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Abstract— In recent years, with the growing popularity of 
smartphones, the number of Android malware shows explosive 
growth. As malicious apps may steal users’ sensitive data and 
money from mobile and bank accounts, it’s important to detect 
potential malicious behavior in real time. To achieve this goal, we
propose a dynamic behavior inspection and analysis framework 
for malicious behavior detection in Android apps. A customized 
Android system is built to record apps’ API (Application 
Programming Interface) calls, permission uses, and some other 
runtime features such as user operations. We also develop an
automated testing platform to test massive samples so as to 
collect dynamic app behavior records. Then we exploit these 
records to extract apps’ runtime features of both user interaction 
and app dynamic behavior for benign and malicious behavior 
classification. The experimental results show that the app
behavior classification can reach an accuracy of 99.0%, 
identifying 71.8% instances of malware samples by running each 
app for only 18 minutes. 

Keywords—Android malware; real-time detection; dynamic 
behavior analysis; permission use analysis 

I. INTRODUCTION 

In recent years, smartphone shipments have experienced the 
fastest growth. The statistical report from IDC [1] predicts that 
the global smartphone shipments will grow to 1.54 billion units 
by 2019. The Android market share will also increase to 82.6%. 
Smartphone apps meet our demands of communication, social 
activity, shopping, etc., which facilitate our life and work. 
While benefiting from the convenience brought by 
smartphones, our privacy information stored on the devices is 
under the threat of being exposed by malware which is created 
in the aim of making profits. Furthermore, malware may steal 
money from smartphone users’ bank and mobile accounts. The 
openness of the Android platform not only leads to its rapid 
growth, but also provides convenience for malware 
development. As reported, the most common malicious 
activities include stealing user information, sending premium-
rate SMS messages, etc. 

The security of Android platform has been researched in 
both industry and academia for years. Products from 
smartphone security software companies, such as LBE [2] and 
360 Smartphone Guard [3], notice users of accepting or 
denying sensitive permission uses. But there are two 
disadvantages about this type of solution. One is that most 
users do not have enough professional knowledge and security 
awareness to determine whether the current permission use is 

harmless. Another is that these security apps require root 
exploits to function properly, and the process of rooting 
Android system exposes more system permissions and thus 
brings more security risks. The security apps also scan installed 
apps for malware detection according to malware signature 
database. This approach demands frequent network 
communication and maintenance of up-to-date malware 
database, while probably missing zero-day malware samples. 
Researches from academia generally fall into two categories, 
i.e. static analysis and dynamic analysis. Static analysis tries to 
cover all codes of apps and thoroughly explores possible 
behaviors of apps, but fails to detect malware samples that can 
dynamically load malicious code at run time. Dynamic analysis 
can handle this type of samples, but most of the existing 
schemes consider about API calls and permission uses in an 
isolated way, while the sequence information of API calls and 
permission uses as a whole can represent apps’ dynamic 
behavior attributes more accurately. 

In this paper, we propose a dynamic behavior inspection 
and analysis framework for malicious behavior detection in 
Android apps. Our main work includes: (1) we customize 
Android system to record API calls, permission uses, and some 
other run-time features. API calls are monitored using taint 
tracking technique. Meanwhile, Android framework and kernel 
level permission check points are set to record run-time 
permission uses. (2) We develop an automated testing platform 
using this customized system, and 13825 malicious and benign 
apps are loaded and run automatically on the platform. All the 
run-time behavior data are collected for classification training.
(3) We implement real-time malicious behavior detection using 
machine learning techniques. Furthermore, 3917 apps from 
real-world Android market are analyzed, with 952 apps 
identified as malware. 

The rest of this paper is organized as follows. In Section II,
we describe how to customize Android system to record the 
behavior of apps and automatically run plenty of apps on the 
customized system. In Section III, we present malicious 
behavior detection algorithm. In Section IV, we evaluate the 
effectiveness of our malicious behavior detection scheme. 
Finally, we discuss related work and conclude our work in 
Section V and Section VI, respectively. 

II. DYNAMIC BEHAVIOR INSPECTION OF ANDROID APPS

Since apps’ dynamic behavior characteristics can be 
represented using the sequence of API calls and permission 
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uses, we modify Android system to monitor API invocations 
and permission uses that are related to privacy information 
exposure and stealthy charges. Then we develop an automated
testing platform to load the customized Android system in 
order to automatically install and start up apps, simulate user 
operations, inject SMS and phone-call events, and collect app 
behavior records. 

A. API invocations inspection 
According to TaintDroid [4], we implement the taint 

tracking technique on the 4.4.2_r2 branch of AOSP to check 
whether the data sent out contains taint in order to monitor 
privacy relevant API calls. The taint tracking technique uses a 
4-byte unsigned integer to describe the taint field. Each bit 
represents a type of privacy data. If more than one bit are set to 
1, it indicates that this data is relevant to multiple types of 
privacy information. 

As Fig. 1 shows, apps may invoke some APIs to access 
certain privacy information during execution. We modify the 
JAVA primary data types of Boolean, Double, Float, and 
Integer as well as the encapsulated data type of String, in order 
to add the taint field for each type. When the data is accessed 
by an API, taints are added and the corresponding bit of the 
privacy data type is set to 1 in the invoked API. Then, any 
further operations on the data including numerical calculation, 
truncation, concatenation, type conversion and encryption, are 
composed of the basic instructions in Dalvik VM. Therefore, 
we modify the basic instructions in Dalvik VM to maintain the 
taints. When the data is sent, taints can be detected in the 
Socket I/O functions to determine which types of privacy data 
are sent by checking the bits of the taint field. 
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Fig.  1. API Invocations Inspection 

We add log functions in 3 positions to fully monitor API 
invocations: (1) add a taint to the data in the procedure of data 
requests; (2) check the taint in the procedure of data 
transmission over network; (3) invoke charges-relevant APIs,
including sending SMS messages and making phone calls. 

Since the API name may be changed in different system 
versions, we should translate the recorded API invocations into 
permission checks as [5] explains. Because all the APIs related 
to charges and privacy information correspond to certain 
permissions [6], it is easy to perform the translation. 

B. Permission use inspection 
Since the taint tracking technique cannot cover all types of 

malicious behaviors such as privacy leakage in native code, we
monitor permission checks to completely record the behaviors 
of apps. If the sensitive API is invoked, the Android system 
will check whether the caller app obtains the corresponding 
permission in the installation process. As shown in Figure 2, 
permission check in Android system is executed in 2 different 
system layers, i.e., the framework layer and the kernel layer.
We record the permission uses of apps by monitoring the 
permission checks in these two system layers. 
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Fig.  2. Permission Use Inspection 

Most of the system permissions are checked in the 
framework layer. In particular, the checkUidPermission() 
method in PackageManagerService is called to check if the 
caller has the permission to use the current API. Therefore, we 
add a log function in the checkUidPermission() method in 
PackageManagerServcie in the framework layer to record the 
caller’s UID (User ID), timestamp and permission name. 

The rest system permissions, including network, file system, 
Bluetooth, system log, etc., are checked in the kernel layer 
using the original file access control mechanism in the Linux 
system to check API caller’s permission. Specifically, the 
mapping relationships between these system permissions and 
kernel GIDs (Group ID) are described in the system file, i.e., 
/system/etc/permissions/platform.xml, and are checked in two 
functions, i.e., in_group_p(gid_t grp) and in_egroup_p(gid_t 
grp), in the source code, i.e., kernel/groups.c. Consequently, we 
add a log function in these two functions, i.e., in_group_p() and 
in_egroup_p(), to record the caller’s UID, timestamp and GID 
in the kernel log, and then obtain the corresponding system 
permission names by using the mapping relationship between 
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permission name and GIDs. In this way, we can monitor the 
permission uses in both framework layer and kernel layer. 

C. Automated Testing Platform 
To automatically collect behavior records from large 

amounts of apps, we develop an automated testing platform to 
run these app samples on our customized Android system. Our 
platform can install, start up apps, and collect behavior records 
automatically. To make the apps reveal more behavioral 
characteristics on the platform, we simulate user operations 
using the application exerciser tool Monkey [7] and inject SMS 
and phone-call events through telnet commands.  

For a given app, the automated testing platform works as 
the following steps. 

Step 1 Extract the package name and the launchable 
activity name from the manifest file, i.e., AndroidManifest.xml, 
in current app for analysis purpose. 

Step 2 Make a replica of the customized Android system 
and run it on an Android emulator. 

Step 3 Redirect the user-space and kernel-space system 
logs onto the local disk using the adb tool. 

Step 4 After the emulator is launched, the app is installed
into the emulator. 

Step 5 Launch the app and run the Monkey tool to exercise 
300 random operations on the app with an interval of 3 seconds 
between two continuous operations. 

Step 6 After the monkey completes its operations, log on 
the emulator with telnet and send two events of receiving a 
phone call and two events of receiving a message. 

Step 7 Shut down the emulator and delete the replica of 
Android system image. 

Step 8 Repeat steps 1 to 7 until all the apps have been 
tested. 

Each app runs for about 18 minutes following the above 
steps. As several errors may occur during the test, the output 
information of step 3 to step 5 is parsed to detect the errors 
occurred in these steps. If the errors are identified, our platform 
terminates the emulator and excludes the app. 

III. MALICIOUS BEHAVIOR DETECTION

Malicious behavior detection includes feature selection and 
malicious behavior recognition. 

A. Feature Selection 
We extract user-relevant and dynamic behavioral features 

to restore apps’ run-time characteristics for classification. The 
user-relevant features indicate whether a sensitive permission 
or API use is caused by user operations. The dynamic 
behavioral features include whether the used permissions 
match a certain sensitive permission combination, and whether 
the overall sequence of API invocations and permission uses 
contains some sensitive sequences. 

1) user-relevant feature 

If charge-related activity or privacy information acquisition 
and transmission is caused by user operations, e.g., screen 
touch and swipe, behavior cannot be classified as malicious.

Therefore, we detect user operations in order to reduce false 
alarms of our malicious behavior detection method. 

Since the user operations on our platform are simulated by 
using Monkey, we explore the source code of both Android 
system and Monkey in order to record the simulated user 
operations. In particular, we find that Monkey tool obtains an 
instance of WindowManager class in Android framework, and 
then injects user operation events by calling the 
injectKeyEvent() method in the WindowManager class. The 
WindowManagerService in the Android framework receives 
the events and dispatches them to corresponding app user 
interface windows in the foreground. As the 
InputEventReceiver used by WindowManagerService invokes 
dispatchInputEvent() method in this procedure, we add a log 
function to record the user operation events sent from the 
Monkey tool. 

2) dynamic behavioral features 

Dynamic behavioral features consist of sensitive permission 
use combinations and sensitive behavior sequences obtained at 
the app run time. 

Sensitive permission use combination: Commonly, to 
steal privacy information, a malware sample requires a series 
of permissions [8]. Thus, we analyze extensive permission uses
of both malicious and benign apps and extract the sensitive 
permission combinations by Association Rules Mining in order 
to use them to detect malware. Table I shows the permission 
use combination. However, these sensitive permissions can be 
used by benign app as well. Take the two permissions 
READ_CONTACTS and INTERNET requested by an instant 
messenger app, e.g., QQ, as an example. QQ needs the 
INTERNET permission for communication. Besides, QQ can 
use user contacts for friend recommendation, which requires 
the READ_CONTACTS permission. As a result, the 
combination of these two permissions for malware detection 
can cause false alarm. To address this issue, we adopt sensitive 
behavior sequences to increase the detection accuracy and 
reduce the false alarm. 

TABLE I SENSITIVE PERMISSION COMBINATIONS EXTRACTED BY 
ASSOCIATION RULES MINING

No. Sensitive permission combinations 
1 INTERNET, WRITE_SMS
2 READ_PHONE_STATE, WRITE_SMS
3 INTERNET, READ_PHONE_STATE, READ_SMS
4 ACCESS_WIFI_STATE, READ_SMS, WRITE_SMS
5 WRITE_SMS, RECEIVE_SMS, RESTART_PACKAGES
6 READ_PHONE_STATE, WRITE_SMS, WRITE_CONTACTS
7 WAKE_LOCK, WRITE_CONTACTS, RESTART_PACKAGES
8 READ_SMS, SEND_SMS, RECEIVE_SMS
9 READ_SMS, RECEIVE_SMS, RESTART_PACKAGES

10 WRITE_EXTERNAL_STORAGE, READ_SMS, WRITE_SMS

Sensitive behavior sequences: API invocations and 
permission uses are both the invocation of functions outside the 
app sandbox, so the combination of their inspection results can 
relatively completely restore the behavior of an app. The 
transferred data has been added taint to indicate the type of 
privacy information, so that the acquisition and transmission 
operations can be mapped into the corresponding permissions. 
As a result, we merge the mapped permissions from API 
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invocations with the permission check records according to 
timestamps so as to get a syncretic sequence Sall.

 We run the malware dataset in [9] on the automated testing 
platform to obtain behavior records. Since the malware 
samples are categorized by their malicious behavior, we a
priori know what malicious behavior the samples will perform. 
In total, 24 malicious sequence patterns Smalicious={s1, s2, …, 
s24} are manually extracted from the behavior data of malware, 
each corresponding to one malware category. 

 If we perform a complete matching with each malicious 
sequence pattern as a classification feature, we will only get 24 
features to describe whether the behavior sequence contains 
malicious behavior sequence patterns. However, complete 
matching might ignore apps’ performing part of the malicious 
behavior, causing high false negative rate. Moreover, we need 
to detect potential malicious behavior as sooner as possible.
Hence, we use every partial sequence pattern of a maximum 
length N (2≤N≤5) as a feature, denoted by PSP for short. The 
number of features denoted by M varies if N is assigned with 
different values. We will discuss about the selection of value N
in section IV. 

B. Malicious Behavior Recognition 
In order to detect malicious behavior of an app, the 

behavior sequence needs to be compared with the malicious 
sequence patterns. We present an Online Multi-mode Sequence 
Matching algorithm to match the malicious sequence patterns. 

Note that when a malware sample is performing malicious 
activities, there will also be normal operations which should be 
filtered out during the matching of malicious sequence patterns.  

First, we design a data structure used by the algorithm. Fig. 
3 shows the data structure that is based on trie tree, with two
modifications made. 

1) A field representing the node number is added to every 
tree node in addition to the original pointers pointing to child 
nodes and a flag indicating whether it forms a PSP. 

2) A hash map is added which maps the node number to the 
memory address of each node in order to jump between nodes 
freely. 

Similar to trie tree, a path from the root down to a certain 
node indicates whether the current sequence fragment forms a
PSP, and the whole tree is made up of all the M PSPs. It is 
easy to see that the tree has M nodes that own flags indicating 
a PSP. With this tree, we can match the malicious sequence 
patterns with the behavior sequence for analysis. TABLE II
shows the Online Multi-mode Sequence Matching algorithm. 

The output of the algorithm is a list of values, each of 
which indicates whether the corresponding PSP is satisfied 
when matching with the current behavior sequence. If the 
current behavior sequence satisfies some of the PSPs, the 
corresponding features’ values are 1, and other features’ values 
are 0. If none of the nodes is the end of a PSP, all the M
attributes’ values are 0.

Besides the M features obtained by the above algorithm, we 
also need the time interval between the current permission use 

and previous user operation, and whether the permissions used 
match a sensitive permission combination. These M+2 features 
form the attribute vector for training and classification. 
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Fig.  3. Data Structure Used in Online Multi-mode Sequence Matching 
Algorithm 

TABLE II ONLINE MULTI-MODE SEQUENCE MATCHING

Algorithm Online Multi-mode Sequence Matching
1. Input1: Behavior records (behavior: List<timestamp, permission>)
2. Input2: Malicious pattern tree(malSet: Set<List<permission>>)
3. Output: result records (results: List<matchNodeId>)
4. Trietree tt = new Trietree();
5. for sItem in malSet:
6.        tt.insert(sItem);
7. struct State {long timestamp, int nodeId};
8. Set stateSet = new Set(State);
9. for lItem in behavior:

10.        for sItem in stateSet:
11.     if lItem.timestamp – sItem.timestamp > MAX_DELAY:
12.                     stateSet.erase(sItem);
13.           else:
14.                     next = tt.nextState(sItem. nodeId, lItem.permission);
15.                    State s = new State(lItem.timestamp, next);
16.                    stateSet.erase(sItem);
17.                     stateSet.insert(s);
18. State s = new State(lItem.timestamp, 0);
19. next = tt.nextState(0, lItem.permission);
20. if next != 0:
21.               stateSet.insert(new State(lItem.timestamp, next);
22. for sItem in stateSet:
23.               if tt.getNodeAddr(sItem.nodeId)->isWord:
24.                      next = sItem.nodeId;
25.               else:
26.                    next = -1;
27.       stateSet.erase(sItem);
28.       results.add(next);
29. return results;

We use Naïve Bayes algorithm and Support Vector 
Machine algorithm to classify app behavior, and select an
appropriate one by comparing the accuracy rate, false positive 
rate and false negative rate. The length of malicious sequence 
pattern fragment N is also selected by comparing the three 
indices under different values. If at least one record in the 
behavior sequence is classified as malicious, the corresponding 
app is marked as malicious. 
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IV. EVALUATION

A. Experimental Data Acquisition 
The automatic app testing platform runs on a PC that 

installs the Ubuntu 14.04 system and has an i7-4700 CPU and 
8GB memory. We run 7 emulators simultaneously to make 
full use of the hardware resources. 

The malware dataset used in this paper is obtained from 
Android Malware Genome Project[9], which has 1243 
malware samples in 34 categories. Other apps are downloaded 
from Google Play and a third-party alternative market Anruan. 
12582 apps from Google Play are treated as benign apps 
which are all top 500 on the most popular apps lists in all 
categories. 14733 apps from Anruan Market are also on the 
top lists. After running them on the testing platform and 
preprocessing the data, we finally obtained behavior data from 
504 malware samples, 5193 apps from Google Play and 3917 
apps from Anruan Market. 24 malicious sequence patterns are 
extracted from 24 categories of malware which contain 390 
samples in total. 

The training set is as follows. The behavior records from 
malware samples that containing PSPs are marked as 
malicious, while all the other records are marked as benign. In 
addition, we randomly select behavior records of equivalent 
numbers from Google Play apps and marked them all as 
benign. There are 120641 records in total, 117741 benign and 
2900 malicious. Behavior records of apps from Anruan 
Market are used for open-world analysis. 

B. Experimental Result and Analysis 
If we set N to different parameters, the number of malicious 

sequence patterns varies. Fig. 4 shows how M is influenced by 
N’s value. We used SVM and Naïve Bayes algorithms to 
classify the dataset above. 10-fold cross-validation is applied to 
validate the effectiveness and the results are shown in Fig. 5 
and Fig. 6. 

Fig.  4. Influence of N’s Value on M

The following performance metrics are used to measure the 
effectiveness of our detection method. 

We denote by m mC �  the number of correctly classified 
malicious behavior records, by b bC �  the number of correctly 
classified benign behavior records, by m bC �  the number of 
incorrectly classified malicious behavior records, and by  

b mC �  the number of incorrectly classified benign behavior 
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Fig.  5. 10-fold Cross-validation Results of SVM 

Fig.  6. 10-fold Cross-validation Results of Naïve Bayes 

Fig. 5 shows that SVM can reach an accuracy of 98% in 
classification, with a false negative rate of less than 3%. Fig. 6 
shows that false negative rate of Naïve Bayesian Classifier is 
more than 44% which is much higher than SVM. So we use 
SVM in classifying malicious behavior records and further 
detecting malware. Considering the above 3 metrics, we set N
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to 5 and reach an accuracy of 99.0% with a 1.0% false positive 
rate and a 2.3% false negative rate. 

We mark an app as malicious if there is at least one of its 
behavior records that is classified as malicious. 280 malware 
samples out of the 390 total samples are detected, accounting 
for 71.8%. By manually checking the behavior records from 
malware samples that are classified as benign, no obvious 
evidences of malicious behavior are found. It results from that 
the missed malware samples have not performed malicious 
behavior during our test. This is probably because these
malware samples are designed not to perform malicious 
activity without meeting some triggering conditions, such as 
adequate running time, certain operations on the apps,
connection to a remote server, etc. 

We also use the classification model to detect malware 
from Anruan Market. As a result, 952 apps are marked as
malicious out of 3917 ones, accounting for 24.3%. We 
randomly select 120 apps that are marked as malicious, 
manually check the behavior records, and find that most of 
them performed certain malicious behavior as TABLE III shows. 
Most of them fetch IMEI or IMSI and then send it to a remote 
server through the Internet. We can see that quite a proportion 
of apps utilize the IMEI and IMSI as the identifiers of devices,
which can be used to track users. There are still 24 apps that 
don’t perform malicious behavior but are marked as malicious, 
causing false alarm. These 24 apps generated 2167 entries of 
records, 75 of which are classified as malicious, accounting for 
3.5%. So the false positive rate is still very low at the 
behavioral level. 

TABLE III MANUAL ANALYSIS OF ALARMED APPS IN ANRUAN MARKET
Malicious behavior Number of apps with this behavior
Steal location 20
Steal phone number 9
Steal messages 2
Steal IMEI 77
Steal IMSI 51
Steal ICCID 3
Steal browse history 1
None 24
                               The sum of the numbers in the table is more than 120 because 

one app may have several types of malicious behavior

V. RELATED WORK

Techniques for detecting Android malware can be 
categorized into three types, namely static analysis techniques, 
dynamic analysis techniques and hybrid analysis techniques.

A. Static Analysis 
 Static analysis is commonly used in analyzing the security 
of software. Static analysis of Android apps can be classified 
into installation package analysis, bytecode analysis and source 
code analysis according to the targets of analysis.  

Installation packages analysis is first proposed by Enck et 
al. [10]. They analyze the requested permissions for possible 
malicious functions by breaking malicious functions up into 
corresponding permissions. Zhou et al. [11] collected a large 
set of malware samples and analyzed the permission use in 
depth. Many subsequent researches used this dataset for 

malware detection. MAST[12] collects information of 
permission requests, whether having native code, self-startup 
behavior, etc., to rank the risks of apps and decide which apps 
require deeper scan. Similarly, DREBIN[13] collects more 
information available in the installation package, and it is 
suitable for installation-time analysis concerning its 
performance. Binary code or byte code analysis is to scan 
compiled code in the installation files for malicious function 
features. For example, ComDroid[14] analyzes inter-
application communication to find malicious behavior such as 
broadcast interception, service hijacking. However, analyzing 
binary code or byte code is tough work, so more researches 
decompile the byte code before scanning. Aafer et al.[15] 
research into the API call features after decompiling, including 
API name and API parameters, while this method is probably 
be deliberately evaded by malware developers. DroidSIFT[16] 
constructs calling dependency graphs based on semantics to 
avoid detection evasion, which results in lower false negative 
rate and false alarm rate. 

In addition to malware analysis, static analysis can also be 
used to detect vulnerabilities in apps which can be utilized by 
malware, such as inter-application communication 
vulnerabilities (ComDroid[14]),  component hijacking[17], 
capability leaks[18]. Static analysis is generally suitable for 
offline analysis, and can be used for market-scale apps analysis, 
but is ignorant of run-time context and can be easily evaded by 
malware developers. Thus, some researchers propose dynamic 
analysis techniques for detecting anomaly at run time. 
Dynamic analysis is usually more suitable for being deployed 
on user devices and can intercept malicious behavior timely. 

B. Dynamic Analysis 
The most typical work of dynamic analysis is TaintDroid[4]

proposed by Enck et al. which adds taint to privacy data for 
propagation and tracks the taint flow to detect privacy 
information leakage. It can find out privacy leakage effectively 
at run time, but fails to track leakage occurred in native code. 
Furthermore, when deployed on a smartphone, it demands for 
non-negligible CPU usage and energy consumption. 
VetDroid[19] is a privacy leakage detection system based on 
taint tracking that not only monitors explicit permission use but 
also tracks implicit permission use after permission checks in 
order to restore the behavior profile and detect fine-grained 
privacy leakage causes. 

Dynamic analysis can also monitor system API calls to 
restore an app’s behavior on the upper layer. 
CopperDroid[20][21] and DroidScope[22] put android apps in 
a sandbox to supervise the interactions between the sandbox 
and the outer system. The invocations of framework APIs, JNI 
methods, system calls in the operation system are utilized to 
restore the application behavior. However, it can only be used 
for offline analysis instead of being deployed on a smartphone. 
Shabtai et al.[23] focuses on side-channel information 
generated by the network traffic during an app’s run time. The 
traffic features are extracted and sent to a remote server, and 
then the app is classified using machine learning algorithms to 
find out potential malicious behavior. AppsPlayground[24]
combines a set of dynamic analysis techniques, include taint 
tracking, API inspection, kernel system call inspection, and 
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multiple code exploration techniques to analyze privacy 
leakage and malicious functions during app’s run time.

C. Hybrid Analysis 
Some researchers combine the static and dynamic analysis 

techniques to gain the efficiency and flexibility of static 
analysis and accuracy of dynamic analysis simultaneously. 
DroidRanger[25] filters suspected malicious apps by analyzing 
permission requests and byte code, then further explores 
malicious behavior using dynamic system call inspection. It is 
also effective in finding out zero-day malware from market-
scale app samples. 

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an analysis framework for 
monitoring, recording and analyzing app behavior at run time, 
in order to detect malicious behavior of Android apps. Our 
scheme has a high detection rate for detecting malicious 
behavior in known malware families, and finds out a relatively 
high proportion of malware samples. For those missed malware 
samples, we will further do research to provide a runtime 
environment in the emulator that is more close to a real 
smartphone to trigger more behavior of the apps in order to 
raise the detection rate of malware. 
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