
Received: 18 February 2017 Revised: 11 April 2017 Accepted: 18 April 2017
DO
I: 10.1002/cpe.4172
S P E C I A L I S S U E P A P E R
Detection of malicious behavior in android apps through API
calls and permission uses analysis

Ming Yang | Shan Wang | Zhen Ling | Yaowen Liu | Zhenyu Ni
School of Computer Science and Engineering,

Southeast University, Nanjing, China

Correspondence

Ming Yang, School of Computer Science and

Engineering, Southeast University, Nanjing,

China.

Email: yangming2002@seu.edu.cn

Funding information

National Natural Science Foundation of China,

Grant/Award Number: 61572130,

61320106007, 61502100, 61532013, and

61402104; Jiangsu Provincial Natural Science

Foundation, Grant/Award Number:

BK20140648 and BK20150637; Jiangsu Pro-

vincial Key Technology R&D Program, Grant/

Award Number: BE2014603; Qing Lan Project

of Jiangsu Province, Jiangsu Provincial Key

Laboratory of Network and Information Secu-

rity, Grant/Award Number: BM2003201; Key

Laboratory of Computer Network and Infor-

mation Integration of Ministry of Education of

China, Grant/Award Number: 93K‐9
Concurrency Computat: Pract Exper. 2017;29:e4172
https://doi.org/10.1002/cpe.4172
Summary
In recent years, with the prevalence of smartphones, the number of Android malware shows

explosive growth. As malicious apps may steal users' sensitive data and even money from mobile

and bank accounts, it is important to detect potential malicious behaviors so as to block them. To

achieve this goal, we propose a dynamic behavior inspection and analysis framework for malicious

behavior detection. A customized Android system is built to record apps' API calls, permission

uses, and some other runtime features. We also develop an automated app behavior inspection

platform to install and inspect massive samples so as to collect apps' dynamic behavior records.

Then these records are exploited to train a string subsequence kernel–based Support Vector

Machine (SVM) model, which can be used to classify benign and malicious behaviors offline. To

realize online detection, we further extract apps' runtime features including sensitive permission

combination uses, sensitive behavior sequences, and user interactions for behavior classification.

The classification results can reach an accuracy of 84.9% in offline phase and 99.0% in online

phase. Besides, we verify our scheme for identifying malicious apps, and the results show that

71.8% instances of malware samples are identified by running each app for only 18 minutes.

KEYWORDS

Android malware, API calls analysis, dynamic behavior analysis, permission use analysis, string

subsequence kernel
1 | INTRODUCTION

In recent years, smartphone shipments have experienced a fast

growth. It was predicted1 that the global smartphone shipments will

grow to 1.54 billion units by 2019 and the Android market share will

increase to 82.6%. The openness of the Android platform not only

leads to its rapid growth but also provides a convenient way for

malware development. While smartphone apps facilitate our life and

work by meeting our demands of various social activities, diverse

malwares pose a severe threat on our privacy information stored on

the devices. The most common malicious activities include stealing

user privacy information, sending premium‐rate SMS messages, etc.

Furthermore, malware may even steal money from smartphone users'

mobile and bank accounts.

The security issues of Android platform have recently attracted

substantial attention in both industry and academia. Products from

smartphone security software companies, such as LBE2 and 360

Security,3 allow users to accept or deny some sensitive permission

uses. But there are 2 disadvantages of this type of solution. Firstly,
. wileyonlinelibrary.com
most users do not have enough professional knowledge and security

awareness to determine whether the current permission use is

harmless or not. Secondly, these security apps require to gain root

privileges; however, the root privileges can also be exposed to malware

on a rooted Android system, and thus, it brings more security risks. In

addition, the security apps scan installed apps for malware detection

according to malware signature database. This approach demands

frequent network communication and maintenance of up‐to‐date

malware database. It requires extra users' data traffic and may fail to

defend against zero‐day malware. Researches on Android malware

detection generally fall into 2 categories, ie, static analysis techniques

and dynamic analysis techniques. Static analysis tries to cover all codes

of an app to thoroughly explore possible malicious behaviors but fails

to detect malware samples that can dynamically load malicious code

at run time. Dynamic analysis can handle this type of samples;

however, most of existing schemes inspect API calls and permission

uses in an isolated way. As a matter of the fact, the combination of

the sequence information of API calls and permission uses can

represent app dynamic behavior attributes more accurately.
Copyright © 2017 John Wiley & Sons, Ltd./journal/cpe 1 of 13

http://orcid.org/0000-0002-8209-1000
mailto:yangming2002@seu.edu.cn
https://doi.org/10.1002/cpe.4172
https://doi.org/10.1002/cpe.4172
http://wileyonlinelibrary.com/journal/cpe

2 of 13 YANG ET AL.
In this paper, we propose a dynamic behavior inspection and anal-

ysis framework for malicious behavior detection of Android apps. Our

main work includes the following. (1) We customize an Android system

to record API calls, permission uses, and some other runtime features.

On this basis, we develop an automated app behavior inspection

platform, and 13 825 malicious and benign apps are loaded and run

automatically on the platform. (2) We model the recognition of

malicious apps as a text classification problem and build a string

subsequence kernel (SSK)–based Support Vector Machine (SVM)

model to classify benign and malicious behaviors. This model can be

used to perform offline malicious app recognition. (3) We extract apps'

runtime features and further implement online malicious behavior

detection using machine learning techniques. Of 390 malware samples,

71.8% instances are identified by running each app for only 18 minutes.

An early version of our work is presented in Ni et al.4 Based on the

conference version, we introduce a new offline malicious behavior

detection method, new experimental evaluation, and others in this

extended version. The rest of this paper is organized as follows. In

Section 2, we describe how to customize an Android system to record

the behaviors of apps and automatically run plenty of apps on the

customized system. In Section 3, we describe the basic idea of our

approach and present in details the offline and online detection

algorithm of malicious behavior respectively. In Section 4, we evaluate

the effectiveness of our malicious behavior detection schemes. Finally,

we discuss related work and conclude our work in Section 5 and

Section 6, respectively.
2 | DYNAMIC BEHAVIOR INSPECTION OF
ANDROID APPS

Since apps' dynamic behavior characteristics can be represented by the

sequence of API calls and permission uses, we modify an Android

system to monitor the API invocations and permission uses that are

related to privacy information exposure and stealthy charges. Then

we develop an automated app behavior inspection platform to load
FIGURE 1 Taint tracking–based API call inspection
the customized Android system to automatically install and start up

apps, simulate user operations, inject SMS and phone‐call events, and

collect app behavior records.
2.1 | API call inspection

To monitor privacy‐relevant API calls, we implement the taint tracking

technique on the 4.4.2_r2 branch of AOSP according to TaintDroid.5

The taint tracking technique uses a 4‐byte unsigned integer to describe

the taint field. Each bit represents a type of privacy data. If multiple bits

are set to 1, it indicates that this data is relevant to multiple types of

privacy information.

As Figure 1 shows, apps may invoke some APIs to access certain

privacy information during execution. We modify the Java primary

data types of Boolean, Double, Float, and Integer as well as the

encapsulated data type of String, to add the taint field for each type.

When the data is accessed by an API, taints are added and the

corresponding bit of the privacy data type is set to 1. We also modify

the basic instructions in Dalvik VM to maintain the taints, since any

further operations on the data including numerical calculation,

truncation, concatenation, type conversion, and encryption are

achieved by using basic instructions in Dalvik VM. When the data is

sent, taints can be detected in the Socket I/O functions to

determine which types of privacy data are sent by checking the bits

of the taint field.

We add log functions in 3 positions to fully monitor API

invocations: (1) when adding a taint to the data in the procedure of

data requests; (2) when checking the taint in the procedure of data

transmission over network; and (3) when invoking charges‐relevant

APIs, including sending SMS messages and making phone calls.

Since API names may be changed in different system versions, we

translate the recorded API invocations into permission checks as

presented in one study.6 Because all the API calls for charges and

retrieving privacy information can be mapped to corresponding

permissions,7 it is easy to perform the translation as shown in

Table A. 1.

YANG ET AL. 3 of 13
2.2 | Permission use inspection

Since the taint tracking technique cannot cover all types of malicious

behaviors such as privacy leakage in native code, we monitor

permission checks to completely record the behaviors of apps. If a

sensitive API is invoked, the Android system will check whether the

caller app obtains the corresponding permissions in the installation

process. As shown in Figure 2, permission check in Android system is

executed in 2 different system layers, ie, the framework layer and

the kernel layer. We record the permission uses of apps by monitoring

the permission checks in these 2 layers.

Most of the system permissions are checked in the framework

layer. In particular, the checkUidPermission() method in

PackageManagerService is called to check if the caller has the

permission to use the current API. Therefore, we add a log function

in the checkUidPermission() method in PackageManagerServcie in

the framework layer to record the caller's User ID (UID), timestamp,

and permission name. Other system permissions, including network,

file system, Bluetooth, and system log, are checked in the kernel layer

using the original file access control mechanism in the Linux system.

Specifically, the mapping relationships between these system

permissions and kernel Group IDs (GIDs) are described in the system

file, ie, /system/etc/permissions/platform.xml and are checked in 2

functions, ie, in_group_p(gid_t grp) and in_egroup_p(gid_t grp), in the

source code, ie, kernel/groups.c. Consequently, we add a log function

in these 2 functions to record the caller's UID, timestamp, and GID in
FIGURE 2 Permission use inspection in framework and kernel layer
the kernel log and then obtain the corresponding system permission

names by using the mapping relationship between permission name

and GIDs. In this way, we can monitor the permission uses in both

framework layer and kernel layer.
2.3 | Automated app behavior inspection platform

To automatically collect behavior records from large amounts of apps,

we develop an automated app behavior inspection platform to run

these app samples on our customized Android system. Our platform

can install, start up apps, and collect behavior records automatically.

To make apps reveal more behavioral characteristics on the platform,

we simulate user operations, eg, click on the screen, press the

hardware button, and slide the screen, using the application exerciser

tool Monkey.8 Besides, we inject SMS and phone‐call events through

telnet commands so as to trigger potential interception functions of

malwares.

For a given app, the automated app behavior inspection platform

works as the following steps.

Step 1: Extract the package name and the launchable activity name

from the manifest file, ie, AndroidManifest.xml.

Step 2: Make a replica of the customized Android system and run it

over an Android emulator.

Step 3: Redirect the user‐space and kernel‐space system log onto

the local disk using the adb tool.

Step 4: After the emulator is launched, the app is installed into the

emulator.

Step 5: Launch the app and run the Monkey tool to exercise 300

random operations on the app with an interval of 3 seconds

between 2 continuous operations.

Step 6: After the monkey completes its operations, log on the emu-

lator with telnet and send 2 events of receiving a phone call and 2

events of receiving a message.

Step 7: Shut down the emulator and delete the replica of Android

system image.

Step 8: Repeat steps 1 to 7 until all the apps have been inspected.

Each app runs for about 18 minutes following the above steps. As

some errors may occur during the inspection, the output information

of steps 3 to 5 is parsed automatically. If any error is identified, our

platform terminates the emulator and excludes the app. The

automated app behavior inspection platform runs on a PC that installs

the Ubuntu 14.04 system and has an i7‐4700 CPU and 8GB memory.

We run 7 emulators simultaneously to make full use of the hardware

resources.
3 | BEHAVIOR SEQUENCE ANALYSIS BASED
MALWARE DETECTION

We first introduce the basic idea of our approach. Then we present

malicious behavior detection including offline and online detection

schemes, respectively.

4 of 13 YANG ET AL.
3.1 | Basic idea

Malware recognition is a binary classification problem. We classify a

series of behavior sequences from different Android apps into 2

groups, ie, malicious and benign behaviors. We denote behavior

sequences generated by various apps as X ¼ x1
→
; x2
→
;…; xm

→
n o

, where

xi
→
is a behavior sequence from the ith app andm is the number of apps.

Let Y = {y1, y2} be the app category, where y1 and y2 indicate the

malicious and the benign app, respectively. Then we aim to find an

appropriate mapping from xi
→

in X to yj in Y, ie, f xi
→

� �
¼ yj (i∈{1, 2, …,

m}, j∈{1, 2}), where f is the classification model. To this end, we

carefully collect the training data and leverage an appropriate

classification model to train a classifier. Then we can use the classifier

to accurately classify the behavior sequences generated by Android

apps into the right category.

To automatically perform large‐scale malicious behavior

inspection, we propose an offline malicious behavior detection

method. We collect the labeled behavior sequences from both benign

and malicious apps by using the automated app behavior inspection

platform and convert each behavior sequence of apps into a string of

letters. Then the malware recognition is modeled as a text classifica-

tion problem. Thus, we use an SSK‐based SVM classification model

and train the model by using the labeled strings so as to detect the

malicious behavior. However, the SSK‐based model is not suitable

for real‐time detection, since it requires a complete behavior sequence

per app as input data. In practice, users need to spend sufficient time

using an app to derive a complete behavior sequence from the app

for malicious behavior inspection purpose. Therefore, this method

can only be used for large‐scale offline malicious behavior detection

rather than real‐time detection.

As we all known, online detection systems should detect malicious

behaviors as quickly as possible so as to block them in time. To fulfill

this goal, we propose an online malicious behavior detection method

that just requires subsequences of behavior. In fact, the malicious

behavior sequence is a subsequence of the complete behavior

sequence generated by malware. By manually examining the complete

malicious behaviors of different malware in distinct categories, we

extract the most effective behavior subsequences, referred to as

sensitive behavior sequence, along with other dynamic behavior features

and environmental features and use an appropriate classifier to

differentiate the malicious behaviors from the benign ones.

We elaborate on these 2 malicious behavior detection methods in

the following.
3.2 | Offline malicious behavior detection

We collect labeled behavior sequences from both benign and

malicious apps by using the automated app behavior inspection

platform. By having app behavior sequences labeled with malicious

or benign, we use machine learning techniques to mine the features

of malicious and benign behavior sequences and then build a

classification model to classify unknown apps. In fact, the malicious

behavior sequence is a subsequence of the complete behavior

sequence generated by malware. If behavior subsequences of an
unknown app are similar to known malicious behavior sequences,

we classify it as a malicious app.

Since the API calls can be mapped to the permission uses,7 we

combine both the permissions of API calls and the permission uses in

terms of their timestamps to construct a behavior sequence. Then

we use alphabet characters to represent different permissions. In this

way, a behavior sequence from an app is converted into a string. We

choose an appropriate machine learning technique to classify the

strings into 2 groups. Thus, the app behavior classification is modeled

as a text classification problem.

We use string kernel–based SVM to solve the text classifica-

tion problem. SVM is a supervised binary classification algorithm

that can use a kernel function to map linearly nonseparable data

to high‐dimensional space, in which we can find a hyperplane to

accurately divide the data into 2 parts. To address the text

classification problem, string kernel function is one of the common

kernel functions that is used to estimate the similarity of 2 strings.

There are 3 common string kernel functions for text classification,

including vector space model, n‐gram kernel function, and SSK.

Vector space model is a traditional technique that uses the word

frequency for text classification. However, it loses all the word

order information. In addition, n‐gram kernel function merely

exploits the continuous word order. Nevertheless, the malicious

behavior subsequences are usually not contiguous in the entire

behavior sequence. Therefore, we choose the SSK function to

address our text classification problem as the noncontiguous

subsequences information can be used.

There are 2 parameters in an SSK function. Denote by k the

maximum length of all subsequences, where k is an integer and k ≥ 1.

λ is a decay factor (0 < λ ≤ 1) used to deal with noncontiguous

subsequences. The higher values of λ, the larger the interior gaps

permitted in the subsequences. If the value of λ is close to 0, the

common subsequence is almost contiguous; otherwise, the calculated

value of the kernel function will be close to 0 if separated by other

behaviors. Therefore, the SSK function can be used to simulate the

n‐gram kernel function by setting λ a value close to 0.

According to the above analysis, the malware recognition problem

can be modeled as a binary classification problem using SSK‐based

SVM, which consists of 3 steps.
Step 1. Training set generation. After merging the API

invocation and permission use records from the

automated app behavior inspection platform, we label

the records from malware as malicious and randomly

obtain the same amount of behavior records from Google

Play apps and label them as benign.

Step 2. SSK‐based SVM model training and validation.

On the basis of SSK function provided by Shogun,9 we

use SVM to train the classification model and then

validate it using 10‐fold cross validation. Although the

Shogun tool presets a variety of alphabets for special data

classification (eg, 4‐character DNA alphabet and RNA

alphabet), none of these can be used for all APIs and

permissions associated with privacy information and fee

charging operations. To meet the needs of Android app

TABLE 1

rules m

No.

1

2

3

4

5

6

7

8

9

10

YANG ET AL. 5 of 13
behavior classification, we add a new alphabet into the

Shogun tool.

Step 3. Varying the parameters. We assign different

values to the k and λ parameters of SSK function and

then select appropriate values by evaluating the 10‐fold

cross validation results.
3.3 | Online malicious behavior detection

Since SSK‐based malicious behavior detection technique requires a

complete behavior data by running an app after a certain period of

time, it cannot be used for real‐time malicious behavior detection. To

address this issue, we design and implement an online multimode

sequence matching algorithm for online malware behavior detection.

We first manually extract some sensitive sequences from the malware

behavior sequences and then effectively perform the sequence

matching by designing a novel trie tree–based data structure and mul-

timode matching algorithm. We use the matching result as one of the

features for the online malicious behavior detection.

3.3.1 | Feature extraction

We use dynamic behavioral and user‐relevant features to effectively

distinguish malicious and benign apps. Dynamic behavioral features

include the sensitive permission combination uses, as well as sensitive

behavior sequences. User‐relevant features are used to indicate

whether permission uses are caused by user operations.

Dynamic behavioral feature

Sensitive permission combination Since a malware requires a

series of permissions to steal privacy information,10 we analyze

extensive permission uses of both malicious and benign apps to extract

the sensitive permission combinations by using association rule mining

technique. Table 1 shows the list of sensitive permission combinations.
Sensitive permission combinations extracted by association
ining

Sensitive Permission Combinations

INTERNET, WRITE_SMS

READ_PHONE_STATE,
WRITE_SMS

INTERNET, READ_PHONE_STATE,
READ_SMS

ACCESS_WIFI_STATE, READ_SMS,
WRITE_SMS

WRITE_SMS, RECEIVE_SMS,
RESTART_PACKAGES

READ_PHONE_STATE,
WRITE_SMS, WRITE_CONTACTS

WAKE_LOCK, WRITE_CONTACTS,
RESTART_PACKAGES

READ_SMS, SEND_SMS,
RECEIVE_SMS

READ_SMS, RECEIVE_SMS,
RESTART_PACKAGES

WRITE_EXTERNAL_STORAGE,
READ_SMS, WRITE_SMS
However, these sensitive permissions can be used by benign apps as

well. For example, a benign instant messaging app (eg, QQ) can require

the READ_CONTACTS for friend recommendation and INTERNET

permissions for communication. As a result, the combination of these

2 permission uses for malicious behavior detection can cause false

alarms. To address this issue, we adopt sensitive behavior sequences

to increase the detection accuracy and reduce the false alarms.

Sensitive behavior sequence We study the raw behavior

sequences from 24 well‐known categories of malware11 and manually

extract some subsequences from them as sensitive behavior

sequences that can be effectively used for detecting each category

of malware. Recall that we can derive a raw behavior sequence of

an app by combining the permission uses and the permissions of

API invocations for charges and retrieving privacy information in

terms of the timestamp. We carefully inspect the raw behavior

sequences of various malware from 24 different categories. Since

the malicious and benign behavior subsequences are mixed in the

raw behavior sequence, the malicious behavior subsequences are

not continuous. Therefore, we manually extract 24 groups of

sensitive behavior sequences that can be used to effectively detect

the malware from each category as shown in Table A. 2. We use

these subsequences to check if a raw behavior sequence contains

these sensitive behavior sequences.

A perfect matching of sensitive behavior sequences leads to high

false negative rate. Moreover, the malicious behavior should be

detected as soon as possible so as to protect the privacy data of the

users from malware. Therefore, we use the subsequence of the 24

sensitive behavior sequences as malicious behavior features. Denote

the maximum length of subsequence as N, where 2 ≤ N ≤ 5. Let M

be the number of malicious behavior features. The value of M varies

in terms of N. We evaluate the value of N in Section 4.

Online multimode sequence matching algorithm To discover

sensitive behavior sequences from a continuous behavior sequence

generated by an app in real time, we propose a novel online multimode

sequence matching algorithm for comparing app behavior sequences

with the 24 types of sensitive behavior subsequences.

We segment the real‐time original behavior sequences by using a

threshold of a delay interval between 2 continuous records. If the

delay interval exceeds a threshold, ie, △t, the current segmentation

can be used for sequence matching and the following sequences are

put in a new segmentation.

We design a trie tree–based data structure to store the sensitive

behavior subsequences for our online sequence matching algorithm.

Figure 3 illustrates our customized trie tree. All the nodes in the trie

tree are labeled by indexes. In addition, the nodes store the original

pointers pointing to child nodes and a flag indicating whether it is

the end of a subsequence of sensitive behavior sequences. Moreover,

a hash map is used to record the mapping between the node index and

the memory address of each node in order to access the nodes directly.

Similar to a traditional trie tree, a path from the root down to a node

indicates that the current sequence fragment contains a subsequence

of sensitive behavior sequences. The tree is constructed by the M

subsequences of sensitive behavior sequences. Therefore, there are

FIGURE 3 Data structure used in online multimode sequence

matching

6 of 13 YANG ET AL.
M leaf nodes with a flag that indicates the end of a subsequence of

sensitive behavior sequences.

By using this trie tree, we can effectively perform the sequence

matching between a segmentation of app behavior sequence and sub-

sequences of sensitive behavior sequences. The online multimode

sequence matching algorithm is shown in Table 2. The output of the

algorithm is a feature vector with the length M. Each value in the

vector indicates whether a subsequence of sensitive behavior

sequences is matched by comparing with the current behavior

sequence. If the current behavior sequence matches some
TABLE 2 Online multimode sequence matching algorithm

Algorithm: Online Multimode Sequence Matching
subsequences of sensitive behavior sequences, the corresponding

values are set to 1. Otherwise, the values are set to 0.

User‐relevant feature

The sensitive behavior sequences can be generated not only by

malware but also by users, since apps used by users can cause fee

charging or privacy information acquisition and transmission. To

reduce the false positive of malicious behavior detection, we inspect

current user operations over the mobile device screen, referred to as

user‐relevant feature, to determine whether these sensitive behavior

subsequences are created by users or malware.

To determine the behavior sequences generated by users, we

modify the source code of Android to inspect the user operations.

The user operations on our platform are simulated by using the

Monkey tool. We explore the source code of both Android system

and Monkey to record the simulated user operations. In particular,

we find that the Monkey tool obtains an instance of WindowManager

class in Android framework and then injects user operation events by

calling the injectKeyEvent() method in the WindowManager class.

The WindowManagerService in the Android framework receives the

user operation events and dispatches them to corresponding app user

interface windows in the foreground. As the InputEventReceiver class

used by WindowManagerService invokes dispatchInputEvent()

method in this procedure, we add a log function in the

dispatchInputEvent() method to record the user operation events sent

from the Monkey tool.
3.3.2 | Online malicious behavior detection scheme

We preprocess the behavior sequence by using the M features of

sensitive behavior subsequences and then add 2 features including the

inspection of sensitive permission combination and the user‐relevant

feature. We check whether the permissions in the segmentation

contain a sensitive permission combination. In addition, the time

interval between the current permission use and last user operation

is used as user‐relevant feature. Hence, the feature vector includes

these M + 2 features for training and classification.

We use Naïve Bayes algorithm and SVM algorithm to classify app

behaviors and select an appropriate one by comparing the various

metrics, eg, accuracy, false positive rate, etc. We also evaluate the

effectiveness of N. If any behavior sequence of an app is classified as

malicious by the model, then the app is considered as a malicious one.
4 | EVALUATION

4.1 | Data collection

We design a crawler to download apps automatically from various app

markets. The training malware app dataset obtained from Android

Malware Genome Project11 contains 1243 malicious apps that are

categorized into 34 groups. The training benign app dataset contains

12 582 apps downloaded from different top 500 popular apps of

various categories in Google Play Market. In addition, we download

14 733 apps from different top lists of various categories in Anruan

Market as the testing app dataset.

FIGURE 4 Accuracy of offline app classification

FIGURE 5 False positive rate (FPR) of offline app classification

YANG ET AL. 7 of 13
To recording all of the app behavior sequences, we take 60 days to

run these apps on our automated app behavior inspection platform.

4.1.1 | Data collection for offline malicious behavior
detection

We remove the apps that cannot run on our platform or generate

insufficient behavior sequences. Through observations on our dataset,

we find that the behavior sequences of length less than 4 are insuffi-

cient to present apps' behavior. Then we get 628 records from

malware, 4351 records from Google Play Market apps, and 3934

records from Anruan Market apps.

The training set consists of 628 records generated by malware

and 635 records that are randomly selected from Google Play

Market, while the testing set is composed of 3934 records from

Anruan Market apps.

4.1.2 | Data collection for online malicious behavior
detection

We preprocess the data collected by the automated app behavior

inspection platform and manually extract 24 malicious sequence pat-

terns from 24 categories, which involve 390 malicious samples.

The training set is generated as follows. The behavior records from

malware samples that containing subsequences of sensitive behavior

sequence are marked as malicious, while all the other records are

marked as benign. In addition, we randomly select a similar number

of behavior records from Google Play Market apps and marked them

all as benign. In this way, there are 12 0641 records in total, 117 741

benign ones, and 2900 malicious ones.

Behavior data of 3917 apps from Anruan Market are used for

open‐world analysis.

4.2 | Performance metrics

We adopt the standard classification metrics to evaluate the experi-

ment results, ie, accuracy, false positive rate (FPR), false negative rate

(FNR), recall rate, precision, and F‐measure. We denote by Cm! m

the number of correctly classified malicious behavior records and by

Cb ! b the number of correctly classified benign behavior records.

Denote the number of incorrectly classified malicious behavior records

is denoted as Cm! b, and the number of incorrectly classified benign

behavior records is denoted as Cb ! m. Then we have Call = Cm! m

+ Cb! b + Cm! b + Cb! m.

Accuracy ¼ Cm→m þ Cb→b

Call
(1)

FPR ¼ Cb→m

Cb→b þ Cb→m
(2)

FNR ¼ Cm→b

Cm→m þ Cm→b
(3)

Recall ¼ Cm→m

Cm→m þ Cm→b
(4)
Precision ¼ Cm→m

Cm→m þ Cb→m
(5)

F−measure ¼
β2 þ 1

� �
PR

β2Pþ R
(6)

In Equation 6, P is the precision in Equation 5 and R is the recall

rate in Equation 4. If β = 1, Equation 6 is so called F1‐measure, which

weights recall rate and precision equally. If β > 1, Equation 6

emphasizes recall rate more than precision. Otherwise, if 0 < β < 1, it

weights precision more than recall rate.

4.3 | Evaluation results

4.3.1 | Offline malicious behavior detection experiment
results

We evaluate the accuracy, FPR, FNR, and recall rate by performing

10‐fold cross validation with different values of k and λ of SSK

function, as shown in Figures 4–7. It can be observed in Figure 4 that

the accuracy increases in terms of λ and reaches a peak when λ is 1

FIGURE 6 False negative rate (FNR) of offline app classification

FIGURE 7 Recall rate of offline app classification

FIGURE 8 F‐measure evaluation of offline app classification

FIGURE 9 Values of different metrics for offline app classification
when λ = 1

FIGURE 10 F‐measure evaluation of offline app classification when
λ = 1

8 of 13 YANG ET AL.
and k is in the range of 4 to 8. Figure 5 shows that FPR decreases with

the increase of k, except when k = 1 the FPR is slightly lower than k = 2,

but still a high value. When k is 9 and λ is in the range of 0.7 to 1, it

reaches its minimum. Figure 6 depicts that FNR decreases with the

increase of λ with only an exception when λ = 0.4 and reaches its

minimum when λ is 1 and k is in the range of 4 to 7. As seen from

Figure 7, recall rate increases first and then decreases in terms of both

λ and k and reaches a peak when λ = 1 and k is in the range of 4 to 5.

To make the model perform well when considering accuracy, FPR,

FNR, and recall rate in the whole, we tune the values of k and λ by

using F‐measure as the metric.

We use F‐measure to evaluate our method by changing the value

of k and λ. To increase the recall rate as much as possible, we sacrifice

the precision so as to keep users from malware. Therefore, we weight

recall rate more than precision by using β=1.5 in Equation 6. Figure 8

illustrates the relationship among F‐measure, k, and λ. It is observed

that F‐measure reaches a maximum where λ is 1 and k is in the range

of 3 to 7. To choose a reasonable value of k, we set λ to 1 and then plot
a curve of accuracy, FPR, FNR, and recall rate as shown in Figure 9 and

a curve of F‐measure in terms of k is shown in Figure 10.

As we can see from Figures 9, 10, F‐measure reaches the

maximum at k = 6 and λ = 1. The accuracy, FPR, and recall rate are

88.8%, 7.2%, and 84.9%, respectively, which shows that 84.9%

YANG ET AL. 9 of 13
malware samples can be detected using our offline malicious behavior

detection method.

We compare the performance of SSK function with the n‐gram

kernel function. As presented in Section 3, we can use SSK to simulate

n‐gram kernel function when λ approaches 0. Therefore, we use λ = 1

and λ = 0.01, respectively, to roughly compare the performance of SSK

and n‐gram kernel at k = 6. The results are shown in Figure 11. We can

see from Figure 11 that all the 3 metrics of SSK function outperforms

those of n‐gram kernel. It demonstrates that most malicious operations

of Android apps are not continuous but isolated by normal operations.

This result is consistent with our observations, since a majority of

malicious apps are generated by injecting a piece of malicious code

into the benign apps.

To validate the offline malicious behavior detection scheme, we

apply the classification model to test all the apps obtained from

Anruan Market. 1045 out of 3934 apps, ie, around 26.6% of all the

apps, are classified as malicious apps. We randomly select 100 samples

from these 1045 apps and analyze the behavior records manually. As

we can see from Table 3, most of these apps obtain the phone

identifiers, including IMEI and IMSI. In addition, we find that 20

detected apps do not carry out obvious malicious behaviors, which

we consider as false alarms.

The behavior sequences of a malware collected by our automated

app behavior inspection platform may contain both malicious and

benign behaviors. However, during the classification training phrase,
FIGURE 11 Comparison of different metrics for offline app
classification when λ = 1 and 0.01

TABLE 3 Manual analysis of alarmed apps by offline detection
algorithm

Malicious Behavior Number of Apps With This Behavior

Steal phone records 1

Steal location 21

Steal messages 3

Steal phone identifiers 62

Steal user account 2

Steal browse history 2

Steal external storage 14

None 20

The sum of the numbers in the table is more than 100 because one app can
have multiple types of malicious behavior
both malicious and benign behavior sequences from malware are

labeled as malicious ones. It can cause the classification model

overfitting and lead to false positive errors in the testing phrase.

Consequently, it is consistent with the experiment result that 20 false

alarms occurred.
4.3.2 | Online malicious behavior detection experiment
results

In the online malicious behavior detection scheme, we evaluate the

performance of both SVM and Naïve Bayes algorithms. We use differ-

ent number of subsequences of sensitive behavior sequence by using

distinct value of N. Figure 12 shows how M is influenced by the value

of N. We use SVM and Naïve Bayes algorithms to classify the online

experiment dataset. Ten‐fold cross validation is applied to validate

the effectiveness of these 2 algorithms, and the results are shown in

Figure 13 and Figure 14.

Figure 13 shows that SVM can reach an accuracy higher than 98%,

with a false negative rate less than 3%. Figure 14 illustrates that false

negative rate of Naïve Bayesian Classifier is more than 44% that is

much higher than that of SVM. Therefore, we use SVM for detecting

malicious behavior records. In Figure 13, it can be observed that the

model reaches an accuracy of 99.0% with an FPR of 1.0% and an

FNR of 2.3% at N = 5.
FIGURE 12 Influence of N's value on M

FIGURE 13 Ten‐fold cross‐validation results of SVM‐based online
malicious behavior detection

FIGURE 14 Ten‐fold cross‐validation results of Naïve Bayes–based
online malicious behavior detection

10 of 13 YANG ET AL.
We mark an app as malicious if at least one of its behavior records

is classified as malicious. Two hundred eighty malware samples out of

the 390 total samples, ie, 71.8%, are detected. By manually checking

the behavior records from malware samples that are classified as

benign, we do not discover malicious behavior. It results from that

the undetected malware samples do not perform malicious behaviors

during our inspection. Probably, these malware samples are designed

to perform malicious activities by meeting some triggering conditions,

such as adequate running time, certain operations on the apps, con-

nection to a remote server, etc.

We perform an open‐world malware detection on apps from

the Anruan Market. As a result, 952 out of 3917 apps, ie, 24.3%,

are detected as malicious ones. We randomly select 120 apps from

malicious apps and manually check the behavior records. We find

that most of them perform certain malicious behavior as shown in

Table 4. A majority of them fetch IMEI or IMSI and then send it

to a remote server through the Internet. We can see that quite a

proportion of apps utilize the IMEI and IMSI as the identifiers of

devices, which can be used to track users. There are 24 apps that

do not perform malicious behavior but still are marked as malicious

ones. Our further analysis reveals that these 24 apps generate

2167 segmentations of behavior records, and only 75 behavior

records, ie, 3.5%, are misclassified as malicious ones. It

demonstrates that our scheme achieves a very low FPR at the

behavioral records level.
TABLE 4 Manual analysis of alarmed apps by online detection
algorithm

Malicious Behavior Number of Apps With This Behavior

Steal location 20

Steal phone number 9

Steal messages 2

Steal IMEI 77

Steal IMSI 51

Steal ICCID 3

Steal browse history 1

None 24
5 | RELATED WORK

Techniques for detecting Android malware can be categorized into 3

types, including static analysis techniques, dynamic analysis

techniques, and hybrid analysis techniques.
5.1 | Static malware analysis techniques

Static analysis is commonly used for the security analysis of software.

According to the distinct analysis targets, static analysis of Android

apps can be categorized into installation package analysis, bytecode

analysis, and source code analysis.

Installation package analysis was first proposed by Enck et al.12

They analyzed the requested permissions for possible malicious

functions by dividing malicious functions into corresponding

permissions. Zhou et al13 collected a large set of malware samples

and analyzed the permission uses in depth. Then, many researchers

used this dataset for malware detection studies. MAST14 collected

information of permission requests, whether the app contains native

code, self‐startup behavior, etc, to rank the risks of apps and decide

which app requires a deeper scan. Similarly, DREBIN15 collected more

available information in the installation package, and it is suitable for

installation‐time analysis concerning its performance. Binary code or

byte code analysis is to scan compiled code in the installation files to

determine whether there exists malicious code. ComDroid16 analyzed

inter‐application communication to detect malicious behavior such as

broadcast interception and service hijacking. However, binary code

or byte code analysis is a tough work. Thus, more researchers

decompiled the byte code before scanning. Aafer et al17 investigated

the API call features after decompiling, including API name and API

parameters, but this method can be easily bypassed by malware

developers. DroidSIFT18 constructed dependency graphs of API calls

using a semantics‐based approach to avoid detection evasion, which

achieved lower FNR and false alarm rate.

In addition to malware analysis, static analysis can also be used

to detect vulnerabilities in apps that can be utilized by malware,

such as interapplication communication vulnerabilities,16 component

hijacking,19 and capability leaks.20 Static analysis is generally suitable

for offline analysis and can be used for market‐scale apps analysis,

but this approach is ignorant of runtime context and can be easily

evaded by malware developers. Thus, some researchers proposed

dynamic analysis techniques for detecting runtime anomalies. Dynamic

analysis is usually more suitable for being deployed on user devices

and can intercept malicious behavior timely.
5.2 | Dynamic malware analysis techniques

The most typical work of dynamic analysis is TaintDroid5 proposed by

Enck et al, which detected potential privacy information leakage by

adding taint information into privacy data. It can detect privacy

information leakage effectively at runtime but failed to track leakages

caused by native code. Furthermore, when deployed on a smartphone,

it demanded for nonnegligible CPU usage and energy consumption.

VetDroid21 is another taint tracking–based privacy information

YANG ET AL. 11 of 13
leakage detection system, which monitored both explicit permission

uses and implicit permission uses to model app behaviors more

accurately.

Dynamic analysis can also monitor system API calls to analyze an

app's behavior on the upper layer. CopperDroid22,23 and DroidScope24

put android apps in a sandbox to inspect the interactions between the

sandbox and the external system. The invocations of framework APIs,

JNI methods, system calls in the operation system were utilized to

model the application behavior. However, it can only be used for

offline analysis instead of being deployed on a smartphone. Shabtai

et al25 focused on side‐channel information generated by the network

traffic during an app's runtime. The traffic features were extracted

and sent to a remote server, and then the app was classified using

machine learning algorithms to detect potential malicious behaviors.

AppsPlayground26 combined a set of dynamic analysis techniques,

including taint tracking, API inspection, kernel system call inspection,

and multiple code exploration techniques to analyze privacy leakages

and malicious functions during apps' runtime.
5.3 | Hybrid malware analysis techniques

Some researchers combined static and dynamic analysis techniques to

gain both the former's efficiency and flexibility and latter's accuracy.

DroidRanger27 filtered suspected malicious apps by analyzing

permission requests and byte code then further explored malicious

behavior using dynamic system call inspection. It was also effective

for finding out zero‐day malware from market‐scale app samples.

DroidDetector28 associated the features from the static analysis with

features from dynamic analysis of Android apps and detected malware

using deep learning techniques. The features used fell into 3 types:

required permissions, sensitive APIs, and dynamic behaviors. This

machine learning–based method performed well with the variety of

Android malware.
6 | CONCLUSION AND FUTURE WORK

In this paper, we proposed an analysis framework for monitoring,

recording, and analyzing app behavior, to detect malicious behavior

of Android apps offline and online. We applied SSK‐based SVM to

recognize Android malware offline and manually extracted sensitive

behavior sequences for online malicious behavior detection. Our

schemes have a high detection rate for detecting malicious behavior,

and a relatively high proportion of malware samples are detected in

the dataset used. To detect malware more accurately, we will conduct

further studies on how to construct a runtime environment in the

emulator that better mimics the environment of a real smartphone to

trigger more behaviors of Android apps.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of

China under Grants 61572130, 61320106007, 61502100,

61532013, and 61402104; Jiangsu Provincial Natural Science

Foundation under Grants BK20140648 and BK20150637; Jiangsu

Provincial Key Technology R&D Program under Grant BE2014603;
Qing Lan Project of Jiangsu Province, Jiangsu Provincial Key

Laboratory of Network and Information Security under Grant

BM2003201, and Key Laboratory of Computer Network and

Information Integration of Ministry of Education of China under

Grant 93K‐9.

REFERENCES

1. International Data Corporation. Worldwide smartphone market will see
the first single‐digit growth year on record. http://www.idc.com/
getdoc.jsp?containerId=prUS40664915, Dec 2015.

2. LBE Tech. http://www.lbesec.com/#/products/2.

3. 360 Security. http://www.360securityapps.com/en‐us.

4. Ni Z, Yang M, Ling M, Wu JN, and Luo J. “Real‐time detection of mali-
cious behavior in Android apps”. In Proceedings of the 4th IEEE
International Conference on Advanced Cloud and Big Data (CBD),
Chengdu, Sichuan, China, August 13‐16, 2016.

5. Enck W, Gilbert P, Chun B‐G, et al. TaintDroid: an information flow
tracking system for real‐time privacy monitoring on smartphones. In
Proceedings of the 9th USENIX conference on Operating systems
design and implementation (OSDI), Berkeley, CA, USA, 2010, pp. 1‐6.

6. Manifest.permission. https://developer.android.com/reference/
android/Manifest.permission.html.

7. Au K, Zhou Y, Huang Z, and Lie D. Pscout: analyzing the android per-
mission specification. In Proceedings of the 19th ACM conference on
Computer and communications security (CCS), 2012: 217‐228.

8. UI/Application Exerciser Monkey. https://developer.android.com/stu-
dio/test/monkey.html.

9. Shogun—a large scale machine learning toolbox. http://www.shogun‐
toolbox.org/page/about/project_description.

10. EnckW, Ongtang M, McDaniel P. On lightweight mobile phone applica-
tion certification. In Proceedings of the 16th ACM conference on
Computer and communications security. ACM, 2009: 235‐245.

11. Android malware genome project. www.malgenomeproject.org.

12. Enck W, Ongtang M, and Mcdaniel P. Mitigating Android software
misuse before it happens. Tech. Rep. NAS‐TR‐0094‐2008, Network
and Security Research Center, Department of Computer Science
and Engineering, Pennsylvania State University, University Park, PA,
USA, 2008.

13. Zhou Y, and Jiang X. Dissecting Android malware: characterization and
evolution. In Proceedings of the 33rd IEEE Symposium on Security and
Privacy (S&P), 20‐23 May 2012.

14. Chakradeo S, Reaves B, Traynor P, and Enck W. MAST: triage for mar-
ket‐scale mobile malware analysis. In Proceedings of the 6th ACM
conference on Security and privacy in wireless and mobile networks
(WiSec), Budapest, Hungary, 2013, pp. 13‐24.

15. Arp D, Spreitzenbarth M, Hübner M, Gascon H, and Rieck K. DREBIN:
effective and explainable detection of Android malware in your pocket.
In Proceedings of the 21th Annual Network and Distributed System
Security Symposium (NDSS), February 2014.

16. Chin E, Felt A P, Greenwood K, and Wagner D. Analyzing inter‐
application communication in Android. In Proceedings of the 9th inter-
national conference on Mobile systems, applications, and services
(MobiSys). ACM, 2011.

17. Aafer Y, DuW, and Yin H. DroidAPIMiner: mining API‐level features for
robust malware detection in Android. In Proceedings of the 9th inter-
national conference on Security and Privacy in Communication
Networks (SecureComm), Sydney, Australia, Springer International
Publishing, Sept. 25‐27, 2013, pp. 86‐103.

18. Zhang M, Duan Y, Yin H, and Zhao Z. Semantics‐aware Android
malware classification using weighted contextual API dependency
graphs. In Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), Scottsdale, Arizona, USA,
2014, pp. 1105‐1116.

http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.idc.com/getdoc.jsp?containerId=prUS40664915
http://www.lbesec.com/#/products/2
http://www.360securityapps.com/en-us
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
http://www.shogun-toolbox.org/page/about/project_description
http://www.shogun-toolbox.org/page/about/project_description
http://www.malgenomeproject.org

12 of 13 YANG ET AL.
19. Lu L, Li Z, Wu Z, Lee W, and Jiang G. Chex: statically vetting android
apps for component hijacking vulnerabilities. In Proceedings of the
19th ACM conference on Computer and communications security
(CCS), 2012.

20. Chan P P, Hui L C, and Yiu S M. Droidchecker: analyzing android
applications for capability leak. In Proceedings of the 5th ACM
conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2012.

21. Zhang Y, Yang M, Xu B, et al. Vetting undesirable behaviors in android
apps with permission use analysis. In Proceedings of the 2013 ACM
SIGSAC conference on Computer and Communications Security
(CCS), Berlin, Germany, 2013, pp. 611‐622.

22. Reina A, Fattori A, and Cavallaro L. A system call‐centric analysis and
stimulation technique to automatically reconstruct android malware
behaviors. In Proceedings of the 6th European Workshop on Systems
Security (EuroSec). Prague, Czech Republic, April, 2013.

23. Tam K, Khan S J, Fattori A, Cavallaro L. CopperDroid: Automatic recon-
struction of Android malware behaviors. In Proceedings of the Network
and Distributed System Security Symposium (NDSS), 2015.

24. Yan L K, Yin H. Droidscope: seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In Proceedings
of the 21st USENIX Security Symposium (USENIX Security). 2012:
569‐584.
Framework Layer APIs

android.content.ContentResolver.query()

android.hardware.Camera.EventHandler.handleMessage()

android.hardware.SystemSensorManager.SensorEventQueue.
dispatchSensorEvent()

android.media.AudioRecord.read()

android.media.MediaRecorder.prepare()

com.android.server.accounts.AccountManagerService.
validateAccountsInternal()

com.android.server.accounts.AccountManagerService.readPasswordInternal()

com.android.server.accounts.AccountManagerService.
invalidateAuthtokenLocked()

com.android.server.accounts.AccountManagerService.getAccountIdLocked()

com.android.server.accounts.AccountManagerService.getExtrasIdLocked()

com.android.server.accounts.AccountManagerService.dumpUser()

com.android.server.accounts.AccountManagerService.
insertAccountIntoCacheLocked()

com.android.server.accounts.AccountManagerService.
readUserDataForAccountFromDatabaseLocked()

com.android.server.accounts.AccountManagerService.
readAutoTokensForAccountFromDatabaseLocked()

com.android.server.location.GpsLocationProvider.reportLocation()

com.android.server.LocationManagerService.handleLocationChanged()

com.android.internal.telephony.gsm.GSMPhone.handleMessage()

com.android.internal.telephony.uicc.SIMRecords.setMsisdnNumber()

com.android.internal.telephony.uicc. SIMRecords.handleMessage()
25. Shabtai A, Tenenboim‐Chekina L, Mimran D, Rokach L, Shapira B, and
Elovici Y. Mobile malware detection through analysis of deviations in
application network behavior. Comput Secur. 2014;43:1–18.

26. Rastogi V, Chen Y, and Enck W. AppsPlayground: automatic security
analysis of smartphone applications. In Proceedings of the 3rd ACM
conference on Data and application security and privacy (CODASPY),
San Antonio, Texas, USA, 2013, pp. 209‐220.

27. Zhou Y, Wang Z, Zhou W, and Jiang X. Hey, you, get off of my market:
detecting malicious apps in official and alternative Android markets. In
Proceedings of the 19th Network & Distributed System Security
Symposium (NDSS), Hilton San Diego Resort & Spa, 2012.

28. Yuan Z, Lu Y, Xue Y. Droiddetector: Android malware characterization
and detection using deep learning. Tsinghua Sci Technol.
2016;21(1):114–123.

How to cite this article: Yang M, Wang S, Ling Z, Liu Y, Ni Z.

Detection of malicious behavior in android apps through API

calls and permission uses analysis. Concurrency Computat: Pract

Exper. 2017;29:e4172. https://doi.org/10.1002/cpe.4172
APPENDIX

A. 1 | Framework layer API calls and corresponding
permissions
Permissions

android.permission.READ_CONTACTS, com.android.browser.permission.
READ_HISTORY_BOOKMARKS, android.permission.READ_SMS

android.permission.CAMERA

android.permission.WAKE_LOCK

android.permission.RECORD_AUDIO

android.permission.GET_ACCOUNTS

android.permission.ACCESS_FINE_LOCATION

android.permission.READ_PHONE_STATE

https://doi.org/10.1002/cpe.4172

(Continued)

No. Malware Category Sensitive Behavior Sequence

YANG ET AL. 13 of 13
A. 2 | Sensitive behavior sequence
No. Malware Category Sensitive Behavior Sequence

S1 AnserverBot ACCESS_WIFI_STATE
CHANGE_WIFI_STATE
READ_PHONE_STATE
ACCESS_NETWORK_STATE
INTERNET

S2 Bgserv ACCESS_WIFI_STATE
CHANGE_WIFI_STATE
READ_PHONE_STATE
INTERNET

S3 DroidCoupon READ_PHONE_STATE
ACCESS_NETWORK_STATE
READ_PHONE_STATE
ACCESS_NETWORK_STATE

S4 DroidKungFu1 READ_EXTERNAL_STORAGE
INTERNET
READ_PHONE_STATE
ACCESS_NETWORK_STATE
INTERNET

S5 DroidKungFu3 ACCESS_NETWORK_STATE
READ_PHONE_STATE
ACCESS_NETWORK_STATE
INTERNET

S6 DroidKungFu4 ACCESS_WIFI_STATE
CHANGE_WIFI_STATE
ACCESS_COARSE_LOCATION
WRITE_SMS
READ_SMS
READ_PHONE_STATE
ACCESS_NETWORK_STATE
READ_PHONE_STATE

S7 DroidKungFuSapp ACCESS_NETWORK_STATE
READ_PHONE_STATE
READ_EXTERNAL_STORAGE
INTERNET

S8 DroidKungFuUpdate READ_PHONE_STATE
ACCESS_NETWORK_STATE
ACCESS_ALL_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE
INTERNET

S9 Endofday SEND_SMS
SEND_SMS_NO_CONFIRMATION

S10 Geinimi READ_PHONE_STATE
ACCESS_FINE_LOCATION

S11 GGTracker READ_PHONE_STATE
INTERNET
READ_SMS

S12 GingerMaster INTERNET
VIBRATE
READ_PHONE_STATE
INTERNET

S13 GoldDream INTERNET
READ_PHONE_STATE
ACCESS_FINE_LOCATION

S14 Gone60 READ_HISTORY_BOOKMARKS
READ_CALL_LOG
READ_SMS
READ_CONTACTS
INTERNET

S15 HippoSMS READ_SMS
WRITE_SMS
SEND_SMS
SEND_SMS_NO_CONFIRMATION

(Continues)

S16 jSMSHider INSTALL_PACKAGES
READ_PHONE_STATE
ACCESS_FINE_LOCATION
ACCESS_NETWORK_STATE

S17 NickySpy READ_PHONE_STATE
ACCESS_FINE_LOCATION
READ_PHONE_STATE
INTERNET

S18 Pjapps READ_PHONE_STATE
RECEIVE_SMS
INTERNET

S19 RogueLemon READ_PHONE_STATE
READ_EXTERNAL_STORAGE
INTERNET

S20 RogueSPPush READ_PHONE_STATE
ACCESS_NETWORK_STATE
INTERNET
WRITE_EXTERNAL_STORAGE
ACCESS_WIFI_STATE

S21 SndApps GET_ACCOUNTS

S22 YZHC READ_HISTORY_BOOKMARKS
READ_SMS
READ_EXTERNAL_STORAGE
READ_CALL_LOG

S23 zHash READ_PHONE_STATE
READ_HISTORY_BOOKMARKS

S24 Zsone INTERNET
ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
SEND_SMS
SEND_SMS_NO_CONFIRMATION

