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Abstract—In recent years, significant attention has been paid to
diffusion in social networks (SNs), which is, factually, the collec-
tive behavior of a set of autonomous social actors for interacting
on something in SNs (such as opinions, viruses, or innovations).
While this subject has been intensively reported, there have been
relatively few systematic reviews concerning the typical diffusion
elements and models that are relevant to this subject. Because
multiagent computing has already been widely envisioned to be
a powerful paradigm for modeling the collective interactions of
autonomous multientity systems. In this survey, we review diffu-
sion in SNs through a multiagent perspective. First, we review
the following essential elements in diffusion: 1) diffusion actors
(who will diffuse), which can be understood to be the interact-
ing agents; 2) diffusion media (where to be diffused), which can
be understood to be the interaction environments in multiagent
systems (MASs); and 3) diffusion contents (what to be diffused),
which can be understood to be the interaction objects in MASs.
Next, based on varying situations of diffusion elements, we review
the representative diffusion models (how to diffuse), which can
be understood as the decision-making mechanisms and interac-
tion protocols in MASs. For each class of diffusion elements and
models, we summarize the existing studies and discuss the chal-
lenges for solving the complex diffusion problems by applying
multiagent methodologies. Finally, we discuss the advantages and
disadvantages of our multiagent perspective by comparing other
typical perspectives (the empirical research perspective and the
theoretical perspective in empirical research), and we conclude
with suggestions for further research.

Index Terms—Diffusion, interaction, multiagent systems, social
networks, spread, survey.

I. INTRODUCTION

IFFUSION in social networks (SNs) has received con-
D siderable attention recently in many fields [1]-[4], [109].
Usually, a diffusion process in a SN includes the following
essential elements: 1) diffusion actors that represent who will
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diffuse something in a SN, such as individuals, groups, or
organizations in the society; 2) diffusion medium that rep-
resents the SN environment where the diffusion takes place,
such as the connection characteristics (e.g., weak ties and
strong ties) or the network structures (e.g., clustered-lattice
networks and random networks); and 3) diffusion content that
represents what to be diffused in the SNs, such as innovation,
rumor, behavior, or virus. In existing studies, many diffusion
models have been presented for varying situations of those ele-
ments, which mainly define the decision making mechanisms
of actors and the interaction protocols in the diffusion pro-
cesses. For example, the threshold model [5] and the epidemic
model [6] are two common models for the decision mak-
ing of actors in diffusion; and pull and push mechanisms are
two common interaction protocols in diffusion [1]. However,
although a large number of related studies on diffusion in SNs
have been done, there are few systematic reviews on the typical
diffusion elements and models presented in existing studies.

In fact, diffusion in SNs can be described as the collective
behavior of a set of autonomous social actors for interacting
on something in the SNs [7]. Furthermore, modeling diffusion
as emerging phenomena from the interaction of individu-
als has recently attracted a substantial amount of activities
of researchers [8], [9]. Moreover, multiagent computing has
already been widely envisioned to be a powerful paradigm
for modeling the collective interactions of autonomous mul-
tientity systems [10], and SNs can be modeled as multiagent
systems (MASs) [7], [11]. Therefore, in this paper, we review
the state-of-the-art on diffusion in SNs through a multiagent
perspective; the diffusion elements and models can be modeled
based on a multiagent interaction framework: diffusion actors
(who will diffuse), which can be understood as the interacting
agents, diffusion media (where to be diffused), which can be
understood as the interaction environments in MASSs, and dif-
fusion contents (what to be diffused), which can be understood
as the interaction objects in MASs; after analyzing varying
typical situations of diffusion elements, we review the typi-
cal diffusion models (how to diffuse) that can be understood
as the decision-making mechanisms and interaction protocols
in MASs.

Moreover, for each typical class of diffusion elements and
models, we discuss the challenges in existing studies and
present the future research directions based on multiagent
methods. Finally, we compare our multiagent perspective with
two other prevalent perspectives, the empirical research per-
spective and the theoretical perspective in empirical research.
We argue that our multiagent perspective can be integrated
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TABLE I

COMPARISON BETWEEN DIFFUSION IN SNS AND INTERACTIONS IN MASS

Interactions | Diffusion in -
in MASs SNs Comparison
A A The diffusion actors can be modeled as agents that should consider more social characteristics.
I n | Diffus | The interaction relations in MASs can display in varied forms and be relatively static; the
jon | interaction relations in SNs are more dynamic and on a larger scale.
Eleme | The diffusion contents in SNs can be in varied forms, but the interacting objects in MASs can be
0 c nts | more abstract. Moreover, the strategies of actors when they are confronted to the diffusion of
certain contents are much simpler than the strategies of agents when they negotiate about
certain interacting objects.
The protocols of diffusion in SNs are more dynamic, in varied forms, and practical; the
P P | Diffus | interaction protocols in MASs are more rigorous and can be validated effectively being built on
jon |solid theory foundations.
D D | Model The decision in MASs can be more complex and have many strict assumptions; the decisions in
SNis can be large scale, dynamic, and uncontrollable.

with these two perspectives to improve the practical feasibil-
ity and suitability of our perspective to investigate complex
diffusion problems in SNs.

To the best of our knowledge, only Kiesling et al. [57]
made a similar survey that reviewed the agent-based simula-
tion of innovation diffusion. However, they only considered the
innovation diffusion but not the general diffusion in SNs. In
summary, the main contribution of this paper is that it system-
atically reviews the state-of-the-art of general diffusion in SNs
from a multiagent perspective. The remainder of this paper is
organized as follows. In Section II, we analyze the relation-
ship between diffusion in SNs and interaction in MASSs; in
Section III, we review the typical elements of the diffusion
in SNs via a multiagent perspective; in Section IV, we review
the typical diffusion models via a multiagent perspective; in
Section V, we compare our perspective with other typical per-
spectives; and finally, we discuss and conclude our paper in
Section VI

II. RELATIONSHIP BETWEEN DIFFUSION
IN SNS AND INTERACTIONS IN MASS

A. Framework of Diffusion in SNs

The diffusion in a SN is the process by which a few mem-
bers of the SN initially adopt a strategy which over time
is adopted by more individuals until all (or most) members
adopt it [2].

Definition 1 (Diffusion in SNs): Diffusion in a SN can be
described by a tuple <A, N, C, P, D>, where

A is the set of actors who diffuse something in SNis;

N is the SN, and A x A— {0,1} indicates a social
connection between any two actors;

C  is the diffusion content representing what to be dif-
fused in the SN, such as innovation, rumor, behavior,
or virus. Generally, actors may choose certain strate-
gies while they are confronted with the diffusion of
certain content. For example, for the diffusion of
rumor, strategies = {believe, not believe}, denotes
that the actors can adopt to believe or not believe
the rumor;

P denotes the diffusion protocols, such as interaction
forms, and temporal or spatial dependence in diffu-
sion;

D denotes the decision-making mechanism of actors

while they encounter the diffusion.

In fact, the A, N, and C, respectively describe the essen-
tial elements of diffusion in SNs: diffusion actors, diffusion
medium, and diffusion content; P and D describe the diffusion
models.

B. Framework of Interaction in MASs

Based on [12], we next define here a formal framework of

interaction in MASs, as follows.

Definition 2 (Interaction in MASs): The interactions in a

MAS can be described by a tuple < A, I, O, P, D >, where

A is the set of agents that are involved in an interaction;

1 denotes the set of interaction relations among agents,
which can often be described as a network structure.
With the interaction relations, some interacting con-
straints may be endowed on agents, such as strategy
constraints, resource constraints, and temporal con-
straints;

0 denotes the interaction objects, which is the range of
issues over which an agreement must be reached. The
object could contain a single issue or multiple issues;

P denotes the interaction protocols and regulations,
which are the set of rules governing the interaction;

D denotes the decision-making mechanism of agents in
the interaction under the constraints of I.

C. Comparison Between Two Frameworks

From Definitions 1 and 2, the frameworks of diffusion and
multiagent interaction can be closely correlated, and there
is an almost exactly corresponding relation between them.
Therefore, the elements and models of multiagent interac-
tion can be used as a motivation and heuristics for reviewing
the diffusion in SNs. Moreover, the research on diffusion in
SNs can be conducted based on existing multiagent interaction
models rather than on developing the diffusion model from
scratch which could be costly.

Certainly, there are still some differences between the dif-
fusion in SNs and the interaction in MASs. Next, we briefly
compare them based on Definitions 1 and 2, shown in Table I.
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In general, the following problems should be noticed if we
want to really apply MAS methods in the research on diffusion
in SNs.

1) The diffusion in SNs can be more large-scale, dynamic,
and active, but the interaction in MASs can be relatively
restricted and artificial. The interaction mechanisms in
MASs often have high efficiency with a small number
of trading partners; however, the diffusion in the SNs
can involve a very large number of actors. Research on
the interaction in MASs often focuses on the develop-
ment of negotiation theory and models, but the research
on diffusion in SNs often focuses on the empirical anal-
ysis on the observed data. Therefore, how to improve
the practicality of MAS methods to satisfy the large
scale and dynamics of real diffusion in SNs is a crucial
problem.

2) The final objectives of interaction in MASs are man-
ifold, such as guaranteed success, maximizing social
welfare, pareto efficiency, individual rationality, and
stability [12]. In comparison, the final objectives of dif-
fusion in SN are relatively simple, such as maximizing
influence or minimizing it. To consider the large scale
and dynamics of SNs, the simplicity and efficiency of
a diffusion model is very important because a complex
diffusion mechanism could be costly. Therefore, a rough
but simpler diffusion model can be more effective and
more useful than a strict but complex model. Therefore,
we should take measures to revise the MAS models to
satisfy the requirements of diffusion in SN.

III. ELEMENTS
A. Diffusion Actors

1) Review of Typical Types of Diffusion Actors From
Multiagent Perspective: In MASs, the agents can be cate-
gorized from different views according to the agents’ roles
and relationships in the interaction process [14], [73]; gener-
ally, the following classification criteria are often observed:
1) cooperative or noncooperative: cooperative agents work
together toward achieving some common goals [30], but non-
cooperative agents pursue their own goals irrespective of the
others [15]; 2) truthful or untruthful: truthful agents provide
true information and behave by obeying the protocols in the
interaction [16], but untruthful agents are deviant from the
desired protocols and might even tamper with the information
in the interaction [17]; and 3) homogeneous or heterogeneous:
homogeneous agents are uniform in characteristics and always
fall into the same type [18], but heterogeneous agents are
diverse in characteristics and could vary in different types [19].

In fact, the diffusion actors in SNs can be easily mod-
eled as interacting agents in MASs. Therefore, the concepts
of agents and actors are interchangeable in this paper. Based
on those typical classifications of agents, the diffusion actors
in SNs can also be classified into the following three types of
categories: cooperative or noncooperative actors, truthful or
untruthful actors, and homogeneous or heterogeneous actors.
The corresponding relation between the interacting agents and
the diffusion actors is shown in Fig. 1.

[ % 3 | 4 N
Coczggragzg/vléon- 1| Cooperative/ non-
Tater a%ents |~ |cooperative actors
a \. < | Diffu-
acting Truthful/ | : Truthful/ sion
agents untruthful I untruthful actors
MXIS agents J\ actors in SNs
s Homogeneous/ 1 Homogeneous/
heterogeneous T heterogeneous
agents | actors
Fig. 1.  Summary of the typical types of diffusion actors from a multiagent

perspective.

a) Cooperative versus noncooperative diffusion actors:

i) Cooperative actors: Cooperative diffusion actors can have
some common goals and can cooperate with each other. Thus,
they will adopt cooperative attitudes when they encounter the
diffusion influences of other actors. Currently, there are many
interaction techniques in cooperative MASs that can be used to
investigate the interactions among cooperative diffusion actors
in SNs. For example, the alignment rule is a widely adopted
approach in which an individual agent adjusts its behavior
by considering the behavioral strategies of its neighbors [20],
and imitation is a special form in which an agent imitates the
average strategy of other agents [21].

In fact, the techniques that are used in diffusion among
cooperative actors are similar to the alignment rule in MASs,
i.e., actors use specific mechanisms to adjust their behav-
iors by considering the strategies of other interacting actors
in SNs. Moreover, the cooperative actors in SNs often learn
which strategy to adopt by imitating the strategy of the best-
performing player that they observe [22]; thus, an imitating
mechanism is often used.

Currently, it is to be observed that cooperative actors in SNs
often form some communities. Therefore, diffusion related
to communities has attracted much attention. For example,
Salathe and Jones [23] used empirical and simulated networks
to investigate the diffusion of diseases in networks that have
a community structure; they found that an infected individual
is more likely to infect members of the same community than
members outside of the community.

ii) Noncooperative actors: Noncooperative coordination has
attracted much attention in the area of MASs, in which the
agents are self-motivated and attempt to maximize their own
benefits [25], [26]; similarly, there are selfish actors that par-
ticipate in diffusion in SNs [27]. Usually, the methods that
are used for collective decision making of noncooperative
actors in diffusion are very similar to the methods that are
used for noncooperative multiagent interactions, such as game
theory [15], which can guarantee that noncooperative actors
reach a collective strategy or decision.

Game theory can be used in diffusion scenarios in
which an individual’s behavior is the result of a strate-
gic choice among competing alternatives [13], [28], such
as the diffusion of technologies, advertisements, or innova-
tions. Montanari and Saberi [28] studied the noncooperative
diffusion of innovations in SNs that were based on the dynam-
ics of coordination games: each actor must make a choice
between two alternatives (x; € {+1,—1}); the payoff of
each of the two choices for the actor increases with the
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number of neighbors who are adopting the same choice.
Rodriguez-Achach et al. [29] studied a noncooperative diffu-
sion model of innovations in a network of actors that are
characterized by their technological level; there, the actors can
follow Nash or Pareto strategies when they decide whether to
upgrade their level or not.

b) Truthful versus untruthful diffusion actors: In an open
SN, an actor can choose to be truthful or untruthful in
diffusion. Untruthful social actors are different from the non-
cooperative social actors because untruthful actors could have
a subjective (deliberate) initiative to make some deviation
or malicious behaviors in the diffusion [16], [31]. However,
noncooperative actors can be truthful or untruthful.

In fact, untruthfulness is also often observed in MAS
domains, where some agents can fail to carry out their obli-
gations and lie to one another during the interaction, either
by hiding some information or by creating fictitious informa-
tion [32]. To address the untruthfulness of MASs, a trust and
reputation mechanism is often used, which can estimate the
trustworthiness of the agents. According to the same rule, the
trust and reputation-based mechanism is also used for diffusion
scenarios that have truthful and untruthful actors in SNs [7].

Trust can be defined as an actor’s expectation of another
actor’s behavior based on their past interactions. An actor will
be inclined to adopt another actor’s behavior strategy if it trusts
that actor. For example, in the diffusion of recommendations,
an actor will decide whether to rely on another’s recommen-
dation according to its trust in the actor [33]. Hang et al. [34]
presented an evidence-based approach to trust propagation in
undependable SNs, which provides efficient operations, con-
catenation, aggregation, and selection, that can propagate trust
accurately.

The reputation of an actor refers to other actors’ opinions
on that actor, which is available to other actors even when they
have not interacted with that actor. If an actor’s reputation is
high, then its behavior strategies will be more easily accepted
by other actors in the diffusion. For example, Paolucci and
Conte [35] focused on social reputation as a fundamental
mechanism in the diffusion of socially desirable behavior and
presented a cognitive analysis of reputation.

c) Homogeneous versus heterogeneous diffusion actors:
Synchronization is a typical phenomenon in MASs, which
denotes that all agents can reach an agreement on their behav-
ior strategies [21], [36], [37]. There are two synchronization
mechanisms [21]: one mechanism is flat synchronization, in
which all of the agents are homogeneous and have the same
synchronization capacity; another mechanism is nonflat syn-
chronization, in which agents are heterogeneous and different
agents have different synchronization capacities. Diffusion in
SN can, in fact, be viewed as a special form of synchroniza-
tion because one of the main aims of diffusion is maximizing
the influence over the whole SN; therefore, drawing inspira-
tion from those situations in MASs, the diffusion actors in SNs
can also be categorized into homogeneous and heterogeneous
actors.

The homogeneous actors have the same characteristics in
diffusion, such as the threshold value, response time, and link
degree. Diffusion among homogeneous actors can take place
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with the same constant speed. Each actor has the tendency to
imitate the states in its neighborhood and will update its state
according to the average state of its neighbors. For exam-
ple, a simple linear threshold model, the Watts’ threshold
model [38], can be used for the diffusion of homogeneous
actors, where actors have the same threshold and will switch
states if their perceived proportion of active neighbors exceeds
a threshold. Such a model can be formally explained as fol-
lows: each actor is initially given an identical threshold 7 in
(0, 1], and an inactive actor with m active neighbors and k-m
inactive neighbors will be activated only if the fraction m/k
exceeds T [39].

However, many SNs are heterogeneous and are composed
of more than one type of actor [40]. It was observed that the
heterogeneity of the actors could have noticeable effects on
the diffusion in SNs. For example, Iribarren and Moro [8§]
studied how the large heterogeneity of actor activity rhythms
controls the information diffusion dynamics, and they showed
that the large heterogeneity that is found in the response time
is responsible for the slow dynamics of the information at the
collective level. Young [41] incorporated heterogeneity into
diffusion, such as actors’ benefits, costs, and times; the nov-
elty of Young’s study is that it explored the heterogeneity
of actors from a more general view and solved the previous
work in which the heterogeneity is used in a very restricted
fashion.

Moreover, the number of links of various actors can be
heterogeneous, e.g., some follow a power law distribution
but others could follow a random distribution. For exam-
ple, Liu et al. [43] investigated the infection dynamics range
from heterogeneous (scale-free) to homogeneous (random) and
found that heterogeneous networks are relatively more robust
against diffusion of infections compared with homogeneous
networks.

2) Challenges and Future Research Directions: Next, we
summarize some challenges in existing studies on diffusion
actors and present some insights on future research directions
by applying related multiagent techniques, which are shown
as follows.

a) More Intelligent and Reasoning Actors: In the existing
studies, the behaviors of actors are relatively simple and
passive in diffusion. However, the real social actors are
very active and intelligent. To solve such a problem, we
think that the reasoning of an agent is an important func-
tion and can be used in SNs to model and analyze the
thinking of social actors in the diffusion. Furthermore,
more learning and consciousness techniques of agents
can be used for modeling the social actors’ learning
and evolving behaviors. Certainly, we should address
the practical feasibility of the theoretical models of the
reasoning and learning of agents in real SNs.

b) Collective Behaviors of Diffusion Actors: In existing
studies, each actor often behaves and makes decision
individually. Although there is a small amount of work
on diffusion that is related to communities, the studies
are essentially based on the mechanisms of individ-
ual actors. In the future, we can apply the coalition
mechanism and collective decision-making mechanism
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of multiagents into the collective behavior of social
actors in diffusion.

¢) Dynamically Transformable Diffusion Actors: In current
related studies, the roles of actors are always assumed
to stay fixed during the diffusion. Obviously, such an
assumption cannot fully reflect reality. In fact, social
actors can dynamically change their roles in the diffu-
sion, e.g., an untruthful actor can take a truthful action
when it finds that such an action can bring more benefits.
A competitive actor can also take cooperative actions in
the diffusion. In fact, there are many advanced stud-
ies on the dynamic roles in MASs. In the future, those
related models in MASs can be applied to model the
actors having dynamic roles in the diffusion.

B. Diffusion Media

1) Review of Typical Types of Diffusion Media From
Multiagent Perspective: The diffusion media are the SN envi-
ronments in which the diffusion takes place. Because of the
significant diversity and complexity of real diffusion environ-
ments, it is a challenge to make a systematic classification on
the diffusion media in existing studies.

In the MAS domain, the interaction environments are always
categorized according to the following aspects: 1) interac-
tion structure topological characteristics, which represent the
interaction relationships among the interacting agents; 2) inter-
action link types (single-linked interaction and multi-linked
interaction), which represent that an agent must negotiate with
a single agent or multiple agents about different issues; and
3) interaction link strengths, which represent the connection
strengths between the interacting agents. For considering the
correlation between the interaction environments in MASs and
the diffusion media in SN, as stated in Section II, we now also
classify the diffusion media in existing studies from the mul-
tiagent perspective, which is shown in Fig. 2. In summary, the
typical diffusion media in existing studies can be categorized
as follows.

1) Typical SN Structures: Small world, random networks,
scale-free networks, and clustered networks.

2) Typical SN Link Types: Simplex networks and multiplex
networks.

3) Typical SN Link Strengths: Strong and weak ties.

a) Typical SN structures: The SN structure of who is
connected to whom can critically affect the extent to which
something diffuses across a population [44]. Overall, the
following typical structures are often observed in the real dif-
fusion of SNs [45]: small world networks, random networks,
scale-free networks, and clustered networks. Next, we will
review representative studies for such typical SN structures.

Small-world structure indicates that most actors are not
neighbors but can be reached from every other actor by a
small number of hops or steps. Obviously, such a small-
world characteristic significantly influences the diffusion paths
and velocities [42]. Zanette [46] studied the dynamics of
an epidemic-like model for the diffusion of a rumor on
a small-world network and showed that such a model
exhibits a transition between the regimes of localization

Small-world
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I
'
g networks
Interaction ! ‘f;gﬁ?é;ﬁtc'_
structures
tures Scale-free
| networks
I "
Inter- | Clustered Dl,ffu'
action 1 networks s
envi- [ ,m;ha
ron- y % | 7 ~ Simplex SNs
e . 1 | Social net- networks
mn Iﬁ‘:ﬁg;gg;‘ work link |
MASs I types Multiplex
\ J J
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I
I ;
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Interaction [ Social net-
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Fig. 2. Summary of the typical types of diffusion media from a multiagent
perspective.

and propagation at a finite value of network randomness.
Kuperman and Abramson [47] analyzed the model for the dif-
fusion of an infection for different population structures and
explored the small-world effect in such an epidemiological
model, and they found a transition to self-sustained oscillations
in the size of the infected subpopulation.

In random structures, the networks are generated by random
processes and are determined by a probability distribution [50].
Watts [38] presented a possible explanation of the cascade phe-
nomenon in terms of a random network of interacting actors;
when cascade propagation is limited by the connectivity of the
network, a power law distribution of cascade sizes is observed,
which is analogous to the cluster size distribution in standard
percolation theory and avalanches in self-organized critical-
ity. Lopez-Pintado [49] obtained the contagion threshold for
random networks with different connectivity distributions and
showed that, unlike standard epidemiology models, networks
with intermediate variance in the connectivity distribution can
be optimal for this diffusion process.

Scale-free networks are those in which a node of these
networks has the degree k and usually follows a power law,
P(k) o< k=7, over a large range of k and an exponent y that
ranges between 2 and 3 [45], [53]. In fact, the diffusion in
scale-free networks is very sensitive to the statistics of degree
distribution that is characterized by the index y [6]. Griffin and
Brooks [52] examined the impact of the scaling factor on the
diffusion of worms in a scale-free network and showed that the
scale-free structure of networks makes network mono-cultures
inconsequential with respect to the diffusion of epidemics.
Moreover, Meloni et al. [54] presented a novel perspective on
diffusion in finite-size scale-free networks in which the epi-
demic incidence is shaped by traffic-flow conditions, and they
showed that the value of the epidemic threshold in scale-free
networks depends directly on the flow conditions.

Moreover, it is found that most SNs are clustered, which
means that there is a high density of loops of length three or
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short cycles. Clustering can decrease the size of the epidemics,
but it also can decrease the epidemic threshold, making it eas-
ier for diseases to diffuse [55]. However, others have shown
that clustering appears to raise the epidemic threshold [56].
This discrepancy occurs because there are many different
approaches that are used to generate clustered networks [56].
Especially, a social behavior that requires social reinforcement
will diffuse more effectively in clustered networks because
clustered networks have more redundant ties and can provide
social reinforcement for adoption [44].

Certainly, there are other properties of real SN struc-
tures [115]. To deal with the large scale and unforeseen levels
of real SNs, Bergenti et al. [111] investigated the agent-based
simulation of SNs, in which many properties of SNs are
considered, such as average shortest path length, clustering
coefficient, degree distribution, and assortativity coefficient.
In the agent-based simulation, a controller agent selects the
agent(s) that are going to add a link and then each of these
agents chooses the other end of the link. Moreover, they
argued that current methods for generating SNs fail to catch
some aspects of real SNs [111]; especially, large online SNs
often evolve and grow dynamically [112], [115], which may
influence the diffusion significantly.

b) Typical SN link types: simplex networks versus
multiplex networks: MASs have two types of interaction links:
single-linked interactions, in which agents have only an inter-
action relation about one issue, and multilinked interactions,
in which an agent must negotiate different issues with several
agents [58]. Inspired by this interaction situation in MASSs,
the SNs can also be categorized into simplex networks and
multiplex networks.

In simplex networks, all of the links are of the same type
and the diffusion path is affected by only the distance between
the diffusion actors. Therefore, while an actor decides its state,
it considers only the proportion of neighbors who accept the
influence of diffusion and ignores the link types between that
actor and its neighbors.

In multiplex networks, the actors are connected by multiple
types of links [24], [39], [59], [60], [61]. Diffusion in multiplex
networks is more complex than in simplex networks. Many
previous studies mainly consider the case in which diffusion
occurs along the contacts of a simplex network. The diffusion
in multiplex networks has been studied a substantial amount
only in recent years [116].

A summary of typical SN link types is shown in Fig. 3.
Because the related studies reviewed in other sections of this
paper are mainly about the simplex networks, in this sub-
section we mainly review the existing studies in multiplex
networks.

How to model the topological characteristics of multiplex
networks is a crucial problem. For example, Gémez et al. [62]
modeled the multiplex networks as structured multilevel
graphs in which the interconnections between the layers deter-
mine how a given node in a layer and its counterpart in another
layer are linked and influence each other. Jiang et al. [63] mod-
eled a multiplex network as a set of associative network layers,
where each network layer is composed of links of the same
type and the involved actors. Moreover, Buldyrev et al. [64]
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presented a method for modeling multiplex networks that
concerned the coupling and interdependence among different
networks.

In related studies on the diffusion in multiplex networks, a
common method is extending the existing models in simplex
networks by considering the multiplicity of links. Two typical
classes of approaches are: generalizing the epidemic model
and the threshold model in simplex networks to the multiplex
networks. Next, we introduce some representative studies.

The first typical class is generalizing a traditional epidemic
model to multiplex networks. For example, Xuan et al. [65]
generalized an epidemic diffusion model, called susceptible-
infected-susceptible (SIS) dynamics, on duplex networks in
which links were classified into two groups. Cozzo et al. [66]
extended the SIS model and proposed a contact-based Markov
chain approach to study epidemic-like social contagion in
multiplex networks.

The second typical class is generalizing a traditional
threshold model to multiplex networks. For example,
Brummitt et al. [67] studied cascades in multiplex SNs by
generalizing the threshold diffusion model, in which an actor
is activated if a sufficiently large fraction of its neighbors in
any type of link are active, i.e., the following condition is

satisfied [39]:
m;
max <—> > (1)
i=1,...,r k,‘

where r denotes the number of link types, i denotes the type
i links, m; denotes the number of active neighbors, k; denotes
the total number of neighbors, and 7 denotes a predefined
threshold. Then, Yagan and Gligor [39] presented an improved
model of the diffusion of influences in random multiplex net-
works. In their model, each link type is associated with a
content-dependent parameter ¢; in [0,00], which measures the
relative bias that type i links have in spreading such a context;
a receiver actor will become active if the following condition
can be satisfied [39]:

(£1n)
=l > . 2)

(Eer)
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c) Typical SN link strengths: strong ties versus weak ties:
The strengths of the links in a SN also influence the diffusion
results [7], [68], [71], which mainly include strong ties and
weak ties. In general, many studies state that strong ties can
promote the diffusion of behaviors in SNs because actors who
interact more often have a greater opportunity to influence one
another [69]. More precisely, strong ties can better promote the
diffusion of behaviors that require multiple interaction rein-
forcements. However, Bakshy et al. [68] found that, although
stronger ties are individually more influential, more abundant
weak ties are responsible for the propagation of novel infor-
mation. Therefore, we can suggest that weak ties could play a
more dominant role in the diffusion of behaviors that require
only a single interaction compared with behavior diffusion that
requires multiple interactions [44].

There are also many other related studies about the effects
of link strengths on diffusion. For example, Zhao et al. [70]
found that positive weak ties are very important in connecting
isolated local clusters for the further diffusion of informa-
tion in online SNs. Friedkin [72] found that strong ties are
more important than weak ties in promoting information dif-
fusion about activities within an organizational subsystem,
while the latter are more important than the former in promot-
ing information flow about activities outside an organizational
subsystem.

Moreover, in real SNs, most ties are not persistent, and the
link strengths can be dynamic. Most of the previous stud-
ies that describe the network links by static strengths do not
include information about the temporal aspects of how actors
interact. To address such a problem, Miritello et al. [74]
defined the dynamical strength of the social ties, which is a
quantity that encompasses both the topological and temporal
patterns of interactions among the actors.

2) Challenges and Future Research Direction: Next, we
summarize some challenges in existing studies on diffusion
media in SNs and present some insights into future research
directions by applying related multiagent techniques, which is
summarized in the following.

a) Dynamic Diffusion Media: SNs always evolve over time,
and ties in such networks are often dynamic [75], [76].
However, in most existing studies on diffusion, the dif-
fusion media are often assumed to be fixed during the
diffusion. There are few studies on this issue, and they
adopt some passive measures to quantify the dynamics.
To address the problem, we can introduce the learn-
ing technology of MASs to investigate how the social
actors can actively learn and predict the dynamic SN
environments.

b) Transfer Diffusion and Correlated Effects Across
Network Layers in Multiplex SNs [7]: The diffusion pro-
cess can be transferred across network layers, and the
diffusion in one network layer can have some influence
on other network layers. To address this problem, we
believe that in the future the transfer learning and cross-
organizational coordination of MASs can be introduced.
Certainly, the large scale, complexity, and dynamics of
multiplex SNs will bring about new questions that must
be explored.
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Fig. 4. Summary of the typical types of diffusion content from a multiagent
perspective.

C. Diffusion Contents

1) Review of Typical Types of Diffusion Contents From
Multiagent Perspective: The phrase diffusion content indicates
something that will be spread in the SNs. There is a significant
variety of diffusion contents in reality [77], like innovations,
opinions, viruses, rumors, and diseases. Because there are too
many types of diffusion contents, it is a challenge to summa-
rize their categorization. Next, we also attempt to solve this
problem by drawing inspiration from the MAS domain.

In MASs the interaction objects represent the range of issues
over which agreement must be reached [14]. Usually, the
following two situations are observed: 1) single interaction-
requiring objects or multiple interaction-requiring objects,
which mean that the coordination result can be obtained by
a single interaction or by multiple interactions and 2) ben-
eficial or harmful objects, which mean that the results of
interaction will improve or decrease the overall welfare of the
whole MAS. Therefore, based on these two typical situations
with respect to the interaction objects of MASs, the diffusion
contents in the SNs can be categorized accordingly into the
following two types: 1) single interaction-requiring contents
or multiple interaction-requiring contents; the former are often
spread efficiently in small-world networks, and the latter are
often spread efficiently in highly clustered networks and 2)
beneficial or harmful contents for receiver actors; the former’s
influence should be promoted, and the latter’s influence should
be restrained. The corresponding relations between interaction
objects and diffusion contents are shown in Fig. 4.

a) Single interaction-requiring contents versus multiple
interaction-requiring contents: We can categorize the diffu-
sion contents into single interaction-requiring contents and
multiple interaction-requiring contents. The former can be
accepted after only requiring a single interaction, such as
the emotion and sentiments [78], or viruses or infectious dis-
eases [79]; however, the latter can be accepted after requiring
multiple interaction reinforcement, such as the technological
innovations [28], living habits or opinions [44], or rumors [80].

Usually, in the diffusion of contents that require only a
single interaction, the networks with small-world topologies
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can spread the contents farther and more quickly than highly
clustered networks because the former network structure can
provide more and faster single interactions. In contrast, in the
diffusion of contents that need multiple interaction reinforce-
ment, highly clustered networks can improve the spreading
because such network structures can provide more redundant
ties that can reinforce interactions [44], [81].

Therefore, if we want to extend the influence of single
interaction-requiring contents, then we can add more long ties
into the SNs; if we want to extend the influence of mul-
tiple interaction-requiring contents, then we can add more
redundant ties into the SNs.

b) Beneficial contents versus harmful contents for
receiver actors: Some diffusion contents can bring benefi-
cial influences to the receiver actors, such as technological
innovations, good living habits, and happiness; some diffu-
sion contents can bring harmful influences to the receiver
actors, such as bad living habits, infectious disease, viruses,
and rumors. For the former, the aim of the research is to inves-
tigate the diffusion process and to maximize such diffusion’s
influence; for the latter, the aim of the research is to investigate
the diffusion process and to restrain such diffusion’s influence.
Those two research objectives are detailed in Section 4.1.3.

Moreover, a few of researchers have studied the dif-
fusion patterns of some typical contents. For example,
Bollen et al. [78] studied the diffusion of some good psy-
chological states in SNs and found that the general happiness
of Twitter users, as measured from a six-month record of their
individual tweets, is indeed assortative across the Twitter SN.
Christakis and Fowler [84] investigated the extent to which
smoking behavior transcends direct dyadic ties and found that
decisions to quit smoking are not made solely by isolated per-
sons; instead, they reflect choices that are made by groups of
people who are connected.

In summary, the existing related studies mainly focused on
discovering a diffusion pattern and how to promote or restrain
such diffusion [86].

2) Challenges and Future Research Directions: Next, we
summarize some challenges in existing studies on the diffu-
sion contents and present some insights on future research
directions by applying related multiagent techniques, which is
shown in the following.

a) Hybrid and associated contents in the diffusion: In real-
ity, there can be more than one type of diffusion contents
in a SN. However, most existing related studies are only
concerned about the situation in which there is only one
type of content that is spreading at the same time. In
fact, the problem of multiple issues in negotiation has
been successfully solved in the MAS domain. Thus, the
related methods of the MAS domain can be introduced
to model the decision-making mechanism in which an
actor confronts the diffusion of multiple types of con-
tents. Moreover, the problem of associated effects among
different types of contents should also be addressed.

b) Evolutional diffusion contents: In existing related stud-
ies, the characteristics of the contents are fixed dur-
ing the diffusion process. However, some contents
could change their characteristics during the diffusion.
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For example, the infectivity of a disease can become
higher when it spreads across a certain population, and
a novel living habit can become unattractive if it has
been adopted by too many people. Therefore, the evo-
lution of the diffusion contents should be considered in
large-scale and long-playing diffusion.

¢) Constrained diffusion contents: In real diffusion, the
contents can be constrained by some situations, such as
temporal or spatial constraints. For example, the spread-
ing of a disease virus from one person to another person
should be completed within a certain amount of time;
otherwise, the disease virus can die. However, there
are few systematic research studies on such constrained
diffusion contents. To address this problem, we can
introduce some constraint satisfaction problem solutions
from MASs into the decision making and coordination
of actors when they confront the constrained diffusion
contents.

IV. MODELS
A. Review of Diffusion Models From Multiagent Perspective

Usually, an interaction model in MASs mainly considers
the following aspects [12]: negotiation protocols and decision-
making mechanisms, which are the set of rules that govern the
interaction and decision making of agents; interaction forms,
which shape the interaction relationships between agents; and
optimization objectives, which control the final objectives of
the interactions.

Similarly, diffusion models mainly restrict the protocols and
regulations of decision-making mechanisms in diffusion, inter-
action forms, and diffusion objectives. Therefore, this paper
reviews the existing studies on diffusion models based on
the following aspects: typical decision mechanisms, typical
interaction forms, and typical optimization objectives.

1) Typical Decision Mechanisms in Diffusion: In the inter-
action of MASs, the decision-making mechanism determines
how the agents select their action strategies from several pos-
sible choices according to the interaction situations. Usually,
there are two typical decision mechanisms [87]: a) the deter-
ministic decision mechanism, which represents that the input—
output relation in the decision-making process of an agent
is deterministic and b) the nondeterministic decision mecha-
nism, which represents that there are no deterministic relations
between the input and output in the decision making of an
agent and is often implemented by a probabilistic approach.

Similarly, the decision mechanisms in diffusion models can
be categorized into: a) deterministic diffusion models, where
an actor can adopt a state that is truly determined by the diffu-
sion impacts from other actors, such as in a neighbor imitation
model, threshold model, or deterministic game theory model
and b) nondeterministic diffusion models, where an actor can
adopt a state that is probabilistically related to the diffusion
impacts from the other actors, such as in independent cascade
models (SIS, SIR) or nondeterministic game theory models.
This categorization is shown in Fig. 5.

a) Deterministic diffusion: In deterministic diffusion
models, the receiver actor’s state can be deterministically
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Fig. 5. Summary of the typical types of decision mechanisms in diffusion
models from a multiagent perspective.

decided by the states of the sender actors. Usually, the fol-
lowing three deterministic diffusion models are often observed
in existing studies: neighbor imitation model, linear threshold
model, and deterministic game theory model.

The neighbor imitation model is a very simple deterministic
diffusion model that represents that an actor acts solely on the
basis of its own local perception of the SN and imitates the
average strategy of its neighbors [21], [88]. Ohtsuki et al. [89]
described a simple improved neighbor average model for the
diffusion of cooperation in SN that have various structures: an
actor will become cooperative if the benefit of the malicious
act, b, divided by the cost, ¢, exceeds the average number of
neighbors, k, which means that b/c>k.

The linear threshold model is a widely used deterministic
diffusion method, in which an actor is influenced by its active
neighbors if the sum of their weights exceeds the threshold
for the actor [90]. For example, Borodin et al. [91] pre-
sented a threshold model for a competitive influence in SNs;
in that model, the actors that have low thresholds can easily
adopt others’ behavior strategies, and the actors that have high
thresholds can adopt others’ behavior strategies only after most
of the others have adopted that behavior strategy. Jiang [3] pre-
sented an extended threshold diffusion model that not only was
based on the proportion of actors that have already adopted a
behavior strategy but was also based on the collective social
positions of those adopter actors.

In the deterministic game theory-based diffusion model,
none of the states of the actors are subject to chance (none
are probabilistic), which is often used in scenarios in which
an individual’s behavior is the result of a deterministic
strategic choice among competing alternatives. For example,
Alon et al. [13] introduced a deterministic game-theoretic
model for competitive diffusion, where the strategy for each
actor in the diffusion can be decided by the deterministic game
with other actors in the network.

b) Nondeterministic diffusion: In the nondeterminis-
tic diffusion models, the receiver actor’s state is not

deterministically decided but is only influenced with a prob-
ability by the states of the sender actors. Among the non-
deterministic models, the following two typical classes are
often observed: independent cascade (or epidemic) models and
nondeterministic game theory models.

Independent cascade (or epidemic) models are widely used
in related studies. The underlying assumption of these mod-
els is that the actors adopt a new behavior with a specific
probability when they come into contact with others who have
already adopted it. Therefore, the diffusion probabilities in this
type of model should be considered and must be specified in
advance [90]. Two basic epidemic models are the susceptible-
infected-removed (SIR) model [85] and the SIS model [51].
In an SIR model, each actor can be in one of three different
compartments with specific probabilities [85]: those who are
susceptible to the diffusion content are in the susceptible com-
partment; those who are infected and can transmit the content
to others are in the infected compartment; and those who have
recovered and are immune are in the recovered compartment.
The SIS model can be easily derived from the SIR model
by simply considering that the actors recover with no immu-
nity to the diffusion content, i.e., the infected actors are cured
and become again susceptible with a specific probability [51].
Noticeably, Franchi [113] used an agent-based domain-specific
language to implement the SIR model, which showed that the
agent-based modeling approach can efficiently deal with the
large simulations of diffusion in SNs.

Moreover, based on the above two basic epidemic models
(the SIR and SIS models), many other improved models have
been investigated [92]. For example, Shaw and Schwartz [93]
created a model by adding a vaccinated class (V) to modify
an SIS model. Cator and Van Mieghem [4] presented a modi-
fied SIS model (MSIS) that obeys the same evolution rules as
the SIS model except that when there is only one infected node
that is forbidden to heal in the network; thus, the MSIS model
can prevent the epidemic from dying out. Wen et al. [94] pro-
posed a novel SII model (susceptible-infectious-immunized)
to solve two critical problems that were unsolved in the pre-
vious SIR and SIS models: temporal dynamics and spatial
dependence.

Another typical class of models are the nondeterministic
game theory models. The difference between game theory
models and the independent cascade models is that the for-
mer are based on the notion of utility maximization rather
than exposure; the basic hypothesis in nondeterministic game
theory models is that, when adopting a new behavior, each
individual makes a rational choice to maximize its payoff in
a nondeterministic coordination game. For example, a rep-
resentative study is that Montanari and Saberi [28] used a
nondeterministic game theory model to study the spread of
innovations in SNs.

2) Typical Interaction Forms in Diffusion: There are two
typical factors for shaping the interaction forms in MASs: the
interaction relationship and the interaction direction. Similarly,
we categorize the typical interaction forms in the diffusion as
follows: 1) typical interaction relationships, such as one-to-one
or many-to-one and 2) typical interaction directions, such as
push or pull. A summary is shown in Fig. 6.
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a) One-to-one and many-to-one forms: In the interac-
tion of MASs, in terms of the number of participating agents,
the one-to-one and many-to-one interaction forms are often
observed [95]. Accordingly, the interaction forms in typical
diffusion models can also be categorized into one-to-one and
many-to-one according to the number of actors who partici-
pate in a diffusion step. Usually, neighbor imitation models
and linear threshold models adopt a many-to-one interaction
form; in game theory models and independent cascade (or epi-
demic) models, both many-to-one and one-to-one forms can
be used.

In neighbor imitation models, each receiver actor will
decide its states by averaging the states of all of its neigh-
bors [21], [89]; in the threshold models, the receiver actor
decides its state by considering the states of many interacting
actors [67], [90]. Therefore, the interaction forms in these two
models are definitely many-to-one.

In game theory models, existing related studies can adopt
the many-to-one or one-to-one forms according to the diffusion
elements. For example, in the game theory model presented
in [13] to model the competitive diffusion in SNs, a many-to-
one form is used where each actor can decide its strategy by
considering many of its neighbors. In the game theory-based
diffusion model of innovations presented in [29], a one-to-one
form is used where an actor can take the technological level
of one of its nearest neighbors or keep its own level.

In independent cascade (or epidemic) models, sometimes
an actor can accept a behavioral strategy from others once it
is influenced by another actor; however, sometimes an actor
can accept others’ behavioral strategies only after many of the
others adopted such a strategy [7]. In the former situation, the
one-to-one interaction form is often used; in the latter situa-
tion, the many-to-one interaction form is often used, where an
actor can be infected by its infected neighbors at a probability
that is proportional to the number of infected neighbors [97].

b) Push and pull forms: In MASs, the two typical inter-
action directions are reactive and proactive forms. The former
indicates that the agents can perceive their environment and
respond to changes that occur in their surrounding environment
in a timely fashion, and the latter indicates that the agents can
act by taking the initiative [98]. According to the same rule,
the interaction directions in the diffusion can also be catego-
rized into two classes: push-based diffusion, which indicates
that an infectious actor always actively attempts to infect its
neighboring actors, and pull-based diffusion, which indicates
that a susceptible actor can become infected by connecting to
an infected actor [1].
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In the push-based diffusion, each infectious actor has a
push-based infection capability that indicates its probability of
successfully infecting a susceptible actor [1], [99]. For exam-
ple, the epidemic spreading of a computer virus always adopts
a push-based form [51], i.e., the virus in an infected com-
puter can actively infect another susceptible computer. Another
typical push-based diffusion is the spread of infectious dis-
eases [92], where the diseases in infected people can actively
infect other contacted people.

In the pull-based diffusion, each susceptible actor has a pull-
based infection capability, in which it has a probability of
becoming infectious because of its own proactive actions [1].
For example, a susceptible user can become infected by down-
loading some malicious contents from a compromised web
site. Provos et al. [100] presented that the Internet users can be
infected by actively connecting to the Internet and conducting
their activities if some hosts are infected with malware.

Moreover, now there are some studies that combine the push
and pull diffusion forms together. A representative study is that
of Xu et al. [1], who conducted a rigorous benchmark study on
a push-and pull-based epidemic model in arbitrary networks
and presented sufficient conditions or epidemic thresholds
under which the diffusion will become stable.

3) Typical Optimization Objectives in Diffusion: In MASs
the negotiation objectives are important to decide the inter-
action protocols and decision-making mechanisms. In fact,
there are many types of negotiation optimization objec-
tives [12], [101], such as maximizing social welfare, minimiz-
ing conflicts, and minimizing the negotiation time. Inspired
by the negotiation objectives in MASs, we summarize the
optimization objectives in diffusion models into the following
three typical classes: maximizing the influence, minimizing the
influence, and minimizing the diffusion time (or maximizing
the diffusion velocity). A summary is shown in Fig. 7.

Maximizing the diffusion influence is a major objective in
many related studies. To maximize the influence, the core
problem is selecting a small set of individual actors in a SN, to
adopt the strategy in such a way that these actors can trigger a
maximal cascade of further adoptions [82], [102]. In fact, the
optimization problem of selecting the most influential actors is
NP-hard; thus, many related studies attempt to present some
heuristics to reduce the complexity. Kempe et al. [82] pro-
vided the first provable approximation guarantees for efficient
algorithms and showed that a natural greedy strategy obtains a
solution that is probably within 63% of the optimum for sev-
eral classes of models. However, a conventional method under
the greedy algorithm could bring about heavy computational
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costs. To solve this problem, Kimura er al. [103] proposed
a method on the basis of bond percolation and graph theory,
which can significantly reduce the computational costs.

Minimizing the diffusion influence is another common
objective in related studies. The problem of minimizing influ-
ence is prevalent in the diffusion of harmful content for
receiver actors, such as computer viruses, malicious rumors,
or misinformation. Generally, there are three typical methods
for minimizing influence: 1) removing a limited number of
contaminated actors; 2) blocking a limited number of links to
restrain the diffusion of bad content; and 3) launching a new
diffusion campaign of opposite content to counteract the dif-
fusion of a content. For example, Xia [104] proposed a belief
diffusion algorithm to help criminal investigators find and
remove the contaminated actors. Kimura et al. [105] proposed
methods for efficiently finding good approximate solutions to
the problem of blocking a limited number of links in a network
to minimize the contamination. Budak et al. [106] studied the
notion of competing campaigns in a SN to limit the diffusion
of some contents.

Minimizing the diffusion time indicates that the diffusion
can reach the whole network or reach equilibrium within a
minimal time. While negotiation time in MASs is the steps
of agents to reach an agreement on their strategies [14], the
notion of diffusion time indicates the steps on the evolution
of a diffusion process spreading throughout a network [114].
Antulov-Fantulin et al. [85] proposed the FastSIR algo-
rithm, which can reduce the running time of the naive SIR
algorithm by basing it on a probability distribution of the
number of infected actors. Chen et al. [107] combined the
objectives of influence maximization and time minimization
and considered time-critical influence maximization in which
one wants to maximize the influence spread within a given
deadline.

B. Challenges and Future Research Directions

Next, we summarize some challenges in existing studies on
diffusion models in SNs and present some insights on future
research directions by applying related multiagent techniques,
which is shown in the following list.

1) Mixed Diffusion Models in a SN: In existing studies,
only one type of diffusion model is used for one case.
However, due to the large scale and heterogeneity of
real SNs, more than one type of diffusion model can be
mixed to analyze the diffusion in a SN. Therefore, the
hybrid effects of various diffusion models within a SN
should be investigated in the future. We think that such
a research direction can be based on the related research
on hybrid negotiation in heterogeneous MASs.

2) Group Interaction Mechanism in Diffusion: As stated
above, existing related studies mainly adopt the inter-
action forms of one-to-one or many-to-one, i.e., the
diffusion model mainly concerns how individual actors
decide their strategies. However, in many SN, the actors
can form some groups or communities. Therefore, in the
future, the group interaction mechanism in diffusion will
be explored based on the collective motion models of
MASs.
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3) Concurrency of Multiple Diffusion Processes in SNs:
Existing studies mainly consider the situation in which
only one diffusion process is taking place at a time
or only two competing diffusion processes are taking
place. However, in reality, there are multiple diffusion
processes from collective actors to collective actors that
can take place concurrently. Therefore, in the future,
we must explore the concurrent mechanism and correla-
tion effect of multiple diffusion processes in large SN,
which can be based on the previous work on the coordi-
nation of concurrent actions of large-scale MASs in the
control area.

V. COMPARISONS WITH OTHER PERSPECTIVES

The previous perspectives of research on diffusion in SNs
mainly include the empirical research perspective and the the-
oretical perspective in empirical research. Next, we compare
our perspective with such previous perspectives.

A. Empirical Research Perspective

Most of the related studies adopt an empirical research
perspective, which empirically analyzes and characterizes the
elements and models of diffusion from the observed data [96].
The empirical perspective is a method of research based on
the experimentation or observation data of the diffusion phe-
nomena, which derives diffusion patterns and rules from actual
experience rather than from theory.

In empirical research, massive quantities of data and effi-
cient data analysis tools are required, which can offer a
rich source of evidence and effective measures for studying
the diffusion [7]. There are many types of data collection
methods, such as interviews, observations, and question-
naires; especially in research on diffusion in online SN,
empirical data are collected from the Internet, and some
web crawler tools are often used. On the other hand,
the data analysis methods are crucial and constitute the
majority of the related studies, such as statistical analysis or
data mining.

The advantage of the empirical perspective is that it has
good practical feasibility and can be easily used in real
applications. Moreover, this perspective can understand and
respond to the dynamics of real diffusion situations more
appropriately. However, this perspective has the following
drawbacks: 1) it mainly investigates diffusion in SNs from
empirical data and ignores the proactive knowledge of experts;
thus, an investigation can sometimes be costly or deviate
from the research objective; 2) the research results are too
dependent on empirical data which may be noisy or unde-
pendable in some environments; and 3) it often lacks rigorous
induction, deduction, and proof for the inner mechanisms of
diffusion, i.e., it lacks formal theory to explain the empirical
observations [110].

To address the above drawbacks, many researchers intro-
duced some theoretical measures into empirical research,
such as graph theory, complexity analysis, dynamic stochas-
tic processes, and probability analysis. Next, we introduce the
theoretical perspective in empirical research.
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B. Theoretical Perspective in Empirical Research

The theoretical perspective is important because the the-
oretical assumptions can direct our research approach and
provide effective frameworks for interpreting what we observe
from the empirical data. Because a theoretical perspective
can provide a way of explaining how and why diffusion
takes place in SNs, researchers must have certain theory
knowledge regarding the topic of diffusion under investiga-
tion. Generally, the following three theoretical tools are often
used in empirical research: graph structure analysis, diffu-
sion complexity analysis, and dynamic stochastic process and
probability analysis.

The graph structure analysis perspective in empirical
research mainly investigates how the structural characteristics
of SNs can influence the diffusion [44], [48]. Typical related
studies include the effects of varying the network topolo-
gies, connectivities, and node degrees on diffusion. Moreover,
many other graph structure concepts can be used to ana-
lyze the effects of network structures on diffusion, such as
dyads, triads, components, geodesics, centrality, density, and
peripherality.

The complexity analysis perspective in empirical research
mainly investigates the complexity of varying diffusion mod-
els [82], [103], [108]. Many problems in diffusion, such
as influence maximization, diffusion with a minimum cost,
and finding influential actors, are NP-hard. Thus, finding a
method that has a lower complexity is crucial to realizing the
optimization objectives in diffusion.

The dynamic stochastic process and probability analysis
perspective in an empirical research mainly investigates the
processes and evolution of diffusion [94]. For example, the
propagation dynamics is often modeled by this perspective,
which can be based on the independent cascade diffusion model.
This perspective can effectively unfold and predict the diffu-
sion process. Moreover, the state transition process of actors in
diffusion can also be modeled well by this perspective.

In summary, the advantage of the theoretical perspective is
that it has a solid theoretical foundation and there are many
mature related theoretical tools that can be used. Additionally,
the research results arising from using a theoretical perspective
can be rigorous and provable. However, such a perspective
ignores the effects of actors in the diffusion of SNs, which
means that the activeness and autonomy of the actors might
not be highlighted. Moreover, the theoretical perspective is
mainly based on static data; thus, it might not perform well
when the SNs are large and dynamic.

C. Our Multiagent Perspective

In fact, the multiagent method is effective for modeling and
analyzing SNs [7], [11]. As a common phenomenon in SNs,
diffusion can also be modeled by a multiagent method [57].
This paper mainly presents the multiagent perspective, which
considers the application of multiagent interaction technolo-
gies to model and analyze diffusion in SNs.

1) Compared with the empirical research perspective,

our multiagent perspective can provide a relatively
economical means of investigating the diffusion
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Fig. 8. Two methods of using the multiagent perspective. (a) Alterable
method for modeling and analyzing the diffusion in empirical research.
(b) Intermediary method between theoretical analyses and empirical research.

phenomenon because it can simulate and predict
the behaviors and evolution of diffusion in SNs.
Furthermore, our perspective can better address the char-
acteristics of self-organizing and distributed computing
in the diffusion of SNs. Moreover, our perspective high-
lights the roles of actors that have critical effects on the
diffusion. However, SNs are often very large and wide,
where millions of actors act concurrently; thus, the com-
plexity of the diffusion is much larger than that studied
in MASs due to their realities and factors in real appli-
cations. Therefore, the practicability and suitability of
our perspective in large and dynamic diffusion should
be solved well.

2) Compared with the existing theoretical perspective, our
perspective presents a more effective paradigm to model
the diffusion of SNs from the characteristics of auton-
omy, interaction, and emergence, which can effectively
explain the mechanism of self-adaptation and self-
organization of diffusion in SNs. Certainly, the theoret-
ical foundations and tools in the theoretical perspective
can be introduced into our multiagent perspective to
improve its correctness and exactness.

To improve the practical feasibility and theoretical correct-
ness of our multiagent perspective, there are two methods for
using our perspective: one method is to provide an alterable
method for modeling and analyzing the diffusion in empirical
research, where the multiagent perspective provides a simu-
lation model and the theoretical perspective provides theory
analysis tools for the empirical research, respectively, which
is shown in Fig. 8(a); the other method is to provide an inter-
mediary method between theoretical analysis and empirical
research, where the traditional theoretical tools can be used
to help construct a multiagent model, and the theory-validated
multiagent model is used for empirical research, as shown in
Fig. 8(b).

D. Typical Problems in Empirical Research That Can Adopt
Multiagent Perspective

Generally, some typical limitations of current empirical
research on diffusion may influence the study results, shown
as the followings: 1) manual gathering of data regarding the
diffusion in SN can be only applied into the relatively small
SNs, which may affect the study for large-scale SNs where
manual gathering of data may be costly and impractical;
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2) the empirical research are often oriented toward certain
concrete cases, so it is difficult to satisfy the requirements
of current unprecedented development of SNs; 3) the empiri-
cal research needs complete and plentiful data, so it may be
impractical for current dynamic and temporary SNs; 4) the
empirical research fully relies on the gathered data which may
be noisy or biased, so the study result may not reflect the real
complex situations; and 5) the empirical research operates on
the entire-level of the SN, thus it cannot capture complex emer-
gent phenomena from individual-level that are highly relevant
in diffusion research [57].

Therefore, based on [57] and [111], we think that it is possi-
ble with the adoption of the MAS perspective in the empirical
research for the large scale and dynamic SNs where the gath-
ering, analyses, and validation of entire-level data are difficult
and the emergent phenomena from individual-level are very
critical. Moreover, agent-based approach is very helpful to this
respect because it provides solid approach for testing new ideas
in silico before trying to put them into practice [111].

Now we can give some examples of concrete and typical
problems in empirical research, which can be solved by using
multiagent method, shown in the following.

1) Problem of Quantitative and Microscopic Measure of
Social Interactions in Diffusion: In the diffusion of SN,
the social interactions among actors are very complex.
In existing studies, these social interactions can only be
understood from the macroscopic statistical viewpoint
on empirical data. However, the inherent microcosmic
mechanism of the social interaction cannot be measured
effectively. Now, with the multiagent method, such a
problem may be solved by modeling social actors as
agents. For example, the negotiation-based interaction
and the market-based interaction in agents can explic-
itly account for the benefits and the costs of coordination
in small interactions of diffusion in a quantifiable way,
which can implement the social interactions in a opti-
mization way for achieving the best performance in
diffusion; moreover, the swarm mechanism and social
force mechanism of MASs can be used to analyze
the large-scale social interactions, which can measure
how the social interactions in diffusion are imple-
mented to satisfy the requirements of most actors in
diffusion.

2) Problem of Learning and Adaptation in Diffusion: In
existing studies, social actors only proactively react to
the influences of diffusion; but the learning and adaption
of social actors in diffusion cannot be analyzed effec-
tively. Such problem could be better studied if we use the
multiagent method. In fact, learning and adaptation have
been significantly studied and are typically addressed
in MASs, such as learning from observations and rein-
forcement learning. The strong learning and adaptation
abilities of agents can be equipped on the social actors
in diffusion, which can make the social actors to learn
the strategies of other actors in the diffusion and adapt
themselves to achieve the best performance in diffusion.

3) Problem of Social Dynamics and Emergence in
Diffusion: This problem can often be understood from
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the statistical analyses of empirical data in existing
studies; but the inherent mechanisms and theoretical
evidences are unknown. To solve this problem, the
bottom—up building theory of complex MASs can be
used to model the social systems in diffusion; the nonlin-
ear model can be used to analyze the temporal variation
of diffusion; the evolutionary dynamics theory of MASs
can be used to analyze the emergence of diffusion. In
summary, the multiagent-based modeling and simulation
can operate on the individual level and can easily capture
complex emergent phenomena in diffusion [57].

VI. CONCLUSION

Diffusion in SNs has been a heavily researched topic and
has gained significant attention in recent years; a large number
of related studies and results have been presented concerning
this topic. However, there are few systematic reviews on exist-
ing studies, which could cause people to be puzzled by the
enormous number of related studies.

To solve the above problem, in this paper, we make a
systematic review of the essential elements and models of
diffusion in SNs from a novel perspective, a multiagent per-
spective. From this perspective, we summarize the essential
elements in diffusion to diffusion actors, diffusion media,
and diffusion contents. Those three types of elements can,
respectively, be modeled as interacting agents, interaction envi-
ronments, and interaction objects in MASs. Then, the diffusion
models in existing studies can be understood as the agents’
decision-making models and protocols in interaction, which
are reviewed from the viewpoint of corresponding multiagent
interaction models. Through the review and analysis of exist-
ing studies, we find that diffusion in SNs can be understood
well via the interaction in MASs and that there is a close cor-
responding relation between them. Therefore, we think that the
related study results on multiagent interactions can be applied
to advance the study of diffusion in SNs.

However, although this survey shows that a multiagent per-
spective can be envisioned to be a powerful paradigm for
modeling and investigating diffusion in SNs, there are still
many issues that must be addressed if we want to apply
multiagent technologies truly and effectively. Especially, the
complexity of diffusion is considerably larger than the com-
plexity of multiagent interactions; diffusion processes are
natural phenomena that can be difficult to predict, but MASs
are artificial and can be predesigned. Therefore, we should
improve the suitability and practical feasibility of multiagent
methods to study diffusion in SNs.
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