2016 International Conference on Advanced Cloud and Big Data

Real-time Detection of Malicious Behavior in
Android Apps

Zhenyu Ni, Ming Yang, Zhen Ling, Jia-nan Wu, Junzhou Luo
School of Computer Science and Engineering
Southeast University, Nanjing, P.R.China
{nizhenyu_seu, yangming2002, zhenling, wujianan, jluo}@seu.edu.cn

Abstract— In recent years, with the growing popularity of
smartphones, the number of Android malware shows explosive
growth. As malicious apps may steal users’ sensitive data and
money from mobile and bank accounts, it’s important to detect
potential malicious behavior in real time. To achieve this goal, we
propose a dynamic behavior inspection and analysis framework
for malicious behavior detection in Android apps. A customized
Android system is built to record apps’ API (Application
Programming Interface) calls, permission uses, and some other
runtime features such as user operations. We also develop an
automated testing platform to test massive samples so as to
collect dynamic app behavior records. Then we exploit these
records to extract apps’ runtime features of both user interaction
and app dynamic behavior for benign and malicious behavior
classification. The experimental results show that the app
behavior classification can reach an accuracy of 99.0%,
identifying 71.8% instances of malware samples by running each
app for only 18 minutes.

Keywords—Android malware; real-time detection; dynamic
behavior analysis; permission use analysis

1. INTRODUCTION

In recent years, smartphone shipments have experienced the
fastest growth. The statistical report from IDC [1] predicts that
the global smartphone shipments will grow to 1.54 billion units

by 2019. The Android market share will also increase to 82.6%.

Smartphone apps meet our demands of communication, social
activity, shopping, etc., which facilitate our life and work.
While Dbenefiting from the convenience brought by
smartphones, our privacy information stored on the devices is
under the threat of being exposed by malware which is created
in the aim of making profits. Furthermore, malware may steal
money from smartphone users’ bank and mobile accounts. The
openness of the Android platform not only leads to its rapid
growth, but also provides convenience for malware
development. As reported, the most common malicious
activities include stealing user information, sending premium-
rate SMS messages, etc.

The security of Android platform has been researched in
both industry and academia for years. Products from
smartphone security software companies, such as LBE [2] and
360 Smartphone Guard [3], notice users of accepting or
denying sensitive permission uses. But there are two
disadvantages about this type of solution. One is that most
users do not have enough professional knowledge and security
awareness to determine whether the current permission use is

978-1-5090-3677-6/16 $31.00 © 2016 IEEE
DOI 10.1109/CBD.2016.44

221

harmless. Another is that these security apps require root
exploits to function properly, and the process of rooting
Android system exposes more system permissions and thus
brings more security risks. The security apps also scan installed
apps for malware detection according to malware signature
database. This approach demands frequent network
communication and maintenance of up-to-date malware
database, while probably missing zero-day malware samples.
Researches from academia generally fall into two categories,
i.e. static analysis and dynamic analysis. Static analysis tries to
cover all codes of apps and thoroughly explores possible
behaviors of apps, but fails to detect malware samples that can
dynamically load malicious code at run time. Dynamic analysis
can handle this type of samples, but most of the existing
schemes consider about API calls and permission uses in an
isolated way, while the sequence information of API calls and
permission uses as a whole can represent apps’ dynamic
behavior attributes more accurately.

In this paper, we propose a dynamic behavior inspection
and analysis framework for malicious behavior detection in
Android apps. Our main work includes: (1) we customize
Android system to record API calls, permission uses, and some
other run-time features. API calls are monitored using taint
tracking technique. Meanwhile, Android framework and kernel
level permission check points are set to record run-time
permission uses. (2) We develop an automated testing platform
using this customized system, and 13825 malicious and benign
apps are loaded and run automatically on the platform. All the
run-time behavior data are collected for classification training.
(3) We implement real-time malicious behavior detection using
machine learning techniques. Furthermore, 3917 apps from
real-world Android market are analyzed, with 952 apps
identified as malware.

The rest of this paper is organized as follows. In Section I,
we describe how to customize Android system to record the
behavior of apps and automatically run plenty of apps on the
customized system. In Section III, we present malicious
behavior detection algorithm. In Section IV, we evaluate the
effectiveness of our malicious behavior detection scheme.
Finally, we discuss related work and conclude our work in
Section V and Section VI, respectively.

II. DYNAMIC BEHAVIOR INSPECTION OF ANDROID APPS

Since apps’ dynamic behavior characteristics can be
represented using the sequence of API calls and permission

cpss

Conference Publishing Services

uses, we modify Android system to monitor API invocations
and permission uses that are related to privacy information
exposure and stealthy charges. Then we develop an automated
testing platform to load the customized Android system in
order to automatically install and start up apps, simulate user
operations, inject SMS and phone-call events, and collect app
behavior records.

A. API invocations inspection

According to TaintDroid [4], we implement the taint
tracking technique on the 4.4.2 r2 branch of AOSP to check
whether the data sent out contains taint in order to monitor
privacy relevant API calls. The taint tracking technique uses a
4-byte unsigned integer to describe the taint field. Each bit
represents a type of privacy data. If more than one bit are set to
1, it indicates that this data is relevant to multiple types of
privacy information.

As Fig. 1 shows, apps may invoke some APIs to access
certain privacy information during execution. We modify the
JAVA primary data types of Boolean, Double, Float, and
Integer as well as the encapsulated data type of String, in order
to add the taint field for each type. When the data is accessed
by an API, taints are added and the corresponding bit of the
privacy data type is set to 1 in the invoked API. Then, any
further operations on the data including numerical calculation,
truncation, concatenation, type conversion and encryption, are
composed of the basic instructions in Dalvik VM. Therefore,
we modify the basic instructions in Dalvik VM to maintain the
taints. When the data is sent, taints can be detected in the
Socket I/O functions to determine which types of privacy data
are sent by checking the bits of the taint field.

Ir App Execution Process |

| privacy G privacy I

app P information P information I
startup || T L v >

I acquisition transmission |

)

privacy
information

Fig. 1. API Invocations Inspection

We add log functions in 3 positions to fully monitor API
invocations: (1) add a taint to the data in the procedure of data
requests; (2) check the taint in the procedure of data
transmission over network; (3) invoke charges-relevant APIs,
including sending SMS messages and making phone calls.

Since the API name may be changed in different system
versions, we should translate the recorded API invocations into
permission checks as [5] explains. Because all the APIs related
to charges and privacy information correspond to certain
permissions [6], it is easy to perform the translation.

222

B. Permission use inspection

Since the taint tracking technique cannot cover all types of
malicious behaviors such as privacy leakage in native code, we
monitor permission checks to completely record the behaviors
of apps. If the sensitive API is invoked, the Android system
will check whether the caller app obtains the corresponding
permission in the installation process. As shown in Figure 2,
permission check in Android system is executed in 2 different
system layers, i.e., the framework layer and the kernel layer.
We record the permission uses of apps by monitoring the
permission checks in these two system layers.

| |
| |
I Appl App2 |
| |
! | | — |
Application |

|y Arphcation |
B e e |
| | 1 [1 I
I | Perm check | | | Perm check :
| | | I i
} | v (I 4 |
| I Account Il Location :
| Il Manager I| Manager)
I | Service | Service |
|

| I I Framework |
I A _ a
R fm .
|

I GID check |
' | | |
|

: \ 4 \ 4 |
: network file system I
| Kernel |

Fig. 2. Permission Use Inspection

Most of the system permissions are checked in the
framework layer. In particular, the checkUidPermission()
method in PackageManagerService is called to check if the
caller has the permission to use the current API. Therefore, we
add a log function in the checkUidPermission() method in
PackageManagerServcie in the framework layer to record the
caller’s UID (User ID), timestamp and permission name.

The rest system permissions, including network, file system,
Bluetooth, system log, etc., are checked in the kernel layer
using the original file access control mechanism in the Linux
system to check API caller’s permission. Specifically, the
mapping relationships between these system permissions and
kernel GIDs (Group ID) are described in the system file, i.e.,
/system/etc/permissions/platform.xml, and are checked in two
functions, i.e., in_group p(gid t grp) and in_egroup p(gid t
grp), in the source code, i.e., kernel/groups.c. Consequently, we
add a log function in these two functions, i.e., in_group_p() and
in_egroup_p(), to record the caller’s UID, timestamp and GID
in the kernel log, and then obtain the corresponding system
permission names by using the mapping relationship between

permission name and GIDs. In this way, we can monitor the
permission uses in both framework layer and kernel layer.

C. Automated Testing Platform

To automatically collect behavior records from large
amounts of apps, we develop an automated testing platform to
run these app samples on our customized Android system. Our
platform can install, start up apps, and collect behavior records
automatically. To make the apps reveal more behavioral
characteristics on the platform, we simulate user operations
using the application exerciser tool Monkey [7] and inject SMS
and phone-call events through telnet commands.

For a given app, the automated testing platform works as
the following steps.

Step 1 Extract the package name and the launchable
activity name from the manifest file, i.e., AndroidManifest.xml,
in current app for analysis purpose.

Step 2 Make a replica of the customized Android system
and run it on an Android emulator.

Step 3 Redirect the user-space and kernel-space system
logs onto the local disk using the adb tool.

Step 4 After the emulator is launched, the app is installed
into the emulator.

Step 5 Launch the app and run the Monkey tool to exercise
300 random operations on the app with an interval of 3 seconds
between two continuous operations.

Step 6 After the monkey completes its operations, log on
the emulator with telnet and send two events of receiving a
phone call and two events of receiving a message.

Step 7 Shut down the emulator and delete the replica of
Android system image.

Step 8 Repeat steps 1 to 7 until all the apps have been
tested.

Each app runs for about 18 minutes following the above
steps. As several errors may occur during the test, the output
information of step 3 to step 5 is parsed to detect the errors
occurred in these steps. If the errors are identified, our platform
terminates the emulator and excludes the app.

III. MALICIOUS BEHAVIOR DETECTION

Malicious behavior detection includes feature selection and
malicious behavior recognition.

A. Feature Selection

We extract user-relevant and dynamic behavioral features
to restore apps’ run-time characteristics for classification. The
user-relevant features indicate whether a sensitive permission
or API use is caused by user operations. The dynamic
behavioral features include whether the used permissions
match a certain sensitive permission combination, and whether
the overall sequence of API invocations and permission uses
contains some sensitive sequences.

1) user-relevant feature

If charge-related activity or privacy information acquisition
and transmission is caused by user operations, e.g., screen
touch and swipe, behavior cannot be classified as malicious.

223

Therefore, we detect user operations in order to reduce false
alarms of our malicious behavior detection method.

Since the user operations on our platform are simulated by
using Monkey, we explore the source code of both Android
system and Monkey in order to record the simulated user
operations. In particular, we find that Monkey tool obtains an
instance of WindowManager class in Android framework, and
then injects wuser operation events by calling the
injectKeyEvent() method in the WindowManager class. The
WindowManagerService in the Android framework receives
the events and dispatches them to corresponding app user
interface windows in the foreground. As the
InputEventReceiver used by WindowManagerService invokes
dispatchInputEvent() method in this procedure, we add a log
function to record the user operation events sent from the
Monkey tool.

2) dynamic behavioral features

Dynamic behavioral features consist of sensitive permission
use combinations and sensitive behavior sequences obtained at
the app run time.

Sensitive permission use combination: Commonly, to
steal privacy information, a malware sample requires a series
of permissions [8]. Thus, we analyze extensive permission uses
of both malicious and benign apps and extract the sensitive
permission combinations by Association Rules Mining in order
to use them to detect malware. Table I shows the permission
use combination. However, these sensitive permissions can be
used by benign app as well. Take the two permissions
READ_CONTACTS and INTERNET requested by an instant
messenger app, e.g., QQ, as an example. QQ needs the
INTERNET permission for communication. Besides, QQ can
use user contacts for friend recommendation, which requires
the READ CONTACTS permission. As a result, the
combination of these two permissions for malware detection
can cause false alarm. To address this issue, we adopt sensitive
behavior sequences to increase the detection accuracy and
reduce the false alarm.

TABLE I SENSITIVE PERMISSION COMBINATIONS EXTRACTED BY
ASSOCIATION RULES MINING

No. Sensitive permission combinations
1 INTERNET, WRITE_SMS
2 | READ_PHONE STATE, WRITE_SMS
3 INTERNET, READ PHONE_STATE, READ_SMS
4 | ACCESS_WIFI STATE, READ SMS, WRITE_SMS
5 WRITE_SMS, RECEIVE_SMS, RESTART PACKAGES
6 | READ PHONE_STATE, WRITE_SMS, WRITE_CONTACTS
7 | WAKE LOCK, WRITE_CONTACTS, RESTART PACKAGES
8 | READ SMS, SEND SMS, RECEIVE _SMS
9 | READ _SMS, RECEIVE_SMS, RESTART PACKAGES
10 | WRITE EXTERNAL STORAGE, READ SMS, WRITE SMS

Sensitive behavior sequences: API invocations and
permission uses are both the invocation of functions outside the
app sandbox, so the combination of their inspection results can
relatively completely restore the behavior of an app. The
transferred data has been added taint to indicate the type of
privacy information, so that the acquisition and transmission
operations can be mapped into the corresponding permissions.
As a result, we merge the mapped permissions from API

invocations with the permission check records according to
timestamps so as to get a syncretic sequence Sy

We run the malware dataset in [9] on the automated testing
platform to obtain behavior records. Since the malware
samples are categorized by their malicious behavior, we a
priori know what malicious behavior the samples will perform.
In total, 24 malicious sequence patterns Spaicious=1{51, $2, ...,
524} are manually extracted from the behavior data of malware,
each corresponding to one malware category.

If we perform a complete matching with each malicious
sequence pattern as a classification feature, we will only get 24
features to describe whether the behavior sequence contains
malicious behavior sequence patterns. However, complete
matching might ignore apps’ performing part of the malicious
behavior, causing high false negative rate. Moreover, we need
to detect potential malicious behavior as sooner as possible.
Hence, we use every partial sequence pattern of a maximum
length N (2<N<5) as a feature, denoted by PSP for short. The
number of features denoted by M varies if N is assigned with
different values. We will discuss about the selection of value N
in section I'V.

B. Malicious Behavior Recognition

In order to detect malicious behavior of an app, the
behavior sequence needs to be compared with the malicious
sequence patterns. We present an Online Multi-mode Sequence
Matching algorithm to match the malicious sequence patterns.

Note that when a malware sample is performing malicious
activities, there will also be normal operations which should be
filtered out during the matching of malicious sequence patterns.

First, we design a data structure used by the algorithm. Fig.
3 shows the data structure that is based on trie tree, with two
modifications made.

1) A field representing the node number is added to every
tree node in addition to the original pointers pointing to child
nodes and a flag indicating whether it forms a PSP.

2) A hash map is added which maps the node number to the
memory address of each node in order to jump between nodes
freely.

Similar to trie tree, a path from the root down to a certain
node indicates whether the current sequence fragment forms a
PSP, and the whole tree is made up of all the M PSPs. 1t is
easy to see that the tree has M nodes that own flags indicating
a PSP. With this tree, we can match the malicious sequence
patterns with the behavior sequence for analysis. TABLE II
shows the Online Multi-mode Sequence Matching algorithm.

The output of the algorithm is a list of values, each of
which indicates whether the corresponding PSP is satisfied
when matching with the current behavior sequence. If the
current behavior sequence satisfies some of the PSPs, the
corresponding features’ values are 1, and other features’ values
are 0. If none of the nodes is the end of a PSP, all the M
attributes’ values are 0.

Besides the M features obtained by the above algorithm, we
also need the time interval between the current permission use

224

and previous user operation, and whether the permissions used
match a sensitive permission combination. These M+2 features
form the attribute vector for training and classification.

Node number | Memory address
0 0x002684
1 0x002694
2 0x0026a4
3 0x0026b8

Fig. 3. Data Structure Used in Online Multi-mode Sequence Matching
Algorithm

TABLE IT ONLINE MULTI-MODE SEQUENCE MATCHING

Algorithm Online Multi-mode Sequence Matching

1. Inputl: Behavior records (behavior: List<timestamp, permission>)
2. Input2: Malicious pattern tree(malSet: Set<List<permission>>)
3. Output: result records (results: List<matchNodeld>)

4. Trietree tt = new Trietree();

5. for sltem in malSet:

6. tt.insert(sItem);

7. struct State {long timestamp, int nodeld};

8. Set stateSet = new Set(State);

9. for lltem in behavior:

10. for sltem in stateSet:

11. if lItem.timestamp — sltem.timestamp > MAX_ DELAY:
12. stateSet.erase(sItem);

13. else:

14. next = tt.nextState(sItem. nodeld, lltem.permission);
15. State s = new State(lItem.timestamp, next);

16. stateSet.erase(sltem);

17. stateSet.insert(s);

18. State s = new State(IItem.timestamp, 0);

19. next = tt.nextState(0, [Item.permission);
20. if next !=0:
21. stateSet.insert(new State(lItem.timestamp, next);
22. for sltem in stateSet:
23. if tt.getNodeAddr(sItem.nodeld)->isWord:
24. next = sItem.nodeld;
25. else:
26. next=-1;
217. stateSet.erase(sltem);
28 results.add(next);
29 return results;

We use Naive Bayes algorithm and Support Vector
Machine algorithm to classify app behavior, and select an
appropriate one by comparing the accuracy rate, false positive
rate and false negative rate. The length of malicious sequence
pattern fragment N is also selected by comparing the three
indices under different values. If at least one record in the
behavior sequence is classified as malicious, the corresponding
app is marked as malicious.

IV. EVALUATION

A. Experimental Data Acquisition

The automatic app testing platform runs on a PC that
installs the Ubuntu 14.04 system and has an 17-4700 CPU and
8GB memory. We run 7 emulators simultaneously to make
full use of the hardware resources.

The malware dataset used in this paper is obtained from
Android Malware Genome Project[9], which has 1243
malware samples in 34 categories. Other apps are downloaded
from Google Play and a third-party alternative market Anruan.
12582 apps from Google Play are treated as benign apps
which are all top 500 on the most popular apps lists in all
categories. 14733 apps from Anruan Market are also on the
top lists. After running them on the testing platform and
preprocessing the data, we finally obtained behavior data from
504 malware samples, 5193 apps from Google Play and 3917
apps from Anruan Market. 24 malicious sequence patterns are
extracted from 24 categories of malware which contain 390
samples in total.

The training set is as follows. The behavior records from
malware samples that containing PSPs are marked as
malicious, while all the other records are marked as benign. In
addition, we randomly select behavior records of equivalent
numbers from Google Play apps and marked them all as
benign. There are 120641 records in total, 117741 benign and
2900 malicious. Behavior records of apps from Anruan
Market are used for open-world analysis.

B. Experimental Result and Analysis

If we set N to different parameters, the number of malicious
sequence patterns varies. Fig. 4 shows how M is influenced by
N’s value. We used SVM and Naive Bayes algorithms to
classify the dataset above. 10-fold cross-validation is applied to
validate the effectiveness and the results are shown in Fig. 5
and Fig. 6.

Number of
attributes
50

46 46

45 42
40

35 32

30

25

20

N

Fig. 4. Influence of N’s Value on M

The following performance metrics are used to measure the
effectiveness of our detection method.

225

We denote by C, |
malicious behavior records, by C, ,, the number of correctly

the number of correctly classified

m

classified benign behavior records, by C, the number of

m—b
incorrectly classified malicious behavior records, and by
C,_,, the number of incorrectly classified benign behavior

records. So we have C, =C, , +C, ,,+C, ,, +C

m—m b—b m—b b—m *
Definition 1 Accuracy (P,)
P — Cm~>m + C’)*}h
Cal[
Definition 2 False Positive Rate (FPR)
C
FPR = bom
Cbab + Cbam
Definition 3 False Negative Rate (FNR)
FNR — m—b
Cm%m + Cm~>b
—e—pPa —e -FPR FNR
1.000 0.027 0.030
0.023 0.023
0.995 0.020 0.025
0.990 4 0.020
017 &=
oges DL 0.0 —09%0 o015
0.980 0.985 go10~e 0.010
0.982 0.982
0.975 0.005
0.970 0.000
2 3 4 5
N
Fig. 5. 10-fold Cross-validation Results of SVM
—e—"Da FNR -8 —FPR
0.983
1 £ S 0.976 o 0.008
0.006 . &
0.8 -
*~ . 0.005 0.007 N 0.006
0.6 =
N 0.631 0.004
04 0.475 ;
0.449 0.444 0.002
02 [+ 0.002
0 0
2 3 4 5

_'\.'
Fig. 6. 10-fold Cross-validation Results of Naive Bayes

Fig. 5 shows that SVM can reach an accuracy of 98% in
classification, with a false negative rate of less than 3%. Fig. 6
shows that false negative rate of Naive Bayesian Classifier is
more than 44% which is much higher than SVM. So we use
SVM in classifying malicious behavior records and further
detecting malware. Considering the above 3 metrics, we set N

to 5 and reach an accuracy of 99.0% with a 1.0% false positive
rate and a 2.3% false negative rate.

We mark an app as malicious if there is at least one of its
behavior records that is classified as malicious. 280 malware
samples out of the 390 total samples are detected, accounting
for 71.8%. By manually checking the behavior records from
malware samples that are classified as benign, no obvious
evidences of malicious behavior are found. It results from that
the missed malware samples have not performed malicious
behavior during our test. This is probably because these
malware samples are designed not to perform malicious
activity without meeting some triggering conditions, such as
adequate running time, certain operations on the apps,
connection to a remote server, etc.

We also use the classification model to detect malware
from Anruan Market. As a result, 952 apps are marked as
malicious out of 3917 ones, accounting for 24.3%. We
randomly select 120 apps that are marked as malicious,
manually check the behavior records, and find that most of

them performed certain malicious behavior as TABLE III shows.

Most of them fetch IMEI or IMSI and then send it to a remote
server through the Internet. We can see that quite a proportion
of apps utilize the IMEI and IMSI as the identifiers of devices,
which can be used to track users. There are still 24 apps that
don’t perform malicious behavior but are marked as malicious,
causing false alarm. These 24 apps generated 2167 entries of
records, 75 of which are classified as malicious, accounting for
3.5%. So the false positive rate is still very low at the
behavioral level.

TABLE IIl MANUAL ANALYSIS OF ALARMED APPS IN ANRUAN MARKET

Malicious behavior Number of apps with this behavior
Steal location 20
Steal phone number 9
Steal messages 2
Steal IMEI 77
Steal IMSI 51
Steal ICCID 3
Steal browse history 1
None 24
The sum of the numbers in the table is more than 120 because
one app may have several types of malicious behavior
V. RELATED WORK
Techniques for detecting Android malware can be

categorized into three types, namely static analysis techniques,
dynamic analysis techniques and hybrid analysis techniques.

A. Static Analysis

Static analysis is commonly used in analyzing the security
of software. Static analysis of Android apps can be classified
into installation package analysis, bytecode analysis and source
code analysis according to the targets of analysis.

Installation packages analysis is first proposed by Enck et
al. [10]. They analyze the requested permissions for possible
malicious functions by breaking malicious functions up into
corresponding permissions. Zhou ef al. [11] collected a large
set of malware samples and analyzed the permission use in
depth. Many subsequent researches used this dataset for

226

malware detection. MAST[12] collects information of
permission requests, whether having native code, self-startup
behavior, etc., to rank the risks of apps and decide which apps
require deeper scan. Similarly, DREBIN[13] collects more
information available in the installation package, and it is
suitable for installation-time analysis concerning its
performance. Binary code or byte code analysis is to scan
compiled code in the installation files for malicious function
features. For example, ComDroid[14] analyzes inter-
application communication to find malicious behavior such as
broadcast interception, service hijacking. However, analyzing
binary code or byte code is tough work, so more researches
decompile the byte code before scanning. Aafer et al.[15]
research into the API call features after decompiling, including
API name and API parameters, while this method is probably
be deliberately evaded by malware developers. DroidSIFT[16]
constructs calling dependency graphs based on semantics to
avoid detection evasion, which results in lower false negative
rate and false alarm rate.

In addition to malware analysis, static analysis can also be
used to detect vulnerabilities in apps which can be utilized by
malware, such as inter-application = communication
vulnerabilities (ComDroid[14]), component hijacking[17],
capability leaks[18]. Static analysis is generally suitable for
offline analysis, and can be used for market-scale apps analysis,
but is ignorant of run-time context and can be easily evaded by
malware developers. Thus, some researchers propose dynamic
analysis techniques for detecting anomaly at run time.
Dynamic analysis is usually more suitable for being deployed
on user devices and can intercept malicious behavior timely.

B. Dynamic Analysis

The most typical work of dynamic analysis is TaintDroid[4]
proposed by Enck ef al. which adds taint to privacy data for
propagation and tracks the taint flow to detect privacy
information leakage. It can find out privacy leakage effectively
at run time, but fails to track leakage occurred in native code.
Furthermore, when deployed on a smartphone, it demands for
non-negligible CPU usage and energy consumption.
VetDroid[19] is a privacy leakage detection system based on
taint tracking that not only monitors explicit permission use but
also tracks implicit permission use after permission checks in
order to restore the behavior profile and detect fine-grained
privacy leakage causes.

Dynamic analysis can also monitor system API calls to
restore an app’s behavior on the upper layer.
CopperDroid[20][21] and DroidScope[22] put android apps in
a sandbox to supervise the interactions between the sandbox
and the outer system. The invocations of framework APIs, JNI
methods, system calls in the operation system are utilized to
restore the application behavior. However, it can only be used
for offline analysis instead of being deployed on a smartphone.
Shabtai et al[23] focuses on side-channel information
generated by the network traffic during an app’s run time. The
traffic features are extracted and sent to a remote server, and
then the app is classified using machine learning algorithms to
find out potential malicious behavior. AppsPlayground[24]
combines a set of dynamic analysis techniques, include taint
tracking, API inspection, kernel system call inspection, and

multiple code exploration techniques to analyze privacy
leakage and malicious functions during app’s run time.

C. Hybrid Analysis

Some researchers combine the static and dynamic analysis
techniques to gain the efficiency and flexibility of static
analysis and accuracy of dynamic analysis simultaneously.
DroidRanger[25] filters suspected malicious apps by analyzing
permission requests and byte code, then further explores
malicious behavior using dynamic system call inspection. It is
also effective in finding out zero-day malware from market-
scale app samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an analysis framework for
monitoring, recording and analyzing app behavior at run time,
in order to detect malicious behavior of Android apps. Our
scheme has a high detection rate for detecting malicious
behavior in known malware families, and finds out a relatively
high proportion of malware samples. For those missed malware
samples, we will further do research to provide a runtime
environment in the emulator that is more close to a real
smartphone to trigger more behavior of the apps in order to
raise the detection rate of malware.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China under Grants No. 61272054, 61572130,
61320106007, 61502100, 61532013, and 61402104, Jiangsu
Provincial Natural Science Foundation under Grants
BK20140648 and BK20150637, the Fundamental Research
Funds for the Central Universities under Grant
2242014R30010, Jiangsu Provincial Key Technology R&D
Program under Grant BE2014603, Qing Lan Project of
Jiangsu Province, Jiangsu Provincial Key Laboratory of
Network and Information Security under Grant BM2003201,
and Key Laboratory of Computer Network and Information
Integration of Ministry of Education of China under Grant
93K-9.

REFERENCES
[11 Worldwide Smartphone Market Will See the First Single-Digit Growth
Year on Record, According to IDC [EB/OL].

http://www.idc.com/getdoc.jsp?containerld=prUS40664915.

LBE Tech [EB/OL]. http://www.lbesec.com/#/products/2.

360 Security [EB/OL]. http://www.360securityapps.com/en-us.

Enck W, Gilbert P, Chun B-G, et. al. TaintDroid: an information flow
tracking system for real-time privacy monitoring on smartphones [C]. In
Proceedings of the 9th USENIX conference on Operating systems
design and implementation (OSDI), Berkeley, CA, USA, 2010, pp. 1-6.
Manifest.permission [EB/OL]. https://developer.android.com/reference/
android/Manifest.permission.html

Au K, Zhou Y, Huang Z, Lie D, Gong X, Han X, and Zhou W. Pscout:
Analyzing the android permission specification. In Proceedings of the

19th ACM conference on Computer and communications security (CCS),
2012: 217-228.

Ul/Application Exerciser Monkey [EB/OL]. https://developer.android.
com/studio/test/monkey.html

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone
application certification [C]. In Proceedings of the 16th ACM

(2]
(3]
(4]

(3]
(6]

(7]
(8]

227

[

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

conference on Computer and communications security. ACM, 2009:
235-245.

Android Malware Genome Project [EB/OL]. www.malgenomeproject.or
g.

Enck W, Ongtang M, and Mcdaniel P. Mitigating Android software
misuse before it happens [R]. Tech. Rep. NAS-TR-0094-2008, Network
and Security Research Center, Department of Computer Science and
Engineering, Pennsylvania State University, University Park, PA, USA,
2008.

Zhou Y, and Jiang X. Dissecting Android Malware: Characterization
and Evolution [C]. In Proceedings of the 33rd IEEE Symposium on
Security and Privacy (S&P), 20-23 May 2012.

Chakradeo S, Reaves B, Traynor P, et. al. MAST: triage for market-
scale mobile malware analysis [C]. In Proceedings of the 6th ACM
conference on Security and privacy in wireless and mobile networks
(WiSec), Budapest, Hungary, 2013, pp. 13-24.

Arp D, Spreitzenbarth M, Hiibner M, et. al. DREBIN: Effective and
Explainable Detection of Android Malware in Your Pocket [C]. In
Proceedings of the 21th Annual Network and Distributed System
Security Symposium (NDSS), February 2014.

Chin E, Felt A P, Greenwood K, and Wagner D. Analyzing inter-
application communication in Android [C]. In Proceedings of the 9th
international conference on Mobile systems, applications, and services
(MobiSys). ACM, 2011.

Aafer Y, Du W, and Yin H. DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android [C]. In Proceedings
of the Oth international conference on Security and Privacy in
Communication Networks (SecureComm), Sydney, Australia, Springer
International Publishing, Sept. 25-27, 2013, pp. 86-103.

Zhang M, Duan Y, Yin H, et. al. Semantics-Aware Android Malware
Classification Using Weighted Contextual API Dependency Graphs [C].
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Scottsdale, Arizona, USA, 2014, pp.
1105-1116.

Lu L, Li Z, Wu Z, et. al. Chex: Statically vetting android apps for
component hijacking vulnerabilities [C]. In Proceedings of the 19th
ACM conference on Computer and communications security (CCS),
2012.

Chan P P, Hui L C, and Yiu S M. Droidchecker: analyzing android
applications for capability leak [C]. In Proceedings of the 5th ACM

conference on Security and Privacy in Wireless and Mobile Networks
(WiSec), 2012.

Zhang Y, Yang M, Xu B, et. al. Vetting undesirable behaviors in android
apps with permission use analysis [C]. In Proceedings of the 2013 ACM
SIGSAC conference on Computer and Communications Security (CCS),
Berlin, Germany, 2013, pp. 611-622.

Reina A, Fattori A, and Cavallaro L. A system call-centric analysis and
stimulation technique to automatically reconstruct android malware
behaviors [C]. In Proceedings of the 6th European Workshop on
Systems Security (EuroSec). Prague, Czech Republic, April, 2013.

Tam K, Khan S J, Fattori A, Cavallaro L. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors [C]. In Proceedings of
the Network and Distributed System Security Symposium (NDSS), 2015.

Yan L K, Yin H. Droidscope: seamlessly reconstructing the os and
dalvik semantic views for dynamic android malware analysis [C]. In
Proceedings of the 21st USENIX Security Symposium (USENIX
Security). 2012: 569-584.

Shabtai A, Tenenboim-Chekina L, Mimran D, et. al, Mobile malware
detection through analysis of deviations in application network behavior
[J]. Computers & Security, vol. 43, pp. 1-18, 2014.

Rastogi V, Chen Y, and Enck W. AppsPlayground: automatic security
analysis of smartphone applications [C]. In Proceedings of the 3rd ACM
conference on Data and application security and privacy (CODASPY),
San Antonio, Texas, USA, 2013, pp. 209-220.

Zhou Y, Wang Z, Zhou W, et. al. Hey, You, Get Off of My Market:
Detecting Malicious Apps in Official and Alternative Android Markets
[C]. In Proceedings of the 19th Network & Distributed System Security
Symposium (NDSS), Hilton San Diego Resort & Spa, 2012.

