancy inference using load curve data, (ii) en-

rgy approximation for appliances working in unoccupied periods,

nd (iii) energy disaggregation for appliances working in occupied

eriods. We evaluated our approach using real-world datasets col-

ected in an apartment. To validate the effectiveness of our ap-

roach, we compare it with existing energy disaggregation meth-

ds without utilizing occupancy information. The results showed

hat the occupancy-aided approach significantly reduces the com-

utational overhead of energy disaggregation without sacrificing

ccuracy. One possible direction for our future work is looking into

he deep learning framework in system modeling [39] and apply-

ng it for energy disaggregation purpose. 
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