
Protocol-level Hidden Server Discovery
Zhen Ling∗†, Junzhou Luo∗, Kui Wu† and Xinwen Fu‡

∗Southeast University, Email: {zhenling, jluo}@seu.edu.cn
†University of Victoria, Email: wkui@cs.uvic.ca

‡University of Massachusetts Lowell, Email: xinwenfu@cs.uml.edu

Abstract—Tor hidden services are commonly used to provide a
TCP based service to users without exposing the hidden server’s
IP address in order to achieve anonymity and anti-censorship.
However, hidden services are currently abused in various ways.
Illegal content such as child pornography has been discovered on
various Tor hidden servers. In this paper, we propose a protocol-
level hidden server discovery approach to locate the Tor hidden
server that hosts the illegal website. We investigate the Tor hidden
server protocol and develop a hidden server discovery system,
which consists of a Tor client, a Tor rendezvous point, and
several Tor entry onion routers. We manipulate Tor cells, the
basic transmission unit over Tor, at the Tor rendezvous point
to generate a protocol-level feature at the entry onion routers.
Once our controlled entry onion routers detect such a feature,
we can confirm the IP address of the hidden server. We conduct
extensive analysis and experiments to demonstrate the feasibility
and effectiveness of our approach.

Keywords-Anonymous Communication, Tor, Hidden Service

I. INTRODUCTION

Tor is a broadly-used low-latency anonymous communica-
tion system which supports TCP applications over the Inter-
net [1]. It provides users with anonymity service, helps fight
against Internet censorship, and supports hidden services to
preserve the anonymity of web services [2]. Tor was deployed
in late 2003 and comprised hundreds of onion routers, while
hidden services were released in early 2004. Due to increas-
ingly high demand of privacy protection, the Tor network has
seen steady growth, consisting of around 3000 volunteer based
Tor onion routers as of July 2012.

Unfortunately, hidden services have been misused or abused
for various illegal purposes. They can host botnet and illegal
web contents such as drug trading information [3] and pornog-
raphy. The consequence is severe: If botnets are deployed with
the hidden service over Tor [4], they are hard to take down
because of the anonymity protected with the hidden service;
if a hidden service hosts child pornography website [5] [6]1,
the hidden service actually blindly provides a protection to the
illegal content in most countries.

Existing research work [7], [8] has been carried out to
investigate the attacks which can locate the Tor hidden server.
The approach in [7] is based on traffic analysis. The attacker
controls both malicious client and entry routers, and uses a
simple passive timing analysis, i.e., cell counting, to discover
the same patten in the client’s traffic and the entry’s traffic
to identify the hidden service at the entry side. Murdoch [8]

1The authors believe that illegal content is hosted at this hidden website
although we did not dig it because of legal concerns.

presented a clock skew based approach to identifying whether
or not a given Tor node is a hidden server. The attacker
evaluates the load of a given Tor node. Since the server’s
temperature would increase while its workload rises, the
attacker can identify whether the node is the attacked hidden
service by estimating its temperature through measuring the
clock skew. Nevertheless, the attacks based on traffic analysis
may suffer a high rate of false positives due to various factors,
such as Internet traffic dynamics, the load of Tor nodes, and
the large number of cells for the purpose of statistical traffic
analysis.

In this paper, we propose a protocol-level discovery ap-
proach to locating a hidden server by utilizing Tor proto-
col features. We (law enforcement) control a Tor client, a
rendezvous point, several entry onion routers, and a central
server. The discovery takes three phases. In Phase I, our Tor
client continues to create circuits to the hidden server until
one of our entry routers sees a special combination of cells
of different types. Such a combination, denoted as a protocol-
level feature, comes from the Tor protocol that creates the
circuits between a client and a hidden server. However, even
if our entry router observes such a feature, it may result from
other clients that create circuits to a hidden server through
our entry router. Phase II is to confirm that the hidden server
chooses our entry router. We manipulate cells from our client
to incur a special decryption error at the hidden server, which
will destroy all circuits to the client. If our entry router sees
the destroy cell, we know that our entry router is chosen by
the hidden server. Phase III is used to correlate all the events
above. In Phases I and II, related information of these cells
observed at our clients, entry routers, and the rendezvous point
has been sent to our central server. In Phase III, we exploit the
timing information of these cells, and identify the correlation
to confirm that the target hidden server is behind our entry
router. In this way, we have located the hidden server.

Our approach has several unique advantages. First, it is easy
to deploy our detection system. Second, compared to traffic
analysis based methods, our approach is significantly faster,
fully automatic and can quickly locate the hidden server using
only several cells. Third, our approach is accurate with an
observed detection rate of 100% and has an observed low false
positive of 0%. Fourth, our approach works on the protocol
level and is oblivious to traffic patterns; it is more general
and can be used to identify malicious hidden services. A
hidden server may also use its trusted entry routers or Tor
bridges as the first hop into the Tor network. We discuss those
complicated cases of tracking hidden servers in Section VI.

978-1-4673-5946-7/13/$31.00 ©2013 IEEE

2013 Proceedings IEEE INFOCOM

1043

Fig. 1. Tor network

The rest of the paper is organized as follows. In Section II,
we introduce the components of Tor, its basic operations and
the protocol of hidden service. In Section III, we present the
basic idea of our approach and then elaborate the algorithm.
In Section IV, we analyze the effectiveness of the approach.
In Section V, we show experimental results on Tor, and we
discuss complicated cases of tracking hidden servers in Section
VI. Related work is reviewed in Section VII. The paper is
concluded in Section VIII.

II. BACKGROUND

In this section, we first introduce the Tor network and then
present its basic operations and the protocol of hidden service.

A. Components of the Tor Network
Figure 1 illustrates the basic architecture of Tor network.

The following components are involved in the typical use of
Tor network:

• Tor clients. A Tor client installs a local software referred
to as onion proxy (OP), which packs application data into
equal-sized cells (512 bytes) and delivers them into Tor
network. A cell is the basic transmission unit of Tor.

• Onion routers (OR). The onion routers relay the cells on
behalf of Tor client and server.

• Directory servers. Directory servers hold the information
of onion routers and hidden services, such as the public
keys of routers and hidden servers.

• Application servers. It supports TCP applications such as
a web service and an IRC service.

Fig. 2. Tor cell format [1]

Figure 2 illustrates the format of the Tor cell. The first three-
bye header of the Tor cell is not encrypted so that the Tor onion
router can read this header. The first two bytes is the circuit ID,
while the third byte, is used to indicate the specific command
of this cell. We categorize the Tor cell into two types: the
control cell as illustrated in Figure 2 (a) and the relay cell as
shown in Figure 2 (b). The filed Command of a control cell
can be, for instance, CELL CREATE/CELL CREATE FAST
or CELL CREATED/CELL CREATED FAST, employed for
establishing a new circuit; and CELL DESTROY, used for

Fig. 3. Circuit creation

tearing down a circuit. The filed Command of relay cell is
CELL RELAY that is used to relay the application data. In
addition, there are numerous types of relay commands (Relay
Command), and its format is like RELAY COMMAND X
where “X” is a word. In our paper, when we mention the
RELAY COMMAND X cell, it indicates a relay cell and the
content of this cell is onion-like encrypted. We will elaborate
these commands further in later sections when we discuss the
Tor operations from the perspective of protocol-level.

B. Circuit Selection and Creation
To communicate with an application server via Tor, a Tor

client first downloads all of the onion router information from
the directory server and uses source routing by choosing a
series of onion routers as a route. We call the sequence of
onion routers as the path through Tor. The number of onion
routers is called the path length. In the Tor network, a path is
also called a circuit, thus we use path/circuit interchangeably
in this paper. We employ the default path length of 3 as an
example in Figure 1 to show how a path is chosen. The client
first selects an appropriate exit onion router (OR3), which
should have an exit policy supporting the relay of the TCP
stream from the client. Then, the client chooses a proper entry
onion router (OR1) (also referred to as entry guard) and a
middle onion router (OR2). After that, the client initiates the
procedure of creating a circuit incrementally, one hop at a
time. Eventually, the client can communicate with the remote
server through this circuit, i.e., OR1→ OR2→ OR3.

Figure 3 illustrates the procedure that a client builds a
circuit. As shown in Figure 3, the client first establishes a
TLS connection with entry router using the TLS protocol.
Then the client sends a CELL CREATE cell through the
TLS connection and uses the Diffie-Hellman (DH) handshake
protocol to negotiate a base key K1 = gxy with entry onion
router, which responds with a CELL CREATED cell. Note that
the H(K1) is the hash value of K1 in Figure 3. From this base
key material, a forward symmetric key kf1 and a backward
symmetric key kb1 are generated. In this way, the first hop
of this circuit, denoted as C1, is created. Similarly, the client
extends the circuit to include the second hop (C2) and the
third hop (C3) of the circuit.

Figure 4 shows the procedure of the data transmission over
the circuit. Once the circuit is established, the client sends a

2013 Proceedings IEEE INFOCOM

1044

Fig. 4. Data transmission over the circuit

RELAY COMMAND BEGIN cell to the exit onion router, and
the cell is encrypted as {{{Begin < IP, Port >}kf1}kf2}kf3 ,
where the subscript refers to the key used for encryption of
one specific onion skin. The three layers of onion skin are
removed one by one each time the cell traverses an onion
router through the circuit. When exit onion router removes
the last onion skin by decryption, it recognizes that the request
intends to open a TCP stream to a port at the destination IP
pointing to the remote server. Therefore, the exit onion router
acts as a proxy, builds a TCP connection with the server, and
sends a RELAY COMMAND CONNECTED cell back to the
client. Then the client can download the file.

Fig. 5. Tor hidden service

C. How Does the Hidden Service Work
A hidden service involves six participants, including a Tor

client, the directory server, onion routers, a rendezvous point,
an introduction point, and a hidden server. Since the first
three participants have been described above, we will introduce
the functionality of the rendezvous point and the introduction
point and how they work together to support a hidden service.

• Introduction point (IPO). An introduction point is select-
ed and published in the directory server associated with
the descriptor of the hidden service by the hidden server.
Once the introduction point is decided, the hidden server
establishes a circuit to the introduction point. Then the
introduction point plays as the front interface to Tor client

and waits until a Tor client creates a three-hop circuit to
the introduction point and forwards the request data from
the Tor client side circuit to the hidden server side circuit.

• Rendezvous point (RPO). A rendezvous point is chosen
by the Tor client. Both the Tor client and the hidden
server will establish a three-hop circuit to the RPO, which
acts as a message relay to transmit the application data
between the hidden server side circuit and the Tor client
side circuit.

• Hidden server. A hidden server provides various TCP
applications such as web server and IRC server. It could
be deployed over OP or OR.

Figure 5 depicts the procedure of establishing a connection
between the Tor client and the specific hidden server.

1) The hidden server first selects several onion
routers as introduction points and builds the
circuits to these introduction points. To build
a circuit, the hidden server will send the
RELAY COMMAND ESTABLISH INTRO cell to an
introduction point, and the introduction point will reply
with the RELAY COMMAND INTRO ESTABLISHED
cell to inform the hidden server that the circuit is
established.

2) Once the circuits to introduction points are established,
the hidden server establishes a circuit to the directory
server and advertises the service descriptor to the direc-
tory server, including the public key of the hidden server
and the information regarding the introduction points.
Then the owner of the hidden server can post the onion
address2 in a public place to attract users to access the
hidden service via Tor.

3) When a Tor client obtains the onion address, the client
creates a circuit to the directory server and fetches the
relevant information advertised by the hidden service.
Then the client learns the introduction points of the
hidden service.

4) The client selects a rendezvous point and builds a
circuit to the rendezvous point. The client will send a
RELAY COMMAND ESTABLISH RENDEZVOUS
cell, which carries a rendezvous cookie, to
the rendezvous point, which replies with a
RELAY COMMAND RENDEZVOUS ESTABLISHED
cell to indicate the successful circuit establishment.

5) The client creates a three-hop circuit to one
of the introduction points and transmits a
RELAY COMMAND INTRODUCE1 cell to the chosen
introduction point. The cell carries the information such
as the rendezvous point, rendezvous cookie and the
Diffie-Hellman data gx generated by the Tor client.

6) Once the introduction point receives the
RELAY COMMAND INTRODUCE1 cell, it replies
with a RELAY COMMAND INTRODUCE ACK cell to
the client. After the client receives this ACK cell, it
tears down this circuit to the introduction point.

7) The introduction point repacks the RE-

2Onion address is generated by the hidden server. It is a hostname of the
form “x.onion”, where “x” consists of 16 random characters.

2013 Proceedings IEEE INFOCOM

1045

LAY COMMAND INTRODUCE1 cell into a
RELAY COMMAND INTRODUCE2 cell, and then
sends the RELAY COMMAND INTRODUCE2 cell to
the hidden server.

8) After the hidden server receives the RE-
LAY COMMAND INTRODUCE2 cell, it knows
the information of the rendezvous point, rendezvous
cookie and Diffie-Hellman data gx. The hidden
server can generate the Diffie-Hellman data gy and
derive the key K = gxy. Then the hidden server
builds a circuit to the rendezvous point and sends
a RELAY COMMAND RENDEZVOUS1 cell to the
rendezvous point via the circuit. The cell includes the
key data gy, the hash value of the key H(K) and the
rendezvous cookie.

9) The rendezvous point obtains the RE-
LAY COMMAND RENDEZVOUS1 cell and
compares the rendezvous cookie from the cell
and the one from the Tor client. Once the
rendezvous cookies are matched, the rendezvous
point removes the rendezvous cookie from the
RELAY COMMAND RENDEZVOUS1 cell and repacks
the rest data into RELAY COMMAND RENDEZVOUS2
cell, and then forwards the cell to the client.

10) When the Tor client receives the RE-
LAY COMMAND RENDEZVOUS2 cell, it can generate
the key K = gxy using gy and verify it based on
H(K). In this way, the client and hidden server
complete the handshake. Then the client sends a
RELAY COMMAND BEGIN cell to establish a stream
to the hidden server via the six-hop circuit.

From the above procedure, the Tor client only knows the
introduction point instead of the hidden server directly, and
the hidden server only knows the rendezvous point instead
of the Tor client directly. In addition, the introduction point
acts as the front interface to the Tor client for service query
and request only, and it does not get involved any more once
the six-hop circuit passing through the rendezvous point is
established for data communication between the Tor client
and the hidden server. Since either introduction point or
rendezvous point knows neither the location of Tor client nor
the location of hidden server, anonymous web service is hence
achieved. Note that in the Tor network, only the entry onion
router knows IP addresses of hidden servers.

III. PROTOCOL-LEVEL HIDDEN SERVER DISCOVERY

In this section, we first introduce the basic idea of discover-
ing a Tor hidden server and then present detailed algorithms.

A. Basic Idea
Since only entry onion routers may know the real IP address

of a hidden server, we assume that we are able to control
several entry onion routers3. In addition, we need a client
and rendezvous point to cooperate with entry onion routers.
A central server is used to record information of related

3The same assumption was made in virtually all attacks towards the Tor
network. This is reasonable because onion routers are set up by volunteers.

cells forwarded from the Tor client, entry onion routers, and
rendezvous point.

The discovery is conducted as follows: (i) Our Tor client
obtains the introduction point information from the directory
server, and builds a circuit to the introduction point and also
reports the circuit creation to our central server to indicate
the start of discovery. (ii) The hidden server also establishes
a circuit to the rendezvous point. If the hidden server chooses
our entry router, our entry router will see a special combination
of cells of different types, denoted as protocol-level features,
during the creation of those circuits. However, such protocol-
level features do not necessarily imply the hidden server
chooses our entry router. We perform the following actions
to confirm it is a true positive. (iii) Once the connection is
established between the client and the hidden server, the client
will send cells that contain application data to the hidden
server as illustrated in Step 10 of Figure 5. Our rendezvous
point manipulates an appropriate cell [9], and forwards the
mangled cell to the hidden server. The rendezvous point also
reports this cell to the central server. (iv) The mangled cell
arrives at the hidden server. Since the hidden server cannot
correctly decrypt the manipulated cell, it will destroy the
circuit between the client and hidden server by sending a
destroy cell to the client. This cell traverses along the circuit
to the client. The rendezvous point will detect it and report
it to the central server to indicate the end of the discovery
process. In addition, our controlled entry onion routers will
report to the central server immediately when a destroy cell
is received. (v) To determine if the hidden server chooses
one of our entry onion routers, the central server searches
for correlation between the time when the rendezvous point
sends the manipulated cell, the time when the rendezvous
point receives the destroy cell, and the time when the entry
onion router receives the destroy cell. Since the entry onion
router knows the IP address of the circuit creator, once such
time correlation is found, we can identify the hidden server.
Figure 6 illustrates the work flow of the protocol-level hidden
server discovery approach.

Fig. 6. Circuit creation and data transmission

B. Details of Protocol-level Hidden Server Discovery
The hidden server discovery process can be divided into

three phases. Phase I: Presumably identify the hidden server
- the client continues to create circuits to the hidden server
until one of our entry routers sees a special combination of

2013 Proceedings IEEE INFOCOM

1046

cells of different types, i.e., protocol-level features. Phase II:
Verify the hidden server - our rendezvous point manipulates a
data cell and creates a decryption error at the hidden server,
which has to send out a destroy cell to destroy the circuit.
The destroy cell can be recognized by our entry router if the
hidden server uses our entry router. Phase III: Conclude by
time correlation - the central server uses timing information
of collected cells to correlate the unique sequence of events of
our discovery actions and draw a conclusion if the presumably
identified entry router is chosen by the hidden server and locate
the hidden server accordingly.

Fig. 7. Hidden server creating a circuit to the rendezvous point

Phase I: Presumably identify the hidden server. Recall
that the Tor client can derive the introduction point information
from directory server as illustrated in Step 3 of Figure 5. After
the client establishes a circuit to the rendezvous point, the
client will send a RELAY COMMAND INTRODUCE1 cell to
the introduction point in order to negotiate the Diffie-Hellman
key with the hidden server. We select this cell as a begin-sign
of our discovery approach and send this information to the
central server.

When the hidden server receives the RE-
LAY COMMAND INTRODUCE2 cell forwarded from
the introduction point, the hidden server will build a circuit to
the rendezvous point as shown in Step 8 of Figure 5. Once the
circuit is established, the hidden server will promptly send a
RELAY COMMAND RENDEZVOUS1 cell to the rendezvous
point. The circuit creation process is illustrated in Figure 7. As
we can see from Figure 7, the entry onion router will receive
one CELL CREATE FAST cell and four CELL RELAY
cells, including a RELAY COMMAND INTRODUCE2 cell,
and relay one CELL CREATED FAST cell and three
CELL RELAY cells to the hidden server.4 Let us denote

4The CELL CREATE FAST cell and CELL CREATED FAST are used
in the first hop creation of hidden server instead of CELL CREATE and
CELL CREATED.

the cells as protocol-level feature. Moreover, the entry
onion router will report the related information of each cell,
including the cell type, circuit ID, and the IP address of circuit
creator, to the central server. Furthermore, after the rendezvous
point receives the RELAY COMMAND RENDEZVOUS1 cell,
the rendezvous point needs to report the information to the
central server immediately.

Fig. 8. Modify a cell at the RPO

Phase II: Verify the hidden server. Recall
that after the rendezvous point receives a RE-
LAY COMMAND RENDEZVOUS1 cell from the hidden serv-
er, it repacks it into a RELAY COMMAND RENDEZVOUS2
cell and forwards it to the client as illustrated in
Steps 8 and 9 of Figure 5. The client will send the
RELAY COMMAND BEGIN cell to the hidden server
through the circuit in order to open a stream between the
client and the hidden server. Then our controlled rendezvous
point can detect this special cell based on the hidden service
protocol, even if the rendezvous point cannot decrypt the cell
and obtain the content. Once the rendezvous point catches
this cell, we modify one bit of the cell and forward it to
the hidden server. Due to the lack of integrity verification,
other onion routers cannot detect the manipulated cell. For
detection purpose, the rendezvous point needs to send the
timestamp of the manipulated cell to the central server.
Figure 8 illustrates the procedure of modifying the cell at the
rendezvous point.

When the manipulated cell reaches the hidden server, the
hidden server cannot correctly recognize this cell. According
to the design of Tor, the hidden server will tear down the
circuit between the client and hidden server by sending a CEL-
L Destroy cell promptly. The controlled entry onion router
will be the first router that receives this cell, and it reports
the cell type, the timestamp of the cell, circuit ID and the
source IP address of the cell to the central server. Moreover,
the rendezvous point will receive this CELL Destroy cell as
well. The rendezvous point also needs to report the timestamp
of this cell to the central server.

Phase III: Conclude by time correlation. Since the central
server may receive many cells from our entry onion routers,
we carefully choose several appropriate feature cells and
use them to filter out useless cell information. The central
server records the source IP address of each cell, circuit ID,
cell type, and timing information of the cell. Specifically,
the RELAY COMMAND INTRODUCE1 cell from the client
is used as the begin-sign cell of Phase I, and the RE-
LAY COMMAND RENDEZVOUS1 cell from the rendezvous
point is used as the end-sign cell of Phase I. Then, the

2013 Proceedings IEEE INFOCOM

1047

manipulated RELAY COMMAND BEGIN cell sent from the
rendezvous point is selected as the begin-sign cell of Phase
II. After the central server receives the manipulated cell
information, it can first filter out the circuits along which
our entry onion routers are not chosen as the first router, by
counting the number of CELL CREATE, CELL CREATED
and CELL RELAY cells based on the Tor circuit creation
protocol. Eventually, we choose the CELL DESTROY cell
information received from the rendezvous point as the end-
sign cell of Phase II. Finally, we search the remaining circuit
information and find out whether we can detect a circuit
that receives a CELL DESTROY cell during the time period
between the begin-sign cell and the end-sign cell of phase II.
If such a circuit is detected, we find the IP address of the
hidden server.

C. Make the Discovery Automatic
We want to emphasize that our discovery of hidden server

is conducted fully automatically. The central server builds tcp
connections to the Tor client, entry onion routers and ren-
dezvous points, and receives the information from those nodes.
It is a multiple thread program, maintains a list of various cell
information and conducts the correlation to discover a hidden
server. For a realistic network forensic practice, an automatic
discovery is a necessity.

We discuss how the central server code works to discover
a hidden server in detail as follow. The central server starts to
record cell information once it receives the begin-sign cell of
Phase I from the Tor client and starts the discovery process.
Then, the central server receives cell information from entry
onion routers, no matter whether or not the hidden server
selects our entry onion routers as the first hop. The central
server will record the cell type, circuit ID and the source IP
address of a cell into a list. When the central server receives the
end-sign cell of Phase I from our rendezvous point, it searches
the list and finds the candidate circuits that match the protocol
feature discussed in Phase I. Subsequently, the central server
receives the begin-sign cell of Phase II from the rendezvous
point and records the cell type, circuit ID, and the timing of
the begin-sign cell, denoted as Tb. If our entry onion routers
are selected by the hidden server as the first hop, the central
server receives a CELL DESTROY cell from the entry onion
router and records the timing of the CELL DESTROY cell,
denoted as Td. As time goes, the central server receives the
report from the rendezvous point that the CELL DESTROY
cell arrives at the rendezvous point and records the timing
of the CELL DESTROY cell, denoted as Te. Eventually, the
central server searches the list of candidate circuits in order
to confirm that the CELL DESTROY cell received from the
entry onion router is from one of the candidate circuits. Once
the circuit is found, the central server compares the timing
of the CELL DESTROY cell from the entry onion router by
using the condition Tb < Td < Te. This timing correlation is
used to confirm that the appearance of the CELL DESTROY
cell at the entry onion router is caused by our manipulated
cell at the rendezvous point. In this way, the central server
accomplishes the discovery process. Eventually, we make the
entire discovery process automatic.

IV. ANALYSIS

For our approach to be effective, the key issue is that one
of our controlled entry onion routers should be selected as the
entry onion router by the hidden server. In this section, we
analyze the chance that the hidden server selects one of our
onion routers as the entry router, and propose a strategy that
can greatly increases this chance without incurring large cost.

A. Catch Probability

To evaluate the effectiveness of our discovery approach, we
analyze the catch probability, i.e., the probability that a circuit
from a hidden server selects one of our controlled onion router-
s as the entry onion router. To start with, we need to introduce
how Tor determines a circuit among the many possible paths.
Tor adopts a bandwidth weighted circuit selection algorithm in
order to enhance its performance. The detailed path selection
algorithm is illustrated in our technique report [10]. To be
specific, the onion routers are categorized into four classes:
pure entry routers (entry guards), pure exit routers, both entry
and exit routers (denoted as EE routers), and neither entry nor
exit routers (denoted as N-EE routers). A router is marked as
an entry guard by the authoritative directory server only if its
mean uptime is above the median of all knowns routers and
its bandwidth is greater than max{median, 250KB/s}. The
exit routers support the users’ traffic to get out to the public
port, such as ports 80 and 443. EE routers are those marked as
both entry guard and exit router by directory servers, and N-
EE routers are marked as neither of them [11]. Therefore, the
entry onion router set consists of the pure entry onion routers
and the EE routers.

According to the Tor onion router selection algorithm,
the bandwidth of each entry onion router is weighted. As-
sume the bandwidth of each the onion router is labeled as
{B1, B2, . . . , Bi, Bi+1, . . . , BN} and the total bandwidth of
the onion routers is B. Denote the bandwidth of the pure
entry onion routers, the pure exit onion routers, and the EE
onion routers as Be, Bx and Bee, respectively. Then the total
bandwidth of entry routers is BE = Be + Bee. According to
Tor, the probability that the ith entry onion router is selected
from the entry set is equal to the ratio of the bandwidth of the
ith entry router over the total weighted entry router bandwidth,
that is,

P(ith router is selected as entry router) =
Bi

Be +Bee · WE

(1)
where Bi is the bandwidth of the i-th entry router and the

weight WE is calculated by max{0, 1− B
3(Bx+Bee)

}.
Assume that we are able to inject k computers into the

Tor network and these computers are established as entry
onion routers. Now we denote the bandwidth of all onion
routers as a set {B1, B2, · · · , Bk, Bk+1, · · · , Bk+N}, where
{B1, · · · , Bk} is the bandwidth of the k newly injected router-
s. Assume that the new routers advertise the same bandwidth5,
i.e., B1 = B2 = · · · = Bk = b. Since B is the aggregated
bandwidth of all original onion routers (B =

∑k+N

i=k+1 Bi), the
total bandwidth now becomes B + k · b.

5The Tor project released a new version that changes the upper-bound of
high bandwidth to 10MB/s on August 30, 2007.

2013 Proceedings IEEE INFOCOM

1048

Following Equation (1), after we inject the k onion routers
into the set of entry onion routers, the catch probability can
be easily calculated as:

P(k, b) =
k · b

B′

e +B′

ee

, (2)

where k is the number of injected onion routers, b is the
bandwidth claimed by each injected router, B′

e = Be + k · b,
and B′

ee = Bee · W
′

E . Note that W ′

E is the adjusted weight
and can be calculated as max{0, 1− B+k·b

3(Bx+Bee)
}.

We intentionally denote the catch probability as P(k, b)
to emphasize that the probability depends on the number of
injected onion routers and the claimed bandwidth of each
injected onion router.

B. How to Improve the Catch Probability
Based on Equation (2), it is easy to prove the following

claims and the proof can be found in our technical report [10]:
• The catch probability increases with the number of con-

trolled Tor entry routers, i.e.,

P(r, b) > P(k, b), where r > k. (3)

• The catch probability increases with the bandwidth of
controlled Tor entry routers, i.e.,

P(k, l) > P(k, b), where l > b. (4)

• The catch probability is determined by the aggregated
bandwidth contributed by the controlled Tor entry routers.
That is, if M = k · b, M ′ = k′ · b′, and M ≥M ′,

P(k, b) ≥ P(k′, b′) (5)

The equality holds when M = M ′.

V. EVALUATION

We have implemented the proposed Tor hidden service
discovery approach in Section III. In this section, we elaborate
the results of the empirical evaluation of the approach. Our
experimental results match the theoretical analysis presented
in Section IV well.

Fig. 9. Experiment setup

A. Experiment setup
Figure 9 illustrates the experiment setup for protocol-level

hidden service discovery over the real-world Tor. We deployed
a Tor client, entry onion router, and central server at two
different campuses in the north American. We set up a
rendezvous point on a PlanetLab node in Hong Kong and a
hidden server on a PlanetLab node in Europe. To implement
the discovery, we revised the source code of Tor at the Tor

client side, rendezvous point, and entry router in order to
establish the connections to our central server and send the
related information. The version of Tor in our experiment is
the latest stable version 0.2.2.37. The hidden server on the
PlanetLab node is deployed on a Tor client and Apache server
is installed as the HTTP server so as to offer hidden service.
In addition, at the client side, we implemented a web client to
automatically send a http request of the specific onion address,
and then installed the HTTP proxy, i.e., Privoxy [12], in order
to relay the http request into the OP.

B. Experiment Results
Table I gives the detection rate by our protocol-level hidden

server discovery approach. To validate the effectiveness of
our approach, we force our hidden server to select our entry
onion routers. To this end, we use the Tor configuration file to
manipulate the parameters EntryNodes and StricEntryNodes so
that the hidden server will choose our 10 entry onion routers.
The experiments were repeated for 1000 times for deriving
the true positive rate, the probability that the hidden server is
detected if it uses our entry server. In addition, to evaluate the
false positive rate of our approach, we edit the configuration
file to exclude our entry onion router by using the parameter
ExcludeNodes so that the hidden server will not use our entry
server and conduct the experiments for 1000 times again. One
experiment lasts for around 15 seconds. Therefore, it took
around 4 hours for running 1000 experiments. As we can see
from Table I, the true positive rate of our approach is 100%,
while the false positive rate is 0%.

TABLE I
DETECTION RATE OF PROTOCOL-LEVEL HIDDEN SERVER DISCOVERY

True Positive 100%
False Positive 0%

Figure 10 illustrates the empirical cumulative distribution
function (CDF) of bandwidth of all routers in the Tor network
on July 23, 2012. There are 3101 onion routers in the Tor
network, including 814 pure entry routers and 776 pure exit
routers, 273 EE routers and 1238 N-EE routers. As we can
see from this figure, the bandwidth of around 90% routers are
lower than 1 MB/s.

Figure 11 illustrates the relationship between the catch
probability and the number of controlled entry routers. Recall
that catch probability is the probability that a hidden server
selects entry servers controlled by us. We set the bandwidth
of each controlled entry router as 10 MB/s. As shown in
Figure 11, the catch probability increases with the number
of controlled entry routers. When we control 30 entry routers,
the catch probability P (30, 10) is 24.42%.

Figure 12 shows the relationship between the catch probabil-
ity, the number of controlled entry routers and the bandwidth
of the entry router. This figure demonstrates that the catch
probability increases quickly with the number of controlled
entry routers and the bandwidth of each entry router. When
we control 450 entry routers of 10 MB/s bandwidth, the catch
probability approaches 100%, i.e., P (450 ∗ 10) ≈ 100%. The
current Tor network has 776 pure entry routers and 273 EE

2013 Proceedings IEEE INFOCOM

1049

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bandwidth (MB/s)

F
(x

)

Fig. 10. Empirical CDF of bandwidth of all
routers in the Tor network

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Number of Entry Routers

C
at

ch
 P

ro
ba

bi
lit

y

Fig. 11. Probability that a circuit selects the
entry routers vs. number of controlled Tor entry
routers

0 50 100150200250300350400450

012345678910
0

0.2

0.4

0.6

0.8

1

Number of Entry Routers

Bandwidth of Entry Router (BM/s)

C
at

ch
 P

ro
ba

bi
lit

y

Fig. 12. Probability that at least a circuit
traverses through the controlled entry routers

routers. After inserting 450 entry routers into the Tor network,
the percentage of our entry routers in the entire Tor entry router
is around 450/(776+ 273 + 450) ≈ 30%.

VI. DISCUSSION

There are various complicated cases in discovering a hidden
server via our protocol-level discovery approach. Complicated
case I: in the current implementation of Tor, the hidden server
maintains an entry guard list and assigns a random expiration
time from 30 to 60 days to each entry guard [13]. If an entry
guard is down or its life time expires, the hidden server will
pick up a new entry guard to ensure that there are at least three
online entry guards in the list. Therefore, the target hidden
server will be safe until it selects our entry routers. This might
take a long time given the lifetime of an entry guard for the
hidden server. As a result, we should increase the proportion
of our controlled entry guards in the entire entry routers so as
to raise the probability that the target hidden server selects our
entry guards. Once the hidden server chooses one of our entry
routers, it will use our entry router in the following 30-60 days
and will be exposed by our discovery approach.

Another complicated case is that the operator of a hidden
server can choose three their trusted entry guards or Tor
bridges6 to avoid choosing our surveillance entry guards.
To address this issue, we can employ two steps to discover
the hidden server. In the first step, we can identify these
entry routers and Tor bridges by simply revising our discov-
ery approach. Recall in Phase I of our original approach,
if our controlled middle router is selected by the hidden
server side circuit, the middle router will receive one CEL-
L CREATE cell and three CELL RELAY cells, including a
RELAY COMMAND INTRODUCE2 cell, and relay one CEL-
L CREATED cell and two CELL RELAY cells to the hidden
server as we can see from Figure 7. By using this new protocol
feature, we can verify the location of our controlled middle
onion router and identify the IP address of the suspect entry
router or bridge. In the second step, after we find the first onion
router of hidden server, we can take control of this node and
apply our original approach again to trace the real IP address
of the hidden server.

6Tor bridges are a type of hidden onion routers that are not public in the
directory server. They are used as a first hop to connect to the Tor core network
in the censorship region.

The two-steps discovery approach above can also be used
to tackle Complicated case I. We can first identify the current
entry router employed by a hidden server and then request this
entry router to collaborate and locate the hidden server.

VII. RELATED WORK

Existing work has explored the issues of locating the hidden
server [7], [8], [14]. Øverlier and Syverson proposed the
packet counting based traffic analysis to identify the hidden
server at the entry onion router. Zhang et al. [14] investigated
the HTTP features of hidden server that hosts a website. They
used the HTTP features to identify the hidden server at the
entry onion router. All those methods are based on traffic
analysis, which may suffer a high rate of false positives due
to various factors. They also need to analyze a large number
of cells for the statistical analysis of traffic. Murdoch [8]
employed a clock skew based approach to check if a given Tor
node is a hidden server. Our approach is largely different from
the existing approaches. It is based on protocol-level hidden
server discovery, which does not depend on traffic analysis
and thus is more general and effective.

There has been much research on degrading anonymous
communication through various anonymous networks. Exist-
ing traffic analysis attacks against anonymous communication
can be largely categorized into two groups: passive traffic
analysis and active watermarking techniques. With passive
traffic analysis techniques, the attackers record the traffic pas-
sively and identify the similarity between a server’s outbound
traffic and a client’s inbound traffic. For example, Zhu et
al. in [15] proposed the scheme of using mutual information
for the similarity measurement. Liberatore and Levine [16]
examined the packet sizes of HTTP traffic transmitted over
persistent connection or tunneled via SSH port forwarding
to identify the web pages. Wright et al. [17] investigated
the statistical distribution of packet sizes in encrypted Voice
over IP (VoIP) connections and identified the language spoken
based on the distribution in each conversation. Ling et al. [18]
explored the RTT of the traffic over the single proxy based
anonymous system in order to identify the websites visited by
the clients. Dyer et al. [19] investigated the basic information
of traffic over the single proxy based anonymous system and
showed that the simple features of the traffic can degrade the
anonymity of the system.

2013 Proceedings IEEE INFOCOM

1050

The active watermarking techniques intend to embed specif-
ic secret signal(or marks) into the target traffic [20], [21], [22].
Such techniques can reduce the false positive rate significantly
if the signal is long enough and does not require massive
training study of traffic cross correlation as required in passive
traffic analysis. For instance, Murdoch et al. [23] investigated
the timing based threats on Tor by using some compromised
Tor nodes. Fu et al. [24] studied a flow marking scheme. Yu et
al. [21] proposed a direct sequence spread spectrum (DSSS)
based traceback technique, which could be used to trace users
of an anonymous communication network. In this technique,
attackers modulate a victim’s traffic flow using a secret PN
code. Ling et al. [25] proposed the cell counter based attack
against Tor, in which an attacker embeds a signal into the
variation of cell counter of the target traffic at the exit onion
router. Houmansadr and Borisov [26] investigated a scalable
watermark technique to encode the watermarks by changing
the locations of packets within selected time slots.

VIII. CONCLUSION

The hidden service over Tor is a double-edged sword. While
hidden servers preserve the anonymity of the services, they
technically protect malicious users and organizations who host
illegal contents such as drug trading information and child
pornography. A system that tracks down a hidden service can
effectively deter malicious users from abusing the Tor network
for illegal usage. In this paper, we design, implement, and
evaluate such a system. Our method augments the arsenal
of existing detection tools, but it is unique in that we do
not rely on conventional time consuming traffic analysis or
watermarking techniques. Instead, we aim directly at the Tor
protocols for hidden services and utilize the protocol-level
features to identify a hidden server. This method has very
accurate detection rate and is generally applicable for the
detection of any hidden service. We also expect the debate of
detrimental sides of anonymous communication to continue in
the long run, and hope to give a choice to law enforcement
for tracking notorious hidden services.

ACKNOWLEDGMENTS

This work is supported by National Key Basic Research
Program of China under Grants No. 2010CB328104, Na-
tional Natural Science Foundation of China under Grants
No. 61272054, 61070161, and 61003257, Natural Sciences
and Engineering Research Council of Canada (NSERC), US
NSF grants 1116644, 0942113, 0958477 and 0943479, Chi-
na National Key Technology R&D Program under Grants
No. 2010BAI88B03 and 2011BAK21B02, China National
Science and Technology Major Project under grants No.
2010ZX01044-001-001, China Specialized Research Fund for
the Doctoral Program of Higher Education under Grants No.
20110092130002, Jiangsu Provincial Natural Science Founda-
tion of China under Grants No. BK2008030, Jiangsu Provin-
cial Key Laboratory of Network and Information Security un-
der Grants No. BM2003201, and Key Laboratory of Computer
Network and Information Integration of Ministry of Education
of China under Grants No. 93K-9. Any opinions, findings and
conclusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views
of those sponsors.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-
Generation Onion Router,” in Proceedings of the 13th USENIX Security
Symposium, August 2004.

[2] The Tor Project, Inc., “Tor: Anonymity Online,” https://www.torproject.
org/, 2012.

[3] “Silk Road (marketplace),” http://en.wikipedia.org/wiki/Silk Road
(marketplace), 2012.

[4] Dennis Brown, “Resilient Botnet Command and Control with
Tor,” https://www.defcon.org/images/defcon-18/dc-18-presentations/D.
Brown/DEFCON-18-Brown-TorCnC.pdf, 2010.

[5] “Dutch police infiltrate hidden child porn websites in the U.S.” http:
//lincolntribune.com/?p=19100, 2011.

[6] “TorDir - the link list /and pm system/ of tor,” http://dppmfxaacucguzpc.
onion/index.php?p=cat&cid=2&sid=o40h5p0sllf4nlatcd0uo31377,
2012.

[7] L. Øverlier and P. Syverson, “Locating Hidden Servers,” in Proceedings
of the IEEE Security and Privacy Symposium (S&P), May 2006.

[8] S. J. Murdoch, “Hot or Not: Revealing Hidden Services by Their Clock
Skew,” in Proceedings of ACM CCS, November 2006.

[9] R. Pries, W. Yu, X. Fu, and W. Zhao, “A New Replay Attack Against
Anonymous Communication Networks,” in Proceedings of the IEEE
International Conference on Communications (ICC), May 19-23 2008.

[10] Z. Ling, J. Luo, K. Wu, and X. Fu, “Protocol-level Hidden Server
Discovery,” http://www.cs.uml.edu/∼xinwenfu/paper/HiddenServer.pdf,
UMass Lowell, Tech. Rep., 2012.

[11] “Tor Directory Protocol, Version 3,” https://gitweb.torproject.org/torspec.
git?a=blob plain;hb=HEAD;f=dir-spec.txt, 2012.

[12] “Privoxy,” http://www.privoxy.org/, 2011.
[13] T. Elahi, K. Bauer, M. AlSabah, R. Dingledine, and I. Goldberg,

“Changing of the guards: A framework for understanding and improving
entry guard selection in tor,” in Proceedings of the 11th ACM Workshop
on Privacy in the Electronic Society (WPES), 2012.

[14] L. Zhang, J. Luo, M. Yang, and G. He, “Application-level attack against
Tor’s hidden service,” in Proceedings of the 6th International Conference
on Pervasive Computing and Applications, 2011.

[15] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On Flow Corre-
lation Attacks and Countermeasures in Mix Networks,” in Proceedings
of Workshop on Privacy Enhancing Technologies (PET), May 2004.

[16] M. Liberatore and B. N. Levine, “Inferring the Source of Encrypted
HTTP Connections,” in Proceedings of ACM CCS, October 2006.

[17] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson, “Language
Identification of Encrypted VoIP Traffic: Alejandra y Roberto or Alice
and Bob?” in Proceedings of the 16th Annual USENIX Security Sympo-
sium (Security), August 2007.

[18] Z. Ling, J. Luo, Y. Zhang, M. Yang, X. Fu, and W. Yu, “A novel network
delay based side channel attack: Modeling and defense,” in Proceedings
of the 31th IEEE INFOCOM, 2012.

[19] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-Boo, I Still
See You: Why Traffic Analysis Countermeasures Fail,” in Proceedings
of the 6th IEEE Symposium on Security and Privacy (S&P), 2011.

[20] X. Wang, S. Chen, and S. Jajodia, “Tracking Anonymous Peer-to-Peer
VoIP Calls on the Internet,” in Proceedings of ACM CCS, 2005.

[21] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-Based Flow
Marking Technique for Invisible Traceback,” in Proceedings of the 2007
IEEE Symposium on Security and Privacy (S&P), 2007 May.

[22] Z. Ling, X. Fu, W. Jia, W. Yu, and D. Xuan, “A novel packet size based
covert channel attack against anonymizer,” in Proceedings of The 30th
IEEE INFOCOM, April 2011.

[23] S. J. Murdoch and G. Danezis, “Low-Cost Traffic Analysis of Tor,” in
Proceedings of the IEEE Security and Privacy Symposium (S&P), May
2006.

[24] X. Fu, Y. Zhu, B. Graham, R. Bettati, and W. Zhao, “On Flow
Marking Attacks in Wireless Anonymous Communication Networks,”
in Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS), April 2005.

[25] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell counter
based attack against tor,” in Proceedings of 16th ACM Conference on
Computer and Communications Security (CCS), November 2009.

[26] A. Houmansadr and N. Borisov, “SWIRL: A Scalable Watermark to
Detect Correlated Network Flows,” in Proceedings of the 18th Annual
Network and Distributed System Security Symposium (NDSS), 2011.

2013 Proceedings IEEE INFOCOM

1051

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

