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Abstract—In multiagent systems, agents with limited capacity 
often cooperate in order to accomplish various types of tasks. 
Due to the openness of multiagent systems, agents may run the 
risk of their cooperations to accomplish tasks because of some 
involved undependable agents. The state of the art for 
handling this problem concentrates on the phase of task 
allocation, which aims to allocate tasks to more dependable 
agents (task allocation-oriented). In fact, accomplishing a task 
in a multiagent system requires two phases: i) task allocation, 
and ii) task execution. Hence, this paper, on the contrary, 
focuses on managing the phase of task execution to guarantee 
the performance of task accomplishment (task execution-
oriented). To reduce the performance loss caused by 
undependable agents, the proposed agent division and fusion 
mechanism enables agents to autonomously divide themselves 
into sub-agents for executing tasks with different risks (more 
resources will be assigned to the sub-agent with lower risk in 
task execution); then the sub-agents can also fuse together and 
make a re-division to fit the current task environments. This 
work is also expected to be able to complement the existing 
state of the art (task allocation-oriented) for guaranteeing the 
performance of task accomplishment in undependable 
multiagent systems from task execution-oriented perspective. 

Keywords-Multiagent system; agent division; agent fusion; 
undependable; task allocation; task execution. 

I.  INTRODUCTION 

Accomplishing tasks is a common duty of multiagent 
systems (MASs) [1-2]. In MASs, agents often jointly 
accomplish tasks through cooperation, since each agent may 
have limited types and amount of resources and thus cannot 
satisfy the requirement of a task solely [3]. The agent who 
has a waiting task to accomplish should find other agents 
with suitable resources to obtain commitment to jointly 
execute the task [4]. Hence, accomplishing a task in MASs 
often requires two phases: i) task allocation, and ii) task 
execution.  

In recent years, many task allocation mechanisms in 
MASs have been proposed, which intend to improve the 
system performance for accomplishing tasks by allocating 
tasks to the most suitable set of agents to execute [5-8]. 
There is an underlying assumption in most of these works: 
the agents in the system are all cooperative, i.e., all the 
agents are initiative and dependable during the task 
accomplishing process [8]. In fact, this type of multiagent 

system which is widely concerned can be called “dependable 
multiagent systems” (D-MASs). 

In recent research, “undependable multiagent systems” 
(U-MASs) has been also studied [1-2]. In U-MASs, some 
undependable agents are involved [2][9], which may take 
malicious behaviors, e.g., manipulating their resource status 
information and breaking the contract, in the cooperation 
with other agents to accomplish tasks [1-2][4][10]. For this 
reason, the system performance may decrease significantly, 
because of the failure of accomplishing tasks. To solve this 
problem, task allocation models incorporating guaranteeing 
mechanisms, e.g., the reputation model [4][11] and 
reward/punishment mechanism [1], have been proposed, 
which are expected to increase the dependability of task 
accomplishment by allocating tasks to more dependable 
agents [1][4]. These models concentrate on the first phase of 
task accomplishment (task allocation), thus can be called 
task allocation-oriented model for U-MASs. 

On the contrary, in this paper we concentrate on the 
second phase of task accomplishment (task execution) in U-
MASs. In D-MASs, there are some researches where agents 
are able to make autonomous adaptation of themselves to 
achieve a better performance during the process of task 
execution [12-15]. These works provide inspiration for us to 
propose task execution-oriented mechanism for U-MASs. 

In U-MASs, an agent may run different levels of risk 
when it cooperates with different agents to execute tasks. If 
the agent executes the waiting tasks as it does in a D-MASs, 
the utility it gained may suffer greatly, because this agent 
may spend much time and all its resources on executing 
tasks which actually may not be able to be accomplished. To 
solve this problem, an agent division and fusion mechanism 
(AgentD&F) is proposed in this paper, which enables agents 
to autonomously divide themselves into paired sub-agents 
for executing tasks with different risks (more resources will 
be assigned to the sub-agent with lower risk in task execution, 
i.e., with more dependable cooperators); and the sub-agents 
can also fuse together and make a re-division to fit the 
current task environments1. Hence, the allocated tasks can be 
naturally executed with different priorities according to their 

                                                           
1 Agent fusion in this paper indicates the sibling-fusion, which can 
be conducted by a pair of sub-agents that are derived from the 
same original agent. Cross-fusion, which means the fusion of sub-
agents with different original agents, will be discussed in our 
future work. 



different levels of risks; the task with the lower risk will be 
executed with the higher priority. 

Through experimental evaluations, the performance of 
the presented AgentD&F mechanism for U-MASs has been 
validated. It can improve the utilities the system gained by 
decreasing the failure rate of task execution. 

The remainder of this paper is organized as follows. 
Section 2 presents some typical related works. Section3 
introduces the task accomplishing environment in the U-
MASs. Section 4 presents the details of the AgentD&F 
mechanism. Section 5 presents experimental evaluations that 
validate the effectiveness of the AgentD&F mechanism. 
Finally, Section 6 concludes our paper and discusses the 
future works. 

II. RELATED WORK 

A. Task Allocation in Undependable Multiagent Systems 

Traditional works of task allocation in U-MASs often 
incorporate some guaranteeing mechanisms, e.g. the 
reputation model [1][4][11], the reward/punishment method 
[1][4] and mechanism design [10], to improve the system 
performance of task accomplishment. 

Weerdt et al. proposed a task allocation approach using 
mechanism design, which can guarantee the dependability of 
agents’ cooperation by incentivizing agents to report their 
status correctly [10]. Sonnek et al. presented reputation 
mechanism to estimate reliability ratings of agents; and then 
proposed several reputation-based task scheduling 
algorithms to achieve efficient task allocation [11].  

In our previous works [1][4], we proposed task allocation 
models for U-MASs with simplex and multiplex network 
structures respectively. In [1], a reputation model, which 
considered not only the dependability of agents but also the 
negotiation path, had been proposed to guarantee the 
dependability of task allocation in the U-MASs with simplex 
network structure. Then in [4], we extended our task 
allocation model to fit the U-MASs with multiplex network 
structure, which considered an additional aspect, the 
dependability of the network layer, in the reputation model. 

Overall, these approaches introduced above concentrated 
on the task allocation phase of task accomplishment in U-
MASs, whereas they did not consider improving the system 
performance from the task execution perspective. In this 
paper, we aim to guarantee the system performance from the 
task execution perspective, and the mechanism proposed is 
expected to be able to be combined with the traditional task 
allocation-oriented approaches for U-MASs to achieve a 
much better performance. 

B. Self-Organization in Dependable Multiagent Systems 

Self-organizing mechanisms can enable agents to adapt 
their configurations to fit the current environment of the 
MASs in order to achieve better performance of task 
accomplishment [12-14].  

Mathieu et al. introduced three basic principles of self-
organizing multiagent systems, which are relation adaptation, 
resource exchange and cloning/spawning [12]. Kota et al. 
presented a decentralized structure adaptation mechanism, 

which can enable agents to adapt their relations to 
accomplish tasks more efficiently [13]. Ye et al. [14] 
proposed an integrative self-organizing mechanism, which 
considered all the three basic principles of self-organizing 
multiagent system introduced by Mathieu et al. [12].  

These works can improve the task accomplishing 
performance of the systems effectively in D-MAS. However, 
the situation of the failure of task execution which may be 
caused by the behaviors of undependable agents in U-MASs 
has not been taken into account. Despite this, these works 
provide inspiration for us to propose the agent division and 
fusion mechanism (AgentD&F) for U-MASs from task 
execution-oriented perspective.  AgentD&F can be seen as a 
new variant of the principle, cloning/spawning, introduced 
by Mathieu et al.[12]. 

III. TASK ACCOMPLISHING ENVIRONMENT IN U-MASS 

A. The System Model 

Definition 1: Multiagent system (MAS). A multiagent 
system is given by <A, E>, where A is the set of agents, 
and <ai,aj>E indicate the existed relations between 
agent ai and aj. Agents in the MAS can cooperate to 
accomplish tasks through their relations. 

Definition 2: Agent. An agent ai can be characterized by 1) 
Ei, the relations with its neighbors Nai, 2) Rai, its 
resources for executing tasks, and 3) Qai, its task queue 
waiting for execution. Thus, ai is represented by a tuple 
< Ei, Rai, Qai>.  

1. Ei is the set of relations between agent ai and its 
neighbors Nai . 

2. Rai = (r1
ai, r

2
ai,…, r

k
ai), where rk

ai is the number of type 
k resources of agent ai. 

3. Qai = (Qai(0), Qai(1),…, Qai(l)), where Qai(l) is the lth  
task in the task queue Qai of agent ai, and l is the 
length of task queue Qai. 

Definition 3: Task. A task, T, arriving to the multiagent 
system can be represented by <RT, UT, tT>, where RT is 
the requirement of a set of resources for accomplishing 
task T, UT is the utility that can be gained from the 
successful accomplishment of T and tT is the time limit 
for accomplishing task T. The successful 
accomplishment of the task T can be achieved if the 
following conditions are satisfied: 

1. The resource requirement RT is satisfied, i.e., 

x T x
T a A a

R R
 

  , where AT is the set of agents who 
cooperate to execute the task T. 

2. The time limit tT for accomplishing T is satisfied, i.e. tT’ 

≤ tT, where tT’ is the real executing time of T. 

Definition 4: Task accomplishment in MAS. A task T can 
be accomplished by performing the following two steps: 

1. Task allocation: first, seeking for the set of agent AT, 
which satisfies ai, ajAT, Pij⊆ E, and

x T x
T a A a

R R
 

  , 
where Pij is the negotiation path between ai and aj; 
second, assigning the predetermined sub-tasks (each 



sub-task is a part of the resource requirement of T) to 
corresponding agents, i.e., inserting the sub-tasks into 
their waiting task queues. 

2. Task execution: when all the sub-tasks of T allocated to 
the set of agent AT are executed, i.e., there is no sub-
task of T that still exists in the task queues of AT 
waiting for execution, the execution of task T is over. 

Definition 5: Dependable and undependable agents for 
task execution in U-MASs. The dependability of an 
agent is determined by two aspects of its behaviors in 
accomplishing tasks:  
1) Resource status reporting in task alloction. 

 A dependable agent reports its real status of resource to 
the system or other agents in task allocation [1][4]. 

 An undependable agent fabricates its status of resource 
in task allocation, e.g. over-reporting [1][4]. 
2) The strategy in executing allocated tasks. 

 A dependable agent, ai, executes the tasks in its task 
queue Qai in order, i.e.  Qai(x), Qai(y) Qai and x<y, 
Qai(y) must be executed after Qai(x).  

 An undependable agent, ai, may manipulate the task 
executing order, i.e. it allows the situation that, if x<y, 
Qai(y) can be executed before Qai(x). 

B. The Objective 

Agents cooperate to jointly accomplish tasks in order to 
gain utilities from tasks arriving to the system. As 
demonstrated in previous section, each task can provide a 
defined utility if it is accomplished successfully. But if the 
task is not accomplished because of the unsuccessful 
execution or the overtime execution, the utility cannot be 
obtained.  

We define the utility rate (UR) to reflect the effective-
ness of the system for accomplishing tasks. Utility rate is 
defined as follows. 

Definition 6: Utility rate. Let {T} be the set of tasks 
arriving to the system, {T}’ is the set of tasks that are 
accomplished, and {T}’⊆{T}. The Utility rate (UR) is 
calculated by 

{ } { }' { }i ji j
T T TT T T T

UR U U
   

    (1) 

where UTi is the utility of task Ti. 

Therefore, the objective of task accomplishment in 
undependable multiagent systems (U-MASs) is to maximize 
the utilities obtained from the set of tasks arriving to the 
systems.  

As undependable agents involved, the tasks may have 
different probabilities to be accomplished when they are 
allocated to different agents. Thus, to satisfy this objective, 
the limited resources of the agents should be preferentially 
accessed to execute the tasks with higher probability to be 
accomplished.  

We propose the agent division and fusion mechanism, 
which enables agents to autonomously divided themselves 
into paired sub-agents for executing tasks with different risks; 

and the sub-agents can also fuse together and make re-
division to fit the current task environments. Hence, the tasks 
can be naturally executed with different priorities according 
to their different levels of risks. Thus, the utility loss caused 
by undependable agents can be reduced. 

IV. AGENT DIVISION AND FUSION 

Agent division and fusion (AgentD&F) mechanism 
enables the agent (called original agent) to divide itself into 
two sub-agents and also enable the sub-agents to fuse 
together to make a re-division. Fig. 1 gives an example of 
agent division and fusion.  

Each sub-agent obtains a part of the relations, resources, 
and the allocated tasks of the original agent.  Hence, agent 
division and fusion requires the following aspects. 
 Relation division and fusion: the set of relations of an 

original agent ai, Ei, can be divided into two groups: low-
risk group, Ei

+, and high-risk group, Ei
-,where Ei = Ei

+ ∪ 
Ei

-. The high-risk and low-risk groups are composed of 
the relations with neighbors with relatively lower and 
higher dependability (see Definition 8). The sub-agents 
will have Ei

+
 and Ei

-, respectively. The relation fusion is 
the inverse process of relation division. 

 Resource division and fusion: the resources of the 
original agent ai, Rai, should be also divided into two 
parts: Rai

+ and Rai
-, according to the division results of 

the relations. More resources will be assigned to the sub-
agent with low-risk group of relations. The resource 
fusion is the inverse process of resource division. 

 Task queue division and fusion: the allocated task queue 
of the original agent ai, Qai, should be divided into Qai

+ 
and Qai

-, according to the division results of relations. If a 
task is allocated from the relations in Ei

+, the task will be 
divided into the sub-agent with Ei

+, and vice versa. The 
task queue fusion is the inverse process of task queue 
division. 

Thus, agent division and fusion can be defined as:  

, ,

( , , , , , )

i i

i i i i

D

i i a a
F

i i a a i i a a

original agent

riskless sub agent risky sub agent

a E R Q

a E R Q a E R Q       

 

 

   




 
 (2) 

Figure 1. An example of agent division and fusion. 
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By performing agent division, two sub-agents can be 
produced from an original agent. The sub-agent, ai

+, which 
carries the low-risk relations Ei

+, is called the riskless sub-
agent; and the sub-agent, ai

-, which carries the high-risk 
relations Ei

-, is called the risky sub-agent. And by performing 
agent fusion, the two sub-agents can join together to be the 
original agent. 

To implement agent division and fusion, there are two 
important problems need to be solved: when and how to 
perform agent division and fusion. 

A. Activation of agent division and fusion (When?) 

 Activation of agent division 

Whether to perform agent division by an agent is 
determined by two aspects: the division desire derived from 
the current task executing situation of the agent and the 
division threshold of this agent. 

In the following, we first give some preliminary 
definitions. 

Definition 7: Failure rate of task execution. Let ξi 
represent the failure rate of task execution of agent ai, 
then ξi is defined as: 

( ) /succ

i i i i
h h h    (3) 

where hi is the total number of  tasks agent ai has 
executed (hi >0), and hi

succ is the number of tasks 
accomplished successfully.  

Definition 8: Dependability of agents and tasks. Let hij be 
the total number of tasks allocated by agent aj then 
executed by ai, hij

succ be the corresponding number of 
tasks accomplished succesfully. The dependability of 
agent aj evaluated by ai is defined as: 

0.5 0.5 ( ( )) /succ succ

ij ij ij ij ij
h h h h       (4) 

Note that hij>0, if hij=0, σij =0.5. 
The dependability of a task T allocated by aj to ai is 
defined as: 

( )
ij

T   (5) 

The division desire of an agent is influence by the 
circumstance of the task execution. On one hand, the failure 
rate of past tasks executed by the agent should be first 
considered. If the failure rate is higher, the agent should be 
more willing to perform the mechanism of agent division to 
improve the task execution performance. Then on the other 
hand, the influence (utility loss) on the performance of task 
execution caused by agent division also needs to be 
considered. Such influence has been often considered by the 
self-organizing mechanism in D-MASs [13][15]. In order to 
decrease the utility loss, agent division should be performed 
when there are few tasks waiting in the task queue, and the 
tasks with higher dependability tend to be at the queue tail 
(according to the following theorem).  

Let Qai be the current task queue of ai. Then we have the 
following theorem. 

 Theorem 1. It is assumed that the relation division of the 
agent division will be correct and the allocated tasks in Qai 
can be executed just satisfying their corresponding time 
limits. Then if the dependable tasks are at the task queue 
tail, the utility loss caused by agent division will be the 
least. 

Proof sketch. Performing agent division, the task queue Qai 
will be divided into Qai

+ and Qai
-. Because of the 

resource division, more execution time for each task will 
be required. Then if the tasks in Qai can just satisfy the 
corresponding time limits, the tasks at the queue tail of 
Qai will have higher probability to be accomplished after 
division because of their larger time limits. Then 
According to assumption of the correctness of the 
relation division of the recent agent division, the set of 
dependable tasks {Ti}

+ can be accomplished if their time 
limits are satisfied, and the set of undependable tasks 
{Ti}

- cannot be accomplished even if their time limits are 
satisfied. Then if {Ti}

+ can be at the tail of Qai, the 
expected utility loss will be minimized. 

Definition 9: Division desire. Let Qai be the current task 
queue of ai. The division desire of agent ai, DEi, is 
defined as: 

1
( )

| | 1 i

i

i i a

a

DE g Q
Q

  


 (6) 

where 

| | 1

0

( ( ))

| | 1
| | (| | 1) 2

1 | | 0

,( )

,

ai

i

i i

Q

x

i
i

i

a

a a

a
a

a

Q x x

Q Q
Qg Q

Q









 












 (7) 

In Equation (7), x is the index of the task in the task 
queue, and τ(Qai(x)) is the dependability of the task 
T(Qai(x)) calculated by Equation (5). 

Therefore, if DEi > Thesi, where Thesi is the division 
threshold of agent ai, agent division will be performed by ai 
immediately. 

 Activation of agent fusion 

With the execution of some tasks after agent division, the 
sub-agents can evaluate whether they can take advantage of 
the recent division for task execution; if the experiences 
indicate that the recent division cannot take effect recently, 
the agent fusion will be performed by the sub-agents. (the 
sub-agents we mentioned here are with the same original 
agent.) 

The conditions for agent fusion are presented as below: 

1succ

i i i
h h        (8) 

1succ

i i i
h h        (9) 



where hi
+succ and hi

-succ are the numbers of tasks executed 
successfully by the riskless and risky agent, ai

+ and ai
-, 

respectively; hi
+ and hi

- are the total numbers of the tasks 
executed by ai

+ and ai
-, respectively; ξi is the failure rate of 

task execution calculated by (3) in recent division; ε is the 
tolerance parameter set by the agent (ε > 0). When the 
conditions in (8) and (9) are satisfied, agent fusion will be 
performed immediately.  

B. Agent division and fusion (How?) 

When an agent decides to perform agent division or fusion, 
there are three aspects of division and fusion should be 
conducted: relation division and fusion, resource division and 
fusion, and task queue division and fusion. We present the 
approaches that show how to conduct each type of division 
and fusion in the following. 

 Relation division and fusion 

The relation division plays the most important role in 
agent division compared with the resources division and task 
queue division, since it determines whether the cooperators 
(neighbors) with the agent can be effectively divided into 
groups for executing tasks with relative lower risk and higher 
risk, respectively.  

For relation division, we use a k-means clustering 
approach [16] to divide the set of relations of the original 
agent into two sets. Each relation can be a node in the set, 
and the “location” of the relation is the dependability of its 
corresponding agent, for example, σij can represent the 
location of the relation eij between agent ai and aj. Two initial 
cluster centers in the clustering approach are set to 0.0 and 
1.0, respectively. The algorithm for relation division is 
presented in Algorithm 1. Moreover, with the relation 
division, the direct neighbors of the agent have been also 
divided into Ni

+ and Ni
-.  

Relation fusion in agent fusion is an inverse process of 
relation division. It can be simply presented by Ei = Ei

++ Ei
-. 

When sub-agents decide to make agent fusion, the relation 
fusion will be firstly conducted. Due to space limitation, we 
do not present the details of relation fusion here. 

 Resource division and fusion 

After the relation division, the resource division needs to 
be conducted to determine how many resources should be 
assigned to the riskless and risky sub-agents. To reduce the 
risk of task execution and improve the system performance, 
more resources of the original agent will be assigned into the 
riskless sub-agent, such that more utilities are expected to be 
obtained from the dependable tasks since they will have a 
high probability to be accomplished and will be executed 
with higher priority. 

Hence, performing resource division should directly refer to 
the results of relation division. Two aspects of the results of 
relation division need to be taken into account: 1) the numbers 
of relations in Ei

+ and Ei
-; 2) the difference of dependability 

between Ei
+ and Ei

-. The former aspect can naturally 
determine the quantity of tasks each sub-agent will be 
allocated; the more relations the sub-agent has, the more 

resources will be assigned to this agent. The latter aspect can 
reflect the dependability difference of the allocated tasks; 
hence if the larger difference of the dependability of the 
relations respectively in Ei

+ and Ei
-, more resources will be 

assigned to the riskless sub-agent. 
Let |Ei

+|,|Ei
-|and |Ei| be the number of relations in the 

riskless sub-agent, the risky sub-agent and the original agent, 
respectively (|Ei|=|Ei

+|+|Ei
-|), σij represent the dependability 

of the relation eij between agent ai and aj. The resources 
division is defined as: 

( ( ))ij i ik i

i i

ij ike E e E

a a i i

i i

R R E E
E E

 


     

 
    

 
 (10) 

( ( ))ij i ik i

i i

ij ike E e E

a a i i

i i

R R E E
E E

 


     

 
    

 
 (11) 

where ω is the parameter to adjust the preference for 
resource assignment, and ω > 0. 

Resource fusion is also an inverse process of resource 
division, which can be represented by Rai = Rai

+ + Rai
-. Due to 

space limitation, we do not present the details of resource 
fusion here. 

 Task queue division and fusion 

After the relation division, the task queue division can be 
conducted according to the division results of relations of the 
original agent (actually the division results of the direct 
neighbors, Ni

+ and Ni
-).  

Let T(Qai(x)) be a task in the waiting task queue of agent 
ai, where x is the index of the task in the queue. If T(Qai(x)), 

Algorithm 1. Relation Division. 
/* k: the number of clusters; Ei: the set of relations of 
agent ai; Disj-cp and Disj-co: the distance between eij and the 
cluster center cp and co in the k-means clustering 
approach, respectively. */
Input: k=2, and Ei. 
Ei

+={}, Ei
-={}; 

arg max
ix i

ix e E ix
e 


 ; arg min

iy i
iy e E iy

e 


 ; 
cp=1.0;  co=0.0; /*set initial cluster center*/ 
cp’=-1; co’=-1;  
While ((cp!=cp’) or (co!=co’)) do: 
      cp’=cp; co’=co; 
      For eijEi, do: 

             Disj-cp = | σij – cp | ; 

             Disj-co = | σij – co| ; 

             If  (Disj-cp < Disj-co), then: Ei
+= Ei

+ ∪ eij ; 

             Else: Ei
-= Ei

- ∪ eij ; 

( )
ij i

ij ie E
cp E



 
 

 

( )
ik i

ik ie E
co E 

 
   

Output: Ei
+ and Ei

- . 
 



is executed through the cooperation with agent aj, and aj  
Ni

+, then this task will be assigned to the riskless sub-agent 
ai

+, i.e., this task will be inserted into the riskless sub-agent’s 
task queue, Qai

+, and vice versa. Finally, by conducting task 
queue division, the task queue of ai, Qai, will be divided into 
Qai

+ and Qai
-, which are the task queues of the corresponding 

sub-agents, respectively. 
Task queue fusion is the most important aspect of agent 

fusion, since it will influence the task execution order of the 
allocated tasks. In order to guarantee the performance of task 
accomplishment, we get the following theorem to guide the 
task queue fusion.  

Let Qai
+ and Qai

- be the waiting task queues of the 
riskless sub-agent ai

+ and the risky sub-agent ai
-, respectively, 

and Qai be the waiting task queue of the expected fused agent. 

Theorem 2. It is assumed that the relation division of the 
recent agent division is correct and the allocated tasks in 
Qai

+ and Qai
- can be executed just satisfying their 

corresponding time limits. Then, if the task queue fusion 
is conducted by inserting Qai

+ and Qai
- into Qai in order, 

the optimal task queue fusion can be achieved. 

Proof sketch. According to the assumption of the 
correctness of the relation division of the recent agent 
division, the tasks in Qai

+ are expected to be accomplished if 
they are executed satisfying their time limit, while the tasks 
in Qai

- cannot be accomplished caused by some agents’ 
undependable behaviors. Hence, the expected maximum 
utility equals 

ii ai
TT Q

U
  . Combining Qai

+ and Qai
-together 

into Qai causes the arrangement of the tasks, which will lead 
in the situation that the execution of some tasks cannot 
satisfy their time limits. Hence, only by inserting Qai

+ and 
Qai

- into Qai in order can make the execution of all the tasks 
in Qai

+ satisfy their time limit, and then can be accomplished. 
Therefore, the expected utility can equals 

ii ai
TT Q

U
  .       

V. EXPERIMENTAL VALIDATION 

A. Experimental Settings 

To validate the effectiveness of the proposed agent 
division and fusion mechanism (AgentD&F) for 
guaranteeing the performance of task accomplishment in 
undependable multiagent systems, the index, utility rate (UR) 
introduced in Definition 6 is employed. UR indicates how 
many utilities are finally gained from the set of tasks arriving 
to the system. 

Accomplishing a task in MASs requires two phases: i) 
task allocation, and ii) task execution. The presented 
AgentD&F mechanism can be conducted simultaneously in 
the task execution phase when agents are executing the 
allocated tasks. Then, in the task allocation phase, the 
allocation model used by the system to allocate tasks to 
agents is introduced in the following, which accords with the 
manager/contractor architecture [1] of task allocation in 
MASs. 

 A task, T, arriving to the system can be firstly allocated 
to a randomly selected agent, ai, who acts as the manager 
for this task. 

 The manager agent, ai, should then request the agents in 
its direct neighbor set Ni for contractors. The set of agents 
who responds to the request is NCi. 

 If the requirements of the resource and time limit of T 
can be satisfied by the set of agents {ai, NCi}, the task T 
is allocated successfully.  Otherwise, the allocation 
process will return to the manager selection step. 

The initial network of the U-MASs is constructed by a 
random network model [17], in which 100 agents are 
included. The probability of relation construction for any 
randomly selected agents is set to 0.15. The division 
threshold for each agent is set randomly, ranging from 0 to 
0.05; and the tolerance parameter, ε, for the activation of 
agent fusion (see Equation 8 and 9) and the preference 
parameter, ω, for resource division (see Equation 10 and 11) 
are both set to 0.1 in the experiments. The two types of 
undependable behaviors of agents (See Definition 5 in 
Section 3) are both involved in the system. Note that each 
experiment in this section comprises 100 runs to obtain the 
average results. 

B. Results and Analyses 

Fig. 2 shows the experimental results of the utility rate 
(UR) and the total utility of task accomplishment with 
different number of tasks arriving to the system. 

Fig. 2(a) shows the test results of utility rate of the tasks 
arriving to the system. We find that incorporating our 
mechanism into task execution, the utility rate of the system 
can be improved remarkably; and with the increase of the 
number of tasks, the performance of our mechanism can be 
better. This indicates that agent division and fusion 
mechanism can learn and fit the environment well. For more 
clear understanding, we have shown the corresponding 
results of total utility of the system in Fig. 2(b). A higher 
utility rate of task accomplishment in Fig 2(a) implies that a 
higher total utility of the system can be gained. 

The reasons for such results are as follows. Without our 
mechanism, agents will cooperate with other agents with 
equal priority. i.e., an agent will execute the allocated tasks 
in accordance with the allocated sequence and with all its 
resources. However, with the involved undependable agents, 
many tasks may be not able to be accomplished. There will 
be a large amount of utility loss. Then on the contrary, after 
evaluating the dependability of relations and neighbors, 
agent division and fusion mechanism enables agents to 
cooperate with others with different priorities by dividing 
itself into two sub-agents. More resources can be spent to 
cooperate with more dependable neighbors to accomplish 
tasks. Hence, the utility loss caused by undependable agents 
will be reduced. Moreover, with more experiences of task 
execution, agents can have more accurate evaluations of the 
dependability of its relations and neighbors; then by 
conducting agent fusion to make re-division, the system 
performance can be better. This is also the reason of the 
evolving property of our mechanism. 



Fig. 3 shows the test results of failure rate of tasks caused 
by two types of undependable behaviors of agents in the 
system (See Definition 5 in Section 3): (i) resource 
information fabrication (type-1), and (ii) waiting task queue 
manipulation (type-2). Fig. 3(a) and (b) show the results of 
failure rate that caused by the type-1 and type-2 
undependable behaviors, respectively, and Fig.  3(c) shows 
the results of failure rate caused by the mixed (both the type-
1 and type-2) undependable behaviors at the same time.  

From Fig. 3, we observe that with agent division and 
fusion mechanism, the failure rate of tasks can be reduced if 
more tasks are allocated and executed. In Fig. 3 (b) and (c), 
with a small number of tasks, the failure rate caused by the 
type-2 and mixed undependable behaviors is low. This is 
because the manipulation of waiting task queue cannot 
influence the satisfying of tasks’ time limits, when the load 
on the agents is low. Moreover, we also observe that type-1 
undependable behaviors have much larger influence on the 
execution of tasks than the type-2 undependable behaviors in 
the environment with mixed undependable behaviors. 

In Fig. 4, we investigate the effect of agent division and 
agent fusion on guaranteeing the task accomplishing 
performance in our mechanism, respectively. We compare 

the test results that derived from Agent division (without the 
component of agent fusion) with the results that derived from 
the complete AgentD&F.  From Fig. 4, we find that without 
agent fusion, the performance of task accomplishment is a 
little bit lower than that with complete AgentD&F. The 
reason is that with the execution of tasks, the local 
environment of an agent will be dynamic changed. Thus, 
giving agents opportunity to fuse together to make re-
division can improve the system performance. Even if the 
results show that agent division takes larger effect, it can be 
speculated that with more tasks, agent fusion will have larger 
effect on the improvement of task accomplishment. 

VI. CONCLUSIONS AND FUTURE WORKS 

To improve the performance of task accomplishment in 
undependable multiagent systems (U-MASs), a novel 
optimizing perspective has been first considered in this paper: 
the task execution-oriented perspective; and then from this 
perspective, a novel agent division and fusion mechanism for 
U-MASs has been presented. 

Unlike task allocation-oriented approaches for U-MASs 
guaranteeing the task accomplishing performance by 
allocating task to more dependable agents, the mechanism 
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Figure 2. The test results of utility rate and total utility of the system. 
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Figure 3. The test results of failure rate of task execution caused by the undependable behaviors: resource information fabrication (a), waiting task queue 
manipulation (b), and both the above two types of undependable behaviors (c). 



from task execution-oriented perspective enable agents to 
change their configurations autonomously in the task 
execution process in order to improve the task accomplishing 
performance. To reduce the utility loss caused by 
undependable agents, the presented agent division and fusion 
mechanism first enables agents to divide themselves into two 
sub-agents to cooperate with agents of different 
dependability to execute tasks (more resources of the original 
agent will be assigned to the sub-agent with more 
dependable neighbors); then it can also enables the sub-
agents to fuse together to make a re-division to fit the current 
task environments. Through experimental evaluations, we 
indicate that incorporating the agent division and fusion 
mechanism into task execution process in U-MASs, the 
failure rate of tasks can be largely reduced; then the utility 
rate of tasks gained by the system can be improved. 

In future work, we will devise a cross-fusion mechanism 
which can enable sub-agents from different original agents to 
fuse together to obtain further improvement of task 
accomplishing performance. Moreover, a comprehensive 
trust model used by the agents to achieve more accurate 
dependability evaluation of relations and neighbors will be 
incorporated into the agent division and fusion mechanism. 
Finally, we will try to incorporate this mechanism into our 
task allocation model [1] for U-MASs to seek for a larger 
guaranteeing effect on task accomplishing performance in U-
MASs. 
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Figure 4. The effect of agent division and agent fusion in AgentD&F mechanism. 


