
Novel Packet Size-Based Covert
Channel Attacks against Anonymizer

Zhen Ling, Member, IEEE, Xinwen Fu, Member, IEEE,

Weijia Jia, Wei Yu, Dong Xuan, Member, IEEE, and Junzhou Luo, Member, IEEE

Abstract—In this paper, we present a study on the anonymity of Anonymizer, a well-known commercial anonymous communication

system. We discovered the architecture of Anonymizer and found that the size of web packets in the Anonymizer network can be very

dynamic at the client. Motivated by this finding, we investigated a class of novel packet size-based covert channel attacks against

Anonymizer. The attacker between a website and the Anonymizer server can manipulate the web packet size and embed secret signal

symbols into the target traffic. An accomplice at the user side can sniff the traffic and recognize the secret signal. In this way, the

anonymity provided by Anonymizer is compromised. We developed intelligent and robust algorithms to cope with the packet size

distortion incurred by Anonymizer and Internet. We developed techniques to make the attack harder to detect: 1) We pick up right

packets of web objects to manipulate to preserve the regularity of the TCP packet size dynamics, which can be measured by the Hurst

parameter; 2) We adopt the Monte Carlo sampling technique to preserve the distribution of the web packet size despite manipulation.

We have implemented the attack over Anonymizer and conducted extensive analytical and experimental evaluations. It is observed that

the attack is highly efficient and requires only tens of packets to compromise the anonymous web surfing via Anonymizer. The

experimental results are consistent with our theoretical analysis.

Index Terms—Anonymizer, watermark, TCP dynamics

Ç

1 INTRODUCTION

IN this paper, we explore a commercial anonymous
communication system, Anonymizer, and present a novel

class of packet size-based covert channel attacks that may
drastically degrade the Anonymizer service. Traffic analy-
sis is a common means to degrade communication privacy
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
This covert channel exploits the varying size of packets
through Anonymizer and is one type of active traffic
analysis and has received much attention for its accuracy
and efficiency recently [6], [7], [8], [10]. The idea of this
technique is to actively embed a secret signal into the
target traffic at one end of a communication channel and
its accomplice recognizes the signal at the other end. Such
attack can reduce the false positive rate significantly if the
signal is long enough and does not require massive
training of traffic for cross correlation analysis required
in passive traffic analysis attacks [2], [3].

We will present the first exposure of the Anonymizer
architecture, which consists of both anonymizing servers
and client software. The Anonymizer server consists of
reverse proxy/NAT, SSH server, and HTTP proxy, while
the Anonymizer client software is a SSH port forwarding
configuration tool. Using the Anonymizer client, we surfed
various websites, including CNN, Yahoo, YouTube, and
others and captured a large number of HTTP packets
decrypted by the Anonymizer client. We found that the size
of HTTP packets in Anonymizer network is very dynamic
and random at the client, i.e., the number of non-MTU
packets are much larger than that of MTU sized packets in
the decrypted HTTP traffic. Motivated by this finding, we
design a class of novel packet size-based covert channel
attacks against the commercial Anonymizer service. In
these attacks, the attacker between the malicious website
and the victim client can embed a secret message into the
packet size variation of target traffic. This attacker can be
the owner of the malicious web server or one manipulating
(repacketizing) the traffic between the web server and
Anonymizer server. Without loss of generality, we use the
former case as the example in this paper. An accomplice at
the client side can sniff the traffic and recognize the secret
message. Given the small size of the Anonymizer network,
such sniffing is feasible to organizations or people with
modest power. In this way, the anonymity provided by
Anonymizer is compromised.

To make the attack harder to be detected by anyone other
than attackers, we design various covert channel attacks to
preserve the statistics of clean traffic (without message
embedded) for modulated target traffic. Our baseline attack
is to use the Monte Carlo sampling technique and sample the
empirical cumulative distribution function (ECDF) of the
clean web packet size. Then, random numbers embodying
signals are carefully mapped into a sequence of packet
sizes. In this way, the distribution of the modulated packet

IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013 2411

. Z. Ling and J. Luo are with the School of Computer Science and
Engineering, Southeast University, Nanjing 211189, P.R. China.
E-mail: {zhenling, jluo}@seu.edu.cn.

. X. Fu is with the Department of Computer Science, University of
Massachusetts Lowell, Lowell, MA 01854. E-mail: xinwenfu@cs.uml.edu.

. W. Jia is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
E-mail: wei.jia@cityu.edu.hk.

. W. Yu is with the Department of Computer and Information Sciences,
Towson University, Towson, MD 21252. E-mail: wyu@towson.edu.

. D. Xuan is with the Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210.
E-mail: xuan@cse.ohio-state.edu.

Manuscript received 29 May 2011; revised 16 June 2012; accepted 22 June
2012; published online 9 July 2012.
Recommended for acceptance by J. Wu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-05-0355.
Digital Object Identifier no. 10.1109/TC.2012.169.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

size will be the same as the distribution of the clean traffic.
However, the random sampling of this baseline attack may
disturb the regularity and self-similarity of the TCP packet
size dynamics [15], [16]. Measuring the Hurst parameter of
the web traffic packet size sequence may expose the fact of
the covert channel attack.

To overcome limitations of the baseline covert channel
attack, we then introduce an enhanced covert channel
attack, which can be made hard to detect and is described
below: 1) To attack a HTTP session, we repacketize the web
traffic into virtual web objects, and modulate secret
messages bits into the size of last packets of these virtual
web objects. The last packet of a web object is denoted as the
least significant packet for brevity and clarity. The size of a
least significant packet is very dynamic in comparison with
other packet sizes. Modulation of successive packets to
carry message bits will disrupt TCP packet size dynamics
(as illustrated in Fig. 16), which can be measured by Hurst
parameter from R/S plot and variance plot [15], [16]. This
least significant packet-based covert channel approach can
preserve TCP regularity and self-similarity (as illustrated in
Fig. 15) while the attacker can control the number of virtual
objects to control the number of message bits. 2) To preserve
the size distribution of web packets of virtual web objects,
we apply the Monte Carlo sampling technique to carefully
sample the empirical cumulative distribution function of
the least significant packet size of real web objects. This
requires the input of the Monte Carlo method should be
random and uniformly distributed. To this end, we first
encrypt the message. The generated ciphertext bits are
uniformly distributed and encoded into k-ary symbols. A
k-ary symbol can then be mapped to a packet size by a
Monte Carlo sampling technique. To cope with the packet
size distortion caused by Anonymzier and Internet traffic
dynamics (e.g., packet merging, limited TCP buffer, and
various MTU), we design intelligent and robust detection
algorithms to recover the message.

We have implemented these novel covert channel attacks
against Anonymizer and performed extensive theoretical
analysis and real-world experiments. The enhanced covert
channel attack achieves high detection rate with very low
false positive rate. The experimental results are consistent
with our theoretical analysis. Notice that all our experi-
mental attacks were conducted against the commercial
Anonymizer service.

To the best of our knowledge, the attack presented here
is the first exploiting the Anonymizer architecture and
degrading its anonymity via packet size-based covert
channel. The enhanced covert channel attack in the paper
is simple, efficient, and hard to detect. Compared with
related attacks [6], our attack requires just tens of packets to
achieve high detection rate and low false positive rate. The
attack is hard to detect for multiple reasons: 1) A successful
attack session can be very short; 2) The packet size of traffic
through the Anonymizer network is highly dynamic; The
packet size observed at the client shows a large percentage
of non-MTU packet size because of the Anonymizer client
software’s buffering mechanism and manipulation and the
Internet traffic dynamics. It will be hard for the client to
detect the attack; 3) The attack preserves the statistical
properties of legitimate network traffic well. The client
cannot detect the attack via measuring traffic dynamics.
Considering privacy as a dual problem of digital forensics,
our proposed techniques can be used by law enforcement to
track malicious and anonymous web users via Anonymizer.

The remainder of this paper is organized as follows: We
explore the components of both Anonymizer server and
client, and report our finding that size of HTTP packets in
Anonymizer network is very dynamic in Section 2. In
Section 3, we present a baseline covert channel attack
scheme against Anonymizer based on Monte Carlo sam-
pling and identify its limitations. In Section 4, we propose
the enhanced covert channel attack scheme based on least
significant packets. The attack is simple, accurate, efficient,
and hard to detect. In Section 5, we analyze the detection rate
and false positive rate of the attack. Extensive experimental
results are presented in Section 6. We review related work in
Section 7 and conclude this paper in Section 8.

2 EXPLORATION OF ANONYMIZER

In this section, we first present the Anonymizer architecture
discovered by our passive inspection of traffic into and out
of Anonymizer. We have replicated the discovered Anon-
ymizer architecture in a lab environment and utilized the
Anonymizer client software to browse the web through the
lab Anonymizer servers. This verifies our discovery. We
then show that the size of web packets in the Anonymizer
client is very dynamic.

2.1 Architecture

The Total Net Shield service (TNS) from Anonymizer [17] is
a commercially available anonymizing service. It is claimed
that TNS (used with Anonymizer alternatively later for
brevity and clarity) protects personal information by
hiding the source computer’s identity. Fig. 1 shows three
basic components in such service: 1) Anonymizer Client: The
client runs the commercial software to anonymize the
client data. 2) Anonymizer Server: It consists of a reverse
proxy/Network Address Translation (NAT) server, several
SSH (Secure Shell) port forwarding servers, and proxy
servers. 3) Application Server: It runs TCP applications such
as web service:

1. Components of Anonymizer Server. The Anonymizer
server consists of three components: a reverse
proxy/NAT server, several SSH servers, and web
proxies. The reverse proxy/NAT server dispatches
inbound client traffic to SSH servers. For load
balancing, reverse proxy/NAT uses a cluster of
SSH servers and web proxy servers. For content
privacy and communication anonymity, the client
TCP traffic of POP3, SMTP, FTP, and HTTP is
encrypted and sent to port 22 of a SSH server via
SSH tunnel as shown in Fig. 1. The traffic is then
decrypted and forwarded to port 80 of a web proxy.
At last, the proxy server forwards the traffic to the
destination. The reverse traffic follows the same path
in the reverse order.

2412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

Fig. 1. Architecture of Anonymizer network.

The domain name of Anonymizer server is
“cyberpass.net,” which is resolved to a range of IP
addresses, 168.143.113.110-120. We also observed
that Anonymizer traffic to our client contains
alternative IP addresses across sessions. Hence, we
infer that Anonymizer implements the round robin
Domain Name System (DNS) lookup mechanism for
load balancing within its network. When a client
looks up the domain name, Anonymizer DNS server
resolves the domain names in a round robin fashion.
Subsequent requests from the same client are then
forwarded to the same Anonymizer server.

2. Components of Anonymizer Client. Client establishes a
SSH connection to the SSH port forwarding server.
The default cipher is AES-CBC with a 256-bit key
(AES256-CBC). The default MAC is HMAC-SHA1.
The client software sets the default domain name of
Anonymizer SSH server and port as cyberpass.net and
22, respectively. The default local listening interface
and proxy servers are 127.0.0.1:80 and cyberpass.-
net:80. For surfing on the web (the focus of this
paper), the browser should use the local Anonymizer
proxy so that the client may visit websites anon-
ymously via Anonymizer servers. Users can manu-
ally configure the SSH server, local listening port,
proxy server, encryption algorithm, and MAC
algorithm in client software.

2.2 Dynamic Packet Size of HTTP Traffic in
Anonymizer

For HTTP traffic, it may be common to see a sequence of
MTU-sized packets followed by a shorter one as the last
packet to transmit a web object in an extreme condition.
However, our extensive experiments in the Anonymizer
network show this claim does not hold in practice. Using
the Anonymizer client, we surfed a number of websites,
including CNN, Yahoo, YouTube, and others and captured
a number of web packets out of SSH tunnel at the
Anonymizer client. In Fig. 2, we show the number of web
objects, non-MTU Packets and total Packets in the HTTP
traffic, respectively. We can see that the number of non-
MTU packet with random size is much larger than the
number of web objects. We also found that in a sequence of
packets transmitting one web object, a number of non-MTU
packets are randomly located in different places.

These observations can be reasoned as follows: 1) The
Anonymizer server, i.e., SSH server, repacks web packets.
Note that the normal packet size in the unencrypted

HTTP objects transmitted between HTTP server and
Anonymizer server is the MTU size. However, Anonymi-
zer server (i.e., SSH server) will add a SSH header and such
padding increases the packet size. Hence, the repacked
HTTP packet will be larger than the MTU size. These
packets will then be split and the split packets will be
merged with other SSH packets. These split packets will be
repacked at the SSH client at the receiver side and this
results in the non-MTU packets. 2) Network dynamics and
performance of Anonymizer may also cause those non-
MTU packets. If the network between HTTP server and
Anonymizer server is congested, HTTP server will not
have enough TCP windows to send out a MTU packet. If
Anonymizer server is not overloaded at that moment, such
packets will be delivered promptly. When this occurs, non-
MTU packets will be generated.

In summary, the decrypted packet size observed at the
client shows a large percentage of non-MTU packet size
because of Anonymizer client software’s packet manipula-
tion and Internet traffic dynamics. It will be hard for the
client to detect the enhanced attack in Section 4 by
investigating whether non-MTU packets appear within the
transmission of a web object. It is a nontrivial issue and we
leave this as future work.

3 A BASELINE COVERT CHANNEL ATTACK BASED

ON MONTE CARLO SAMPLING

Based on the finding that the packet size of HTTP traffic at
the client in the Anonymizer network is very dynamic
shown in Section 2.2, we consider to use the packet size
variation of target traffic to embed a message. In this
section, we first introduce the basic idea of a baseline covert
channel attack based on the Monte Carlo sampling
technique. We then give the details of the attack and
discuss its limitations.

In attacks described from now on, the attacker between a
malicious website and Anonymizer server can embed a
secret message into the packet size variation of target
traffic. This attacker can be the owner of the malicious web
server or one manipulating (repacketizing) the traffic
between the web server and Anonymizer server. Without
loss of generality, we use theformer case to introduce the
attacks in this paper.

3.1 Basic Idea

We assume that the attacker controls the malicious website
and a reverse proxy that forwards the web traffic from the
website. A client accesses the malicious website via
Anonymizer. The attacker hosting the malicious website
and his accomplice who is sniffing at the client side, try to
confirm that this particular user is browsing the malicious
website. The assumption is similar to those in [6].

The basic idea of this attack is as follows: An attacker at
the malicious website controls the reverse proxy to embed a
secret message into the web traffic. An accomplice of the
attacker sniffs the traffic at the client side and determines if
that client has received the traffic embedded with the same
message. The message is embedded into the packet size
variation of traffic. To be specific, a client accesses the
malicious webpages via Anonymizer. The malicious website
receives the HTTP requests for web objects via Anonymizer.
It transmits the requested web objects to reverse proxy. The
attacker at the reverse proxy generates a sequence of

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2413

Fig. 2. Number of web objects, non-MTU packets, and total packets in
the HTTP traffic observed at client.

random numbers between 0 and 1. By using the Monte Carlo
sampling technique and the empirical cumulative distribu-
tion function of web packet size, the random numbers are
carefully mapped into a sequence of packet sizes. In this
way, the attacker ensures that the distribution of modulated
packet size will not show abnormal and the message is
difficult to be detected by others. The attacker modulates the
size of web packets accordingly and forwards the packets to
Anonymizer, which routes these modulated packets to the
client. An accomplice at the client side sniffs the packets and
derives the sequence of packet sizes. Although the packet
sizes may be modified by Anonymizer, the accomplice can
still recognize the modulated packet sizes via demodulation
algorithm. If the sequence of derived packet sizes matches
with the original one, the attackers can confirm that the
client is browsing the malicious website. In this way, the
anonymity of user is compromised.

Fig. 3 illustrates the workflow of the attack, which will be
explained in details below. Note that in the following
description, the demodulation of the target traffic and
recovery of the sequence of packet size will be discussed in
parallel with the generation of the sequence of packet size
and modulation of the target traffic.

3.2 Generate and Recover Packet Size Sequence

Generating a sequence of packet sizes. Fig. 41 gives the empirical
cumulative distribution function of the size of raw HTTP
packets between the client and server from 30 well-known
websites, including CNN, Yahoo, YouTube, and others. The
raw HTTP packet size excludes the IP header and TCP
header. We ignore the ACK packet because its raw packet size
is zero. Let us denote the probability mass function (PMF) of
the packet size as fp1; p2; . . . ; png corresponding to the
sequence of packet sizes fpc1; pc2; . . . ; pcng, where pi is
defined as the probability of packet size pci. The ECDF of
raw HTTP packet size is below:

FeðpciÞ ¼ P ðx � pciÞ ¼ p1 þ p2 þ � � � þ pi: ð1Þ

We use a random number generator to derive a sequence
of random values fr1; r2; . . . ; rlg, where r 2 ½0; 1� and l is the

length of the sequence. To map a random number to a
packet size, we select the first packet size pci that meets the
following condition:

FeðpciÞ � ri: ð2Þ

Fig. 5 illustrates this discrete Monte Carlo sampling
process. Therefore, we derive the sequence of packet sizes,
fpr0; pr1; . . . ; prlg. The mapping between the random num-
ber and the HTTP packet size can be written as

Table1 : fr1; r2; . . . ; rlg , fpr0; pr1; . . . ; prlg: ð3Þ

Recovering the sequence of packet sizes. The attacker at the
reverse proxy modulates the packet size variation according
to the sequence fpr0; pr1; . . . ; prlg. The web traffic with these
modulated HTTP packet sizes will be forwarded to
Anonymizer. Recall that the user establishes a SSH tunnel
with Anonymizer and browses the website via the SSH
tunnel. Because of the SSH padding mechanism and the fact
that the HTTP proxy of Anonymizer filters HTTP header
fields, the raw HTTP packet sizes are changed. To accurately
recognize the embedded symbols, the sniffer at the client
side records the SSH packets, and obtains the SSH packet
size based on raw HTTP packets.

3.3 Modulate and Demodulate Target Traffic

From Section 2, we know that a SSH tunnel is established
between a client and Anonymizer to protect sender
anonymity. The web traffic is encrypted by SSH, which
consists of three major components: 1) the transport layer
protocol [18] provides server authentication, confidentiality,
and integrity, 2) the authentication protocol [19] authenti-
cates the client to the server, and 3) the connection protocol
[20] multiplexes several logical channels into the encrypted
tunnel. The attacker sniffing at the client side can ignore the
SSH packets generated by authentication protocol and
target only SSH packets generated by connection protocol.

Fig. 6 illustrates the structure of a SSH packet. The packet
consists of an IP header, a TCP header, and the SSH packet
[18]. The SSH packet consists of ciphertext and MAC. The
ciphertext consists of a length field of 4 bytes, a padding
length field of 1 byte, a data payload field of X bytes, and a
random padding of Y bytes. A minimum of four padding
bytes must be added. The padding should be random and
should ensure that the length of the SSH package must be
multiple of cipher block size or 8, whichever is larger.
The maximum length of padding is 255 bytes. In our case, the
encryption algorithm is AES256-CBC by default. The AES
cipher has a block size of 128 bits and key size of 256 bits.
Therefore, the total number of bytes in the ciphertext should
be a multiple of the cipher block size of 16 bytes, i.e.,
ð4þ 1þX þ Y Þ mod 16 ¼ 0. The MAC algorithm is HMAC-
SHA1 by default and the length of the MAC value is 20 bytes.

2414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

Fig. 3. Covert channel attack based on Monte Carlo sampling technique.

Fig. 4. Empirical CDF of packets size (Byte) between client and server.

1. Fig. 4 is observed by the attacker between the client and Anonymizer
server. It is different from Fig. 2, which is observed by the client for
decrypted traffic.

Fig. 5. Mapping a random number to a packet size based on Monte
Carlo sampling technique.

Once the SSH tunnel is established, the client and server
may open single or multiple channels. Note that these
multiple channels are multiplexed into a single SSH tunnel.
The data are packed into the channel message as the payload
of SSH packet. Specifically, the channel message uses the
packet whose “Message Type” field is SSH_MSG_CHAN-
NEL_DATA. The SSH_MSG_CHANNEL_DATA packet
contains the HTTP data. Fig. 7 illustrates the structure of
channel message. It includes a message type field of 1 byte, a
recipient channel field of 4 bytes, a data length field of
4 bytes, and a data field of Z bytes. The “message type”
defines the type of message. The “recipient channel” is
channel number given in the original open request. The
“data length” indicates the size of the data.

Considering above facts, we propose an algorithm to
derive SSH packet size based on raw HTTP packet. Note
that in our case, attacker only cares about SSH_MSG_
CHANNEL_DATA packets. The SSH packet size is
discrete because of SSH padding mechanism. We assume
that the MTU packet is 1,500 bytes. Fig. 8 illustrates all
possible lengths of SSH packet between the client and
Anonymizer server.

In terms of the sequence of raw HTTP packet sizes,
fpr0; pr1; . . . ; prlg, the attacker can deduce a corresponding
sequence of SSH packet sizes fpsr0; psr1; . . . ; psrlg, excluding
the IP header and the TCP header by using Algorithm 1.
Hence, (3) can be converted into

Table01 : fpr0; pr1; . . . ; prlg , fpsr0; psr1; . . . ; psrlg: ð4Þ

Once such a sequence of SSH packet sizes is recognized at
the client side, the communication relationship between the
malicious website and the client is confirmed. Hence, the
anonymity of user is compromised.

Algorithm 1. Calculating the SSH packet size based on raw

HTTP packet.
Require:

(a) S, the size of the raw HTTP packet, (b) Sh, the size of

the SSH header, 5 bytes, (c) Sc, the size of the SSH

channel header, 9 bytes, (d) Sp, the size of the padding,

(e) Sb, the cipher block size, 16 bytes, (f) Sa, the size of

MAC, 20 bytes, (g) Ss, the size of the SSH packet.

Ensure: return Ss
1: Sp ¼ Sb � ðSh þ Sc þ SÞ mod Sb
2: if Sp < 4 then

3: Sp ¼ Sb þ Sp
4: end if

5: Ss ¼ Sh þ Sc þ S þ Sp þ Sa

3.4 Limitations of the Attack

From the description of the attack, we can see that to maintain
the original distribution of web packet size, the attacker
randomly samples the distribution of web packet sizes and
generates a packet size sequence used as signal. However,

this process may disturb the regularity of TCP packet size
dynamics [15], [16]. In the following, we study the impact of
the baseline attack on TCP dynamics. We first define the self-
similarity related to TCP traffic and then introduce two
methods to measure this property. Our real-world evaluation
data in Section 6 further demonstrate that this attack as well
as related attacks in [21], [22] becomes detectable to targeted
users because of its disruption of TCP dynamics. The
following discussion of self-similarity and R/S-Statistics is
credited to related work [15], [16] while we innovatively
apply them in our context.

3.4.1 Self-Similarity

Consider a random series X ¼ ðXt : t ¼ 0; 1; . . . ; n� 1Þ. It
has mean � ¼ E½Xt�, variance �2 ¼ E½ðXt � �Þ2�, and auto-
correlation function

rðkÞ ¼ E½ðXt � �ÞðXtþk � �Þ�
E½ðXt � �Þ2�

;

where k ¼ 0; 1; . . . ; n� 1.
For each m � 1, let XðmÞ ¼ fXðmÞk : k ¼ 1; 2; . . . ; n� 1g be

a new series obtained by averaging the original series X
over nonoverlapping blocks of size m, where

X
ðmÞ
k ¼ 1

m

Xkm
i¼ðk�1Þmþ1

XðiÞ; k � 1: ð5Þ

Let rðmÞ be the corresponding autocorrelation function of
the aggregated series XðmÞ.

The process X is self-similar if the corresponding
aggregated processes XðmÞ have the same correlation
structures as X, i.e., rðmÞðkÞ ¼ rðkÞðk ¼ 1; 2; . . .Þ, for all
m ¼ 1; 2; . . . ; n� 1. Specifically, when the aggregated pro-
cess XðmÞ is the same as X, X is exactly self-similar. If rðmÞ

agrees asymptotically with rðkÞ of X, i.e., rðmÞðkÞ ! rðkÞ, as
m!1 (k ¼ 1; 2; . . .), the process X is called (asymptoti-
cally) second-order self-similar. In other words, the process
X is asymptotically second-order self-similar if the aggre-
gated processXðmÞ is indistinguishable from the processX. If
rðmÞ agrees asymptotically with zero, i.e., rðmÞ ! 0 ðk ¼ 1;
2; . . .Þ, as m! 0, the process X is a second-order pure noise.

The self-similar process defined above comes from the
explanation and interpretation of one empirical law
commonly referred to as the Hurst’s law or the Hurst effect
[23]. Give a set of observations (Xk : k ¼ 1; 2; . . . ; n) with
sample mean

�XðnÞ ¼ 1

n

Xn
t¼1

XðtÞ; ð6Þ

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2415

Fig. 6. SSH packet format.

Fig. 8. Raw HTTP packet size versus SSH packet size enveloped by IP
header and TCP header.

Fig. 7. Channel message format.

and sample variance

S2ðnÞ ¼ 1

n

Xn
t¼1

ðXt � �XðnÞÞ2: ð7Þ

Then, R/S statistics (or the rescaled range) is given by

RðnÞ
SðnÞ ¼

1

SðnÞ max
1�k�n

Xk
t¼1

ðXt � �XðnÞÞ
()

� min
1�k�n

Xk
t¼1

ðXt � �XðnÞÞ
()!

:

ð8Þ

If the series of observations have the long-range depen-
dence, it follows the following relation [15], [24]:

E
RðnÞ
SðnÞ

� �
� �nH; as n!1; ð9Þ

where Hurst parameter H > 0:5, and � is a finite positive
constant. On the other hand, Mandelbrot and Ness in [25]
found that if the relation follows:

E
RðnÞ
SðnÞ

� �
� �n0:5; as n!1; ð10Þ

where Hurst parameter H ¼ 0:5, and � is a finite positive
constant, the underlying process is purely random.

To estimate the degree of self-similarity H (Hurst
parameter), we can use two different methods: 1) analysis
of the R=S-statistics, and 2) analysis of the variance of the
aggregated process Xm, which will be discussed below.

3.4.2 R=S-Statistics

The R=S-statistics relies on the fact that for a self-similar
data set, the rescaled range grows according to a power law
with the exponent parameter H. The objective of analyzing
R/S statistics of an empirical data set is to infer the degree
of self-similarity H in (9) for a self-similar process. Given a
sequence of N observations Xk : k ¼ 1; 2; . . . ; N , all samples
can be divided into K nonoverlapping blocks, where
K ¼ bNnc. Hence, we can calculate the rescaled range Rðti;nÞ

Sðti;nÞ
defined in (8), where ti ¼ ði�1Þ�N

K þ 1ði ¼ 1; 2; . . . ; NÞ and
ðti � 1Þ þ n � N . S2ðti; nÞ are sample variances of Xti ;
Xtiþ1; . . . ; Xtiþðn�1Þ defined in (7). Then, we can plot
log ðRðti;nÞSðti;nÞÞ versus log ðnÞ and obtain, for each n, several
points on the plot called the rescaled range plot (or the pox
diagram for R=S statistics). Hurst parameter H defined in
(9) and (10) can be estimated by fitting a line of a certain
slope to accommodate all points in the pox plot. Then, the
slope of the line is an estimate of H.

For a long-range dependent process, points in the R=S
plot are scattered around a straight line with slope greater
than 1

2 , i.e., H > 1
2 , for sufficiently large n. If the R=S

statistics is scatted around a straight line with a slope of
around 0.5, i.e., H � 0:5, it indicates that the data are pure
white noise.

3.4.3 Variance of the Aggregated Process

Other statistics can also be used to measure Hurst parameter
H. The most important feature of self-similarity is that the
variance of the sample mean decreases more slowly than
the reciprocal of the sample size (i.e., slowly decaying
variance). That is, V arðXðmÞÞ � �m��; as m!1, where � is

a positive constant. If the aggregated series XðmÞ is second-
order pure noise, we have V arðXðmÞÞ � �m�1; as m!1,
where � is a positive constant and XðmÞ is given by (5). In the
variance plot, the variance of the aggregated process XðmÞ is
plotted against m on a log-log scale. If the points in the
variance plot are scattered randomly around a straight line
with the slope between �1 and 0, i.e., 0 < � < 1, it indicates
that the aggregated process XðmÞ has long-rang dependence
and is self-similarity. For pure random noise, the points in
variance plot are scattered around a straight line with a
slope around �1, i.e., � � 1. Notice that H ¼ 1� �

2 , and the
Hurst parameter H can be estimated from �.

Therefore, it is trivial for a user to detect this baseline
covert channel attack. The user can record the packet size of
the web traffic, and use the packet size sequence to measure
the Hurst parameter via R/S method and variance methods.
This does not affect the original traffic or incur much
overhead. We conducted the real-world experiments and
Figs. 16 and 19 demonstrate that the Hurst value of the
packet size sequence under this simple attack is around 0.5
and implies pure randomness. That is, the baseline covert
channel attack can disrupt the self-similarity of a web
packet size sequence. Consequently, it can be readily
detected via the measurement of Hurst parameter.

4 AN ENHANCED COVERT CHANNEL ATTACK

BASED ON LEAST SIGNIFICANT PACKETS

To overcome the limitations of the baseline covert channel
attack in Section 3, we design an enhanced covert channel
attack by carefully picking up the right packets of web
objects to greatly preserve the regularity of the TCP packet
size dynamics measured by the Hurst parameter. In
particular, we virtually generate web objects with different
sizes, repacketize the web traffic, and modulate the size of
the last packet of each virtual web object. Analogous to the
least significant bit used for information hiding in images,
we denote the last packet of a web object as the least
significant packet for brevity and clarity. In the following,
we first introduce the least significant packets, and then
present the detailed workflow. Lastly, we discuss some
practical issues and present our solutions.

4.1 Least Significant Packets

As shown in Fig. 4, normal HTTP packets (not through
Anonymizer) can be roughly categorized into two classes.
The Class I packet is defined as the largest packet in the
normal HTTP traffic, i.e., 1,500 bytes in case of Ethernet,
including an IP header of 20 bytes and a TCP header of
32 bytes. The actual size of the HTTP content in the TCP
payload is 1,448 bytes. The Class II packet has a size less
than 1,500 bytes. Such packets are usually generated by the
“tail” of the web object, i.e., the last packet when the web
object is downloaded. If the web object size including the
HTTP header is w bytes, the size of the “tail” of that web
object is ðw mod 1; 448Þ þ 20þ 32 bytes. Here, we denote
Class II packets as least significant packets for brevity and
clarity. This is analogous to the least significant bit used for
information hiding in images [26].

By analyzing the traffic from 30 well-known websites
including CNN, Yahoo and YouTube, we obtain the ECDF
of the size of raw HTTP packets in Class II as shown in Fig. 9.
As shown in Fig. 4, the raw HTTP packet size does not
include the IP header and the TCP header. Also, the ACK
packet is ignored because of its zero length. The PMF of the

2416 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

least significant packets is fp01; p02; . . . ; p0mg and the corre-
sponding packet sizes are fpc01; pc02; . . . ; pc0mg. p0i is the
probability of the packet size pc0m. Hence, the ECDF of the
least significant packet size can be formalized as follows:

Flspðpc0iÞ ¼ P ðx0 � pc0iÞ ¼ p01 þ p02 þ � � � þ p0i: ð11Þ

As per our observations from Fig. 4, the overall
probability of the least significant packets observed by
the attacker between the client and the Anonymizer server
is no more than 10 percent. In addition, the size of such
packets is more random and dynamic. Because of these, an
attacker can use those packets to embed secret symbols into
the web traffic and expect to preserve TCP regularity and
self-similarity.

4.2 Enhanced Idea of Covert Channel Attacker
Based on Least Significant Packets

An attacker at the malicious website controls the reverse
proxy to embed a secret message into the web traffic. An
accomplice of the attacker sniffs the traffic at the client side
and determines if that client has received the traffic
embedded with the secret message. The message can be
represented as a sequence of symbols (for example, “0000”
to “1111”) and one symbol corresponds to one packet size.
We virtually generate web objects with different sizes,
repacketize the web traffic, and choose appropriate size of a
least significant packet for a message symbol.

To make the covert channel hard to detect, we need to
preserve the least significant packet size ECDF in Fig. 9.
This is the criterion for mapping a symbol to a least
significant packet size. A classical way for preserving
an ECDF is Monte Carlo sampling. In our case, we divide
the y-axis ½0; 1� of the ECDF into equal segments such as the
16 segments in Fig. 11. The 16 segments corresponding
to symbols from “0000” (“0”) to “1111” (“F”). Hence, one
symbol can be uniformly mapped to a few packet sizes
along the x-axis of the ECDF. We need to guarantee that one
symbol corresponds to at least one packet size. To preserve
the ECDF, Monte Carlo sampling requires the message has
uniformly distributed symbols. To achieve this, we encrypt
the message first and transmit the cyphertext over the
covert channel. A strong cipher generates uniformly
distributed symbols in the ciphertext [27].

4.3 Workflow

Fig. 10 shows the workflow of the attack based on least
significant packets. An attacker at the malicious website
(reverse proxy) selects a message and encrypts it. The
attacker first selects a message signal and encrypts the
message by a strong cipher. Note that a strong cipher
eliminates any recognizable pattern in the message [27] and
the ciphertext appears random. The cyphertext as the output

of encryption consists of a sequence of binary bits. The
attacker then encodes the cyphertext into k-ary symbols. For
example, 4 bits corresponds to a hexadecimal symbol. To
avoid disturbing the distribution of the packet size, the
attacker carefully maps the symbols to packet sizes based on
the distribution of empirical least signal packet size. There-
fore, the least significant packets work as a covert channel
and carry information.

The attacker chooses appropriate time and modulates
the size of least significant packets to embed the secret
symbols into the target traffic while preserving its TCP
regularity and self-similarity property. The traffic em-
bedded with symbols goes through Anonymizer and
arrives at the client side. Because of network dynamics
and processing capacity of Anonymizer, the packets
carrying embedded symbols may be combined with the
fore-and-aft packets at Anonymizer and the symbols can be
distorted. We develop an intelligent and robust detection
algorithm to recover symbols from distorted packet sizes.
Hence, the attacker’s accomplice at the client side can sniff
the target traffic out of Anonymizer and recover the
embedded symbols. The attacker can decrypt the encrypted
message. If the decrypted message is same as the original
one, the attacker confirms the communication relationship
between the user and malicious website. Sender anonymity
promised by Anonymizer is then compromised. The
detailed workflow steps are given in the following sections.

4.4 Embedding a Signal at the Malicious Website

Step 1: Encrypting the signal. At the malicious website, the
attacker selects a message signal and encrypts the message
by a strong cipher. An attacker can use RC4 in counter
mode with an initialization vector (IV) to encrypt the
message and make the ciphertext appear random. Our
experiments confirm that the RC4 cyphertext hexdecimals
have a uniform distribution. Given a message of u bytes, we
derive the encrypted message as

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2417

Fig. 9. Empirical CDF of the least significant packet size.

Fig. 10. Workflow of covert channel attack based on least significant
packets.

Fig. 11. Mapping between symbols and least significant packet sizes.

Erc4ðMessage; IV Þ ! fB1; B2; . . . ; B8ug; ð12Þ

where fB1; B2; . . . ; B8ug is the sequence of the binary bits.
Step 2: Encoding the cyphertext into k-ary symbols. To

guarantee that one symbol is mapped to at least one packet
size, we need to carefully choose the total number (k) of
symbols representing a message. The ECDF of the least
significant packet size is derived in (11) and we can find the
maximum k such that

2k � 1=p0max; ð13Þ

where p0max is the maximum value in the PMF of the least
significant packet size. Then, f0; 1; . . . ; 2k � 1g become our
symbols, i.e., k-bits is used to represent one k-ary symbol.
Using real-world data, we have p0max ¼ 0:027 and derive k ¼
5 based on (13). In our case, we choose k ¼ 4, corresponding
to 4-ary symbols. Let the symbols be fs0; s1; . . . ; s2k�1g. The
sequence of the binary bits can be translated into

fB1; B2; . . . ; B8ug , fS1; S2; . . . ; S8u=kg; ð14Þ

where 8u=k is the length of the symbols (padding is needed
if 8u mod k 6¼ 0), fS1; S2; . . . ; S8u=kg are the sequence of the
encrypted symbols, where Si is the ith symbol.

Step 3: Mapping k-ary symbols to packet sizes. We use the
approach of Monte Carlo sampling in Fig. 11 to map a
ciphertext symbol to an appropriate least significant
packet size. Because of the random ciphertext, the
probabilities of ciphertext symbols are equal, 1=2k. Then
the CDF of the symbols is FsðsjÞ ¼ j

2k
. To map a k-ary

symbol sj to the corresponding packet size, we need
to find the scope of packet sizes that can be mapped to the
k-ary symbol. The upper bound pc0i of a scope for sj is the
largest packet size satisfying the following inequality,
Flspðpc0iÞ ¼ p01 þ p02 þ � � � þ p0i � FsðsjÞ ¼

j
2k

.
Let the corresponding packet sizes be fps0; ps1; . . . ;

psð2k�1Þg. We can make a mapping from symbol sj to one
scope ðpsðj�1Þ; psj�, where j 2 f0; 1; . . . ; 2k � 1g. To maintain
the distribution of the least significant packets, we adopt the
Monte Carlo sampling approach to uniformly pick up a
packet size p0sj from the scope ðpsðj�1Þ; psj� for mapping the
symbol sj as illustrated in Fig. 11 to preserve the least
significant packet size ECDF. We have the following
mapping table between symbols and packet sizes:

Table2 : fs0; s1; . . . ; s2k�1g ,
�
p0s0; p

0
s1; . . . ; p0sð2k�1Þ

�
: ð15Þ

By utilizing the above mapping, in our case, 16 different
least significant packet sizes fp0s0; p0s1; . . . ; p0s15g are mapped
to the hexadecimal symbols, f0; 1; . . . ; E; Fg, one time, as
illustrated in Fig. 11. Consequently, 1 byte in the ciphertext
can be encoded into two packet sizes. Equation (15) can be
converted into

Table02 : f0; 1; . . . ; Fg ,
�
p0s0; p

0
s1; . . . ; p0s15

�
: ð16Þ

Thus, we can derive the sequence of the corresponding
packet sizes fPS1; PS2; . . . ; PSð2uÞg in (14).

Because of the fact that ciphertext generates uniformly
distributed symbols and the 1� n mapping from one
symbol to packet size (Notice that one symbol can be
uniquely represented by corresponding multiple packet
sizes), the least significant packet size distribution is not
changed via this modified Monte Carlo sampling approach.

Step 4: Modulating target traffic. When a client accesses the
malicious website, the attacker starts to embed a message
into the target web traffic. Because the IP addresses range of
Anonymizer is small, the attacker can simply use those
IP addresses to identify whether the incoming HTTP
request is from Anonymizer. The attacker can identify the
first arriving HTTP “GET” request2 and derive object length
from HTTP headers, and embed the secret symbols
generated in the previous steps into the web traffic.

To avoid disturbing the TCP traffic dynamics and make
it difficult for clients and third parties to detect the attack
from traffic pattern, the attacker carefully chooses the
appropriate symbol location in the flow and modulates the
packet size to embed a message. According to the
previous study in [28], [29], the web object size is best
fitted by a Lognormal distribution. Considering this, we
virtually generate objects of different size and calculate the
location of the least significant packet, i.e., the number of
packets between successive symbols. Denote the location
of our symbols as fo1; o2; . . . ; o2ug. The first symbol o1 is
located at the number of packets counted from the first
HTTP response packet to the first symbol.

To improve attack performance, the attacker can mod-
ulate a preamble of couple of packets at the location o1 before
the symbol. When the browser fetches the main object, it
may establish several persistent TCP connections and send
successive HTTP requests for other linked objects. To
establish corresponding new channels, the SSH client
establishes the channels and sends the SSH channel
messages to Anonymizer. The “Message Type” field of
these channel messages is SSH_MSG_CHANNEL_OPEN.
The Anonymizer SSH server opens the channels
and responds with the SSH_MSG_CHANNEL_OPEN_
CONFIRMATION messages to the client. Then, the SSH
client forwards these HTTP requests to the browser. We use
the SSH_MSG_CHANNEL_OPEN_CONFIRMATION mes-
sage (52 bytes excluding the IP header and TCP header) and
five, for example, such successive SSH packets as the symbol
preamble. Therefore, each raw HTTP packet size is 11 bytes.
With the channel header, SSH header, padding, and MAC,
the packet reaches 52 bytes. Such a symbol preamble will not
incur much attention from the client.

To reliably modulate packets to desired sizes, the attacker
at the reverse proxy can modify the size of the proxy read
buffer. The read buffer size is 1,448 bytes. The attacker
counts the number of packets to Anonymizer and when
number of the transmitted packets is equal to oi, the attacker
sets up the read buffer to psi and resets the counter. psi bytes
of the next incoming packet is pushed into read buffer,
flushed into write buffer, and then sent to Anonymizer. The
rest of the packets will stay in TCP buffer and wait for the
next read event.

4.5 Recovering the Signal at the Client Side

Step 1: Demodulating target traffic. An accomplice of the
attacker at the client side sniffs the SSH traffic transmitted to
the user and records the packet size. Recall the accomplice
knows the sequence of the raw HTTP packet sizes
fPS1; PS2; . . . ; PSð2uÞg and the sequence of the packet interval
fo1; o2; . . . ; o2ug. We then calculate the sizes of SSH packets
corresponding to raw HTTP packets. Denote the sequence

2418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

2. We use the GET request as an example. However, it is easy to apply
this attack to other request methods.

of the SSH packet sizes as fPssh1; Pssh2; . . . ; Psshð2uÞg. Then,
the attacker is able to find out the SSH packet size carrying
the symbols.

Step 2: Mapping packet sizes to k-ary symbols. Using the
same mechanism described in Algorithm 1, the accomplice
can record the size of SSH packet Psshi carrying the symbols
and obtain the corresponding raw HTTP packet size PSi.
The obtained HTTP packet sizes will be mapped to the
symbols, i.e., the hex characters, using (16). The accomplice
now derives the sequence of the mapped symbols
fS1; S2; . . . ; S2ug.

Step 3: Decoding kk-ary symbols into the signal. Given
the sequence of recovered symbols fS1; S2; . . . ; S2ug from
the previous step, the attacker applies (14) to translate the
hexdecimal symbols into binary bits fB1; B2; . . . ; B8ug.

Step 4: Decrypting the ciphertext. Finally, the message is
decrypted using RC4 algorithm with IV as

Drc4ðfB1; B2; . . . ; B8ug; IV Þ !Message: ð17Þ

If the decrypted message is the same as the original one, the
attackers confirm the relationship between the user and
malicious website.

4.6 Issues and Solution

Because of network dynamics and the processing capacity
of Anonymizer, the packets carrying the embedded
symbols may be combined with the fore-and-aft packets
at Anonymizer and the symbols may be distorted. This may
affect the effectiveness of the attack. To address this issue,
we present an intelligent and robust detection algorithm.

4.6.1 Scenarios of Interference

In the following, we discuss several scenarios of inter-
ference, which will distort the least significant packets
carrying the symbols and reduce the symbol detection rate.

Packet merging. Given a sequence of packet arrival times
from the reverse proxy to Anonymizer fT1; T2; . . . ; Tqg,
where q is the number of packets. Let Tp be the processing
time at Anonymizer, including the processing time of
HTTP proxy, SSH server, queuing delay, and so on. We
assume that the HTTP packet carrying the symbol arrives
at Ti and the successive normal HTTP packet arrives at
Tiþ1. The symbol packet and the successive normal packet
will merge if

Ti þ Tp � Tiþ1ð0 � i � u� 1Þ; ð18Þ

Tp � Tiþ1 � Ti: ð19Þ

Similarly, if

Ti�1 þ Tp � Tið1 � i � uÞ; ð20Þ

Tp � Ti � Ti�1; ð21Þ

the symbol packet will be distorted by merging with the
previous packet. Specifically, if the SSH server cannot
process the HTTP packets promptly, the following packet
will be combined with the symbol packet in the SSH buffer,
for example, in the case that the network is congested
between the user and Anonymizer.

To overcome the issue of packet merging, the attacker at
the reverse proxy can add a delay interval I before reading

the symbol packet and after writing the symbol packet out,
i.e., Tiþ1 ¼ Ti þ I þD and Ti�1 þ I þD ¼ Ti, where D is the
delay between the reverse proxy and Anonymizer. There-
fore, if we can appropriately select the delay interval, i.e.,
Tp � I þD, and the following conditions are met, the
normal HTTP packets will not be combined with symbol
packets:

Tp � Tiþ1 � Ti or Tp � Ti � Ti�1; ð22Þ

Tp � I þD: ð23Þ

Shift of symbol location. In some cases, the data pulled
from the TCP buffer are smaller than the symbol packet
size. For example, the symbol location may coincide with
the location of a real least significant packet if it is smaller
than the symbol packet size because web objects are fetched
randomly. When this happens, the attacker can simply
ignore this packet and modulate the next packet size. Of
course, in this way the symbol location sequence
fo1; o2; . . . ; o2ug would be changed. However, the accom-
plice can carefully select a toleration scope and search the
correct packet. We will discuss the details of this solution in
Section 4.6.2.

MTU. The MTU may also distort the packets carrying
symbols. The normal raw HTTP packet size is 1,448 bytes.
After raw HTTP packet is processed by SSH server at
Anonymizer, the SSH packet size will reach 1,492 bytes.
Then, the SSH packet size will be 1,544 bytes, including an
IP header of 20 bytes and a TCP header of 32 bytes. Because
of MTU, the SSH packet will be split into two parts, one has
1,500 bytes and the other has 44 bytes. The first 1,500 bytes
will be packed into a packet and forwarded to the user and
second 44 bytes will stay in TCP buffer. If the network
condition is good between the user and Anonymizer SSH
server, that 44 bytes will be added to an IP header and a
TCP header, then it will be forwarded to the user in one
separate packet. Otherwise, the 44 bytes will be combined
with the next normal SSH packet or our symbol packet in
TCP buffer. More complicated situations may occur. For
example, two raw HTTP packets may be combined in SSH
buffer. The merged packet will reach 2,948 bytes, and it is
then split into three parts: two have 1,500 bytes and the rest
has 104 bytes. There are many other cases of combinations.

HTTP proxy filtering. The Anonymizer HTTP proxy may
filter the HTTP header field “Connection: closenrnn,” which
is 19 bytes including the blank behind the colon. The normal
raw HTTP packet size of 1,448 bytes becomes 1,429 bytes.
Then, the packet with 1,476 bytes is processed by the SSH
server. By adding the IP header and TCP header, it will
reach 1,528 bytes. Because of MTU, it will be split into 1,500
and 28 bytes. Therefore, the rest 28 bytes may be combined
with later symbol packets.

4.6.2 An Intelligent Detection Algorithm

To deal with the issues of limited TCP buffer and MTU, we
design an intelligent detection algorithm (Algorithm 2).
Because of the MTU, the packets through Anonymizer can
generate a small packet of 44 bytes and shift the predefined
symbol location oi (the number of the packets between
the ith symbol packet and the last preamble packet). Denote
the sequence of the practical SSH packet size as Q and the
starting point for search the ith practical symbol packet
from Q as si, where s1 ¼ o1. To reduce false positive rate, we

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2419

introduce a threshold St, to search the practical location of
the ith symbol packet o0i from Q between si and si þ St. o0i is
the number of the packets between the ith practical symbol
packet and the last preamble packet. Once practical
location o0i is found, we update si ¼ o0i and continue to
search the next symbol between si and si þ St.

Algorithm 2. Detection Algorithm.

Require:

(a) Q, the sequence of the total SSH packets sizes, (b) L,
the length of the symbols, (c) Pssh, the sequence of the

SSH symbol packet sizes, (d) i, the index of Passh,

(e) o½i�, the ith predefined symbol packet location, (f)

o0½i�, the ith practical symbol packet location, (g) St, the

threshold, (h) s½i�, the starting point of the ith symbol,

(i) m, the number of the matched symbols.

Ensure: return m

1: s½1� ¼ o½1�
2: for i ¼ 1 to L do

3: if Pssh½i� ¼¼ ðQ between ½s½i�; s½i� þ St�) then

4: Record o0½i�; s½iþ 1� ¼ o0½i�;
5: m ¼ mþ 1

6: else

7: Recovery1: Caused by MTU

8: if Pssh½i� < ðQ between ½s½i�; s½i� þ St�) then

9: Calculate the difference J between Pssh½i�
and Q

10: if 44xþ28y ¼¼ J then

11: if xþ y < o0½i� � o½i� then

12: Record o0½i�; s½iþ 1� ¼ o0½i�
13: m ¼ mþ 1

14: continue

15: end if

16: end if

17: end if

18: Recovery2: Caused by HTTP proxy filtering

19: Remove 19 bytes from the raw HTTP symbol

packet size of Pssh½i� and recalculate Pssh½i� by

using the Algorithm 1

20: if Pssh½i� ¼¼ ðQ between ½s½i�; s½i� þ St�) then

21: Record o0½i�; s½iþ 1� ¼ o0½i�
22: m ¼ mþ 1

23: end if

24: end if

25: end for

If the ith symbol packet cannot be found between si and
si þ St, we use a recovery mechanism to identify symbols.
Suppose that the symbol packet is combined with two types
of packet fragments, 44 and 28 bytes. Given that the ith
combined symbol packet size isQj (smaller than 1,448 bytes),
the location ofQj as o0i, the original SSH packet size of the ith
symbol is Psshi, we first derive the combined packet fragment
size J ¼ Qj � Psshi. We then find integers x and y such that
J ¼ 44xþ 28y. The sum of x and y is the total number of
packets of 44 and 28 bytes generated during the packet
interval o0i � oi. Therefore, we need to add the constraint xþ
y < o0i � oi to find the x and y satisfying the equation
J ¼ 44xþ 28y. If xþ y > o0i � oi, we give up packet Qj and
continue to find the next packetQjþ1 in the thresholdSt. If the
symbol packet is found, we set the real location as o0i. To keep

the false positive rate small, we need to carefully choose St.
The smaller St may fail to detect packets carrying symbols.
The larger St may erroneously pick packets that do not carry
a symbol, but have the same size as the packet carrying
symbols. As a result, the detection algorithm fails to
recognize subsequent symbols.

We now address the issue of HTTP Proxy filtering. If a
symbol SSH packet contains a HTTP header packet, the
Anonymizer HTTP proxy will filter the HTTP field size of
19 bytes. To recover such a symbol packet, the size of the
raw HTTP symbol packet PSi will subtract 19 bytes. Then,
Algorithm 1 can be applied to recalculate the SSH packet
size of PSi and search it in the threshold St again.

4.7 Discussion

We now discuss the detectability of the attack and possible
countermeasures.

4.7.1 Attack Detectability

The enhanced covert channel attack is difficult to detect for
the following reasons: 1) A successful attack needs to
transmit only a short message known only to the attackers.
As shown in Section 6.3, the attack only needs to
manipulate 20 packets to achieve a desired high detection
rate. 2) As shown in Fig. 2 in Section 2.2, the packet size
observed at the client shows a large percentage of non-
MTU packet size because of Anonymizer client software’s
buffering mechanism, manipulation, and Internet traffic
dynamics. In a sequence of packets carrying a web object,
there are a number of non-MTU packets randomly located
in different places. Hence, it will be difficult for client to
detect the attack by investigating whether non-MTU
packets appear within the transmission of a web object.
3) To make the attack harder to be detected by anyone
other than the attacker, we design various covert channel
attacks to preserve the statistical properties of clean traffic
(without message embedded) for modulated target traffic.
First, we adopt the Monte Carlo sampling technique to
ensure that the distribution of web packet size is preserved
despite manipulation. Second, we develop techniques to
pick up right packets of web objects to preserve the
regularity of TCP packet size dynamics measured by Hurst
parameter. Hence, client cannot detect the attack via
measuring traffic dynamics.

4.7.2 Countermeasures

In previous work [30], [31] the approach padding all packets
to equal size can definitely defend against the attack
proposed in this paper. Nevertheless, it is commonly
believed that such all-out-effort padding will incur large
overhead to both Anonymizer servers and the client,
dramatically degrading the performance of anonymous
communication [30]. To overcome the overhead, one possible
alternative is selective padding similar to those in [2].
Nevertheless, it is an open question regarding the gains that
Anonymizer can get and how much overhead it incurs to
Anonymizer. We leave such investigation as our future work.
Tor [32] may not resist our attacks either. Although Tor uses
equal sized cells, it is only meaningful at the application
player. An attacker may exploit the traffic dynamics and
generate IP-layer packets of different sizes across the Tor
network.

Besides padding all packets to equal size, we may
consider other countermeasures such as creating packets of

2420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

different sizes randomly or much creating smaller packets.
Nevertheless, the countermeasures may still leak informa-
tion. In particular, the attacker may adapt the attack
strategy by introducing extra delay interval between virtual
web objects. Then, the attacker can distinguish the virtual
web objects and accumulate the packet sizes of each object
to derive the size of the virtual objects. Based on Shannon’s
perfect secrecy theory, if one can map any payload traffic to
a predefined pattern, the attacker cannot obtain any
information by analyzing the padded traffic. The padding
strategy utilizes this principle and pads packets to equal
size, which can be very expensive as we stated early.

A user may also use various cover traffic between users
and Anonymizer [2], [33], [34] to counter the attack. For
example, a user may simultaneously access a website while
watching streaming videos from youtube. It will affect
the accuracy of the attack to some extent. We will explore
the effect of cover traffic on the accuracy of our attack in our
future work.

4.7.3 Comparison with Previous Work

We now illustrate the major difference between our work
and representative related work [6]. Wang et al. [6] proposed
a timing-based watermarking scheme by exploiting the
inter-packet timing of a traffic flow. To make the watermarks
reliable, their approach requires active web traffic lasting for
20 seconds to encode one signal bit. According to their real-
world experiments over Anonymizer [6], to embed 32-bit
watermarks into the traffic, their watermarking attack
requires around 10 minutes of active web traffic. In addition,
each packets of the web traffic will be delayed, which results
in significant communication performance degradation. In
comparison, our approach requires only tens of packets to
achieve a high detection rate and low false positive rate. We
would like to note that we only modulate 20 packets, which
correspond to 7 seconds of web traffic, to achieve a detection
rate around 100 percent. To summarize, our approach is
more efficient and effective in comparison with the existing
representative approach [6].

5 ANALYSIS

In this section, we analyze the performance of the covert
channel attack based on least significant packets. We derive
the detection rate and false positive rate formulas and
investigate what factors impact the attack effectiveness.

5.1 Detection Rate

According to our empirical observations and analysis, one
way delay between the user and malicious website can be
approximately modeled to have a Patero distribution, which
is a heavy-tailed distribution, as illustrated in Fig. 12.
Although the approximation is coarse, the analytical results
reflect the essence of the attack.

The probability density function (PDF) of a Pareto
distribution is given below:

fXðxÞ ¼ �
x�m
x�þ1

; x > xm;

0; x < xm;

(
ð24Þ

and the CDF of the Pareto distribution is

FXðxÞ ¼ 1� xm
x

� ��
; x � xm;

0; x < xm:

(
ð25Þ

Therefore,

P ðX > xÞ ¼ 1� FXðxÞ ¼
xm
x

� ��
; x � xm;

0; x < xm:

(
ð26Þ

Fig. 12 plots one way delay distribution P ðX > xÞ in a log-
log scale. We can derive shape parameter � from this plot.

From Fig. 12, we can derive the following Theorem 1,
which is also validated by real experiments in Section 6.

Theorem 1. Detection rate PD of a symbol from a SSH packet
sequence is monotonously increasing with the delay interval
�t added by tracebacker after a symbol packet.

Proof. Assume that the arrival time of the ith packet
carrying a symbol at Anonymizer is Ti and the arrival
time of the successive normal packet is Tiþ1. Assume that
Ti and Tiþ1 are independent and identically distributed
(i.i.d) (rough appropriation while matching real work
observations from Fig. 12 well). If these packets are
combined at Anonymizer, the tracebacker cannot detect
the packet carrying the symbol. The probability of
detection error can be roughly calculated as follows in
cases of without intelligent detection algorithm,
PE ¼ P ðTi > Tiþ1 þ�tÞ ¼ P ðTi � Tiþ1 > �tÞ, where �t
is delay interval added by the attacker between Ti
and Tiþ1. Let A ¼ Ti � Tiþ1, we have PE ¼ P ðA > �tÞ ¼
1� P ðA � �tÞ.

The detection rate PD is defined as the probability that
one symbol is correctly recognized. Then, we have
PD ¼ 1� PE ¼ P ðA � �tÞ.

Let Ti ¼: X and Tiþ1 ¼: Y . We haveA ¼ X � Y . Because
Ti and Tiþ1 are independently and identically distributed,
X and Y are i.i.d as well. Since FAðaÞ ¼ P ðA � aÞ ¼
P ðX � Y � aÞ ¼

Rþ1
xm
ð
R aþy
xm

fðx; yÞdxÞdy, then

P ðA � �tÞ ¼ FAð�tÞ ¼
Z þ1
xm

Z �tþy

xm

fðx; yÞdx
� 	

dy

¼
Z þ1
xm

fðyÞ
Z �tþy

xm

fðxÞdx
� 	

dy

¼
Z þ1
xm

fðyÞ 1� xm
�tþ y

� 	�� 	
dy

¼
Z þ1
xm

fðyÞdy�
Z þ1
xm

fðyÞ xm
�tþ y

� 	�
dy

¼ 1�
Z þ1
xm

�
x�m
y�þ1

� 	
xm

�tþ y

� 	�
dy:

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2421

Fig. 12. Log-log plot of cumulative distribution P ðX > xÞ of one way
delay.

We derive the first derivative of function FAð�tÞ as

F 0Að�tÞ ¼
Z þ1
xm

�2 x
2�
m

y�þ1

� 	
1

�tþ y

� 	�þ1

dy:

Since xm > 0, �t > 0, and y > 0, we have F 0A > 0.
Therefore, PD > 0 and PD is a monotonously increasing
function in terms of �t. The larger the delay interval an
attacker chooses, the higher the detection rate. This
analytical result is also validated by our real-world
experimental data in Section 6. tu
Detection rate PD;n is defined as the probability that the

sequence of n-symbols embedded into target traffic at the
malicious website is correctly recognized at the client. Given
PD, detection rate for 1-symbol message, PD;n ¼ ðPDÞn,
which is also a monotonously increasing function with the
delay interval.

5.2 False Positive Rate

When no symbols are embedded into target traffic, the
detection algorithm could make a wrong decision. Let
the probability of the least significant packets carrying the
symbols be q1; q2; . . . ; qn, where n is the number of symbols.
Denote the probability of the packet size MTU as qmtu.

The false positive rate PF;n for detecting the sequence of
n symbols in normal traffic can be derived by

PF;n ¼
Yn
i¼1

qi � ð1� qmtuÞn: ð27Þ

The inequality holds because
P
qi ¼ 1� qmtu.

Since the probability that a packet has a size of MTU
is around 90 percent from our empirical data in Fig. 4,
we have

PF;n � ð1� qmtuÞn �
1

10n
: ð28Þ

In fact, from Fig. 4, we know that the largest probability
of a least significant packet is only 0.27 percent. Hence, the
false positive is very low in practice. We will have a lower
false positive rate when the original symbol length n is large
enough. Our extensive experimental results in Section 6
match this observation very well.

6 EVALUATION OVER ANONYMIZER

In this section, we use real-world experiments to demon-
strate the feasibility and effectiveness of the attacks. All the
experiments were conducted in a controlled manner over
the commercial Anonymizer and we experimented on TCP
flows generated by ourselves to avoid legal issues.

6.1 Experiment Setup

Fig. 13 illustrates the experiment setup. We deploy a
malicious website and a reverse proxy at City University

of Hong Kong, denoted as Compus B. Campus A is the
University of Massachusetts Lowell. The web server and
reverse proxy are installed on a single computer. The web
server is Apache/2.2.11 and reverse proxy is Pen [35]. Two
other computers are deployed on Campus B. All computer
are running Fedora Core 11 operating system. One
computer acting as a client is connected to a wireless access
point and its traffic is not encrypted over the network. The
web browser is Firefox 3.5. We configure Firefox to not
cache the data. The latest Adobe Flash plugin [36] is
installed with the browser. The other computer is used as a
sniffer to record the size of packets destined to client
computer with source TCP port 22.

We modified the code of the reverse proxy Pen to
control web packet size and implement the encoding
algorithm. For the verification purpose, we downloaded
the real-world webpages from CNN.com and deployed our
own “CNN” web server to simulate a malicious website.
To prevent other traffic from accessing our replicated
website, we use the Linux firewall iptables and shutdown
the website after our experiments were completed. By
configuring the reverse proxy Pen, we map the reverse
proxy port 8080 to the HTTP server port 80. Therefore, the
reverse proxy can forward the packets for the web server.
At the client side, the SSH client connects to the
commercial Anonymizer server by the command “ssh -L
80:cyberpass.net:80 username@cyberpass.net -N” in the console
with appropriate password. We configure the browser
HTTP proxy as “127.0.0.1:80.” Therefore, we use Firefox to
browse the web server via the remote reverse proxy port
“8080” and fetch the web objects via Anonymizer.

6.2 TCP Packet Size Dynamics in Attacks

To illustrate the limitation of the simple attack in Section 3,
we experiment both the R/S method and the variance
method to estimate the Hurst value of the SSH packet size
sequence. For demo purpose, we choose six popular
websites and estimate their Hurst values. We consider
three cases: 1) original packet size sequence (O P S), 2) the
size sequence of packets carrying the covert channel attack
based on least significant packets (L S P), and 3) the size
sequence of packets carrying message based on Monte
Carlo sampling (M C S) in the simple attack. Table 1 gives
the Hurst values for above cases for each website.
In addition, we select cnn.com and utilize a Matlab tool
box (http://www.mathworks.com/matlabcentral/
fileexchange/19148-hurst-parameter-estimate) to estimate
the Hurst parameter and plot results from both R/S
method and variance method. Figs. 14 and 17 illustrate
the R/S plot and variance plot of the original packet size
sequence. The Hurst parameter is much greater than 0.5.
Therefore, the web packet size is self-similar. Figs. 15

2422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

Fig. 13. Experiment setup.

TABLE 1
Hurst Estimation Using R/S Method and Variance Method

and 18 illustrate the R/S plot and variance plot of the
packet size sequence with the covert channel attack based
on the least significant packets. The Hurst parameter is also
much greater than 0.5. The least significant packet based
covert channel preserves web packet size self-similarity
and is hard to detect. Figs. 16 and 19 illustrate the R/S plot
and variance plot of the packet size sequence for the
simple attack embedding the message based on Monte
Carlo technique. It can be observed that Hurst parameter is
around 0.5 and implies pure randomness. In summary,
these figures and table show that the traffic embedded
with a secret message using least significant packets is able
to preserve the web TCP traffic self-similarity. Never-
theless, the Hurst parameter of around 0.5 for the traffic
modulated in the simple attack indicates that the sequence
of packet sizes is random. The simple attack is easier to
detect because it cannot preserve the TCP dynamics.

6.3 Detection Rate

To validate the accuracy of the attack using least significant
packets, we let the client browse our replicated webpages
30 times. At the reverse proxy, we generate a message and
encrypt it with RC4 in counter mode. We then derive a
sequence of symbols of length 20. Note that we generate
HTTP objects of different size and calculate the location of
the least significant packets, i.e. the location of our symbols.
When the target web traffic arrives at the reverse proxy, we
choose the symbol location, vary the read buffer, and
embed the symbols into the target traffic. At the client side,
Sniffer records the SSH packet size by removing the MAC
(IEEE 802.11) header, IP header, and TCP header. Then,
the detection algorithm proposed in Section 4.6 is used to
recognize the symbols from the sequence of SSH packets.

To evaluate the false positive rate of the attack, we let the
client browse our replicated webpage 30 times via Anon-
ymizer. No symbol is embedded into the traffic at the reverse
proxy in these cases. We refer to the traffic without symbols
as clean traffic. We then use the same detection algorithm
proposed in Section 4.6 to detect 20 random symbols from
clean traffic and calculate the false positive rate.

Fig. 20 illustrates the relationship between the detection
rate and the delay interval, as well as the threshold St in
Algorithm 2. Recall St is the threshold to restrain the
difference between the real symbol packet position and its
predefined position. From Fig. 20, we have a few observa-
tions. First, the best value of St is around 8. This can be
reasoned as follows: The smaller St may not detect packets
carrying symbols. The larger St may erroneously pick
packets that do not carry a symbol, but has the same size as
the packet carrying a symbol. As a result, the detection
algorithm cannot correctly recognize the later symbols.
Second, the detection rate increases dramatically when the
delay interval increases. This matches our analysis in

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2423

Fig. 14. R/S plot of the original packet sizes.

Fig. 15. R/S plot of the packet sizes with the covert channel attack based
on least significant packets.

Fig. 16. R/S Plot of the packet sizes with the covert channel attack
based on Monte Carlo sampling

Fig. 17. Variance plot of the original packet sizes.

Fig. 18. Variance plot of the packet sizes with the covert channel attack
based on least significant packets.

Section 5 very well. The detection rate approaches
100 percent when the delay interval is 350 ms and the
threshold St is 8. These results validate that the attack using
least significant packets can significantly degrade the
degree of anonymity service that Anonymizer promises.

Fig. 21 illustrates the relationship between the detection
rate and the delay interval, as well as the number of
symbols. Fig. 21 shows that the detection rate will decrease
while the number of symbols increases, which is matched
with our analysis in Section 5.1. From this figure, we know
that only tens of packets is needed for our covert channel
attack. This observation confirms that the attack is highly
efficient and can compromise the anonymous web surfing
very fast.

We did not plot the false positive rate since in all the
cases, the false positive rate approaches 0. This matches
with our analytical results in Section 5.2 very well.

7 RELATED WORK

Traffic analysis and covert channel is a common means to
degrade communication privacy. Existing traffic analysis
can largely be categorized into two groups: passive traffic
analysis and active watermarking techniques. Passive traffic
analysis techniques have shown that the attacks record the
traffic passively and identify the similarity between server’s
outbound traffic and client’s inbound traffic [2], [3]. For
example, Levineet al. [2] investigated a cross correlation
technique for the similarity measurement. Other recent
research have shown thatthe attackers can infer sensitive
information from the encrypted network traffic by examin-
ing patterns in terms of the sizes of packet and its timing [11],
[12], [14], [37]. For example, Sun et al. [11] investigated the
sizes of the HTML objects transmitted over SSL connections
and were able to identify the webpages based on the number
and size of objects in each encrypted HTTP response.

Liberatore and Levine [12] examined the packet sizes of
HTTP traffic transmitted over persistent connection or
tunneled via SSH port forwarding can statistically identify
the webpages.

The active watermarking techniques intend to embed
specific secret signal into the target traffic. Such techniques
can reduce the false positive rate significantly if the signal is
long enough and does not require massive training study of
traffic cross correlation as required in passive traffic
analysis [4], [6], [7], [10], [12], [13], [38], [39], [40]. For
example, Peng et al. [41] analyzed the secrecy of timing-
based watermarking technique proposed in [42], based on
the distribution of traffic timing. Yu et al. [7] proposed a
flow marking scheme based on the direct sequence spread
spectrum (DSSS) technique. This technique could be used
by attackers to secretly confirm the communication relation-
ship via mix networks. Kiyavash et al. [38] proposed a
multi-flow approach detecting the interval-based water-
marks [6], [39] and DSSS-based watermarks [7]. Ling et al.
[10] proposed the cell counter-based attack against Tor that
the attackers embed a signal into the variation of cell
counter of the target traffic. Wright et al. [40] proposed a
traffic morphing approach that modulates the source packet
sizes to resembles another one against the traffic classi-
fiersfor VoIP [13] and web traffic [12]. Our covert attack is
more efficient and effective than previous ones because it
only needs to modulate 20 packets (7 seconds of web traffic)
to achieve a detection rate around 100 percent.

Most existing work on covert channel focuses on timing-
based techniques [21], [22], [43], [44]. For example, [22]
exploited the statistical interpacket delays of legitimate
network traffic and proposed a model-based covert timing
channel to fit the modulated traffic behavior to legitimate
traffic. Ramsbrock et al. [21] applied packet size based
covert channel to Botnet and general network traffic.TCP
packet size dynamics was not considered in their work. We
are the first to apply packet size-based covert channel
against Anonymizer service and explored various packet
size distortion by Anonymizer proxies.

8 CONCLUSION

In this paper, we conducted a holistic investigation of
Anonymizer, a known commercial anonymous communica-
tion system. We discovered the architecture of Anonymizer
and found that the size of HTTP packets in the Anonymizer
network is very dynamic. We investigated a class of novel
covert channel attacks, which can drastically degrade the
anonymity service provided by Anonymizer. We developed
several salient techniques that make the attack efficient,
accurate, and hard to detect. In particular, We applied

2424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

Fig. 19. Variance plot of the packet sizes with the covert channel attack
based on Monte Carlo sampling.

Fig. 20. Detection rate versus delay interval and St.

Fig. 21. Detection rate versus delay interval and number of symbols.

Monte Carlo sampling technique to carefully sample the
target packet size ECDF to preserve packet size distribution.
We designed techniques to choose right packets of web
objects to preserve the regularity of TCP packet size
dynamics measured by Hurst parameter. All these efforts
make the attack practical and more undetectable. We also
designed intelligent and robust detection algorithms to
recover the distorted symbols caused by Anonymizer and
Internet traffic dynamics. Extensive analysis and experi-
ments were conducted to validate the effectiveness and
feasibility of the proposed attacks. Our data show that the
enhanced covert channel attack could dramatically and
quickly degrade the anonymity service by Anonymizer.
Defending against the proposed attacks remains a challen-
ging task. We plan to work with Anonymizer developers
and investigate the solution in our future work.

ACKNOWLEDGMENTS

This work was supported in part by National Key Basic
Research Program of China (973 Program) under Grants
2010CB328104 and 2011CB302800, the China National High
Technology Research and Development Program under
Grants No. 2013AA013503, National Science Foundation of
China (NSFC) under Grants 61272054, 61202449, 61003257,
61320106007, 61070221, 61070222, the US National Science
Foundation (NSF) under Grants CNS-1116644, DUE-
0942113, CNS-0958477, CNS-1117175, CNS-0916584, CNS-
1065136, CNS-1218876, and by General Research Fund of
the Hong Kong SAR, China No. (CityU 114012, CityU
114513), ShenZhen (China) Basic Research Project No.
JCYJ20120618115257259, by China Specialized Research
Fund for the Doctoral Program of Higher Education under
Grant 20110092130002, JScience Research Foundation of
Graduate School of Southeast University, Jiangsu Provincial
Key Laboratory of Network and Information Security under
Grant BM2003201, and Key Laboratory of Computer Net-
work and Information Integration of Ministry of Education
of China under Grant 93K-9. Any opinions, findings,
conclusions, and recommendations in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] L. Overlier and P. Syverson, “Locating Hidden Servers,” Proc.
IEEE Security and Privacy Symp. (S&P), May 2006.

[2] B.N. Levine, M.K. Reiter, C. Wang, and M. Wright, “Timing
Attacks in Low-Latency Mix-Based Systems,” Proc. Eighth Int’l
Financial Cryptography (FC) Conf., Feb. 2004.

[3] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao, “On Flow
Correlation Attacks and Countermeasures in Mix Networks,”
Proc. Workshop Privacy Enhancing Technologies (PET), May 2004.

[4] S.J. Murdoch and G. Danezis, “Low-Cost Traffic Analysis of Tor,”
Proc. IEEE Security and Privacy Symp. (S&P), May 2006.

[5] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker, “Low-
Resource Routing Attacks against Anonymous Systems,” Proc.
ACM Workshop Privacy Electronic Soc. (WPES), Oct. 2007.

[6] X. Wang, S. Chen, and S. Jajodia, “Network Flow Watermarking
Attack on Low-Latency Anonymous Communication Systems,”
Proc. IEEE Symp. Security & Privacy (S&P), May 2007.

[7] W. Yu, X. Fu, S. Graham, D. Xuan, and W. Zhao, “DSSS-Based
Flow Marking Technique for Invisible Traceback,” Proc. IEEE
Symp. Security and Privacy (S&P), May 2007.

[8] A. Houmansadr, N. Kiyavash, and N. Borisov, “Rainbow: A
Robust and Invisible Non-Blind Watermark for Network Flows,”
Proc. 16th Network and Distributed System Security Symp. (NDSS),
Feb. 2009.

[9] N. Evans, R. Dingledine, and C. Grothoff, “A Practical Congestion
Attack on Tor Using Long Paths,” Proc. 18th USENIX Security
Symp.(Security), Aug. 2009.

[10] Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A New Cell
Counter Based Attack against Tor,” Proc. 16th ACM Conf. Computer
and Comm. Security (CCS), Nov. 2009.

[11] Q.X. Sun, D.R. Simon, Y. Wang, W. Russell, V.N. Padmanabhan,
and L.L. Qiu, “Statistical Identification of Encrypted Web Browsing
Traffic,” Proc. IEEE Symp. Security and Privacy (S&P), May 2002.

[12] M. Liberatore and B.N. Levine, “Inferring the Source of Encrypted
HTTP Connections,” Proc. ACM Conf. Computer and Comm. Security
(CCS), Oct. 2006.

[13] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, and G.M. Masson,
“Language Identification of Encrypted VOIP Traffic: Alejandra y
Roberto or Alice and Bob,” Proc. 16th Ann. USENIX Security Symp.
(Security), Aug. 2007.

[14] C.V. Wright, L. Ballard, S.E. Coull, F. Monrose, and G.M. Masson,
“Spot Me If You Can: Uncovering Spoken Phrases in Encrypted
VOIPConversation,” Proc. IEEE Symp. Security and Privacy (S&P),
May 2008.

[15] W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson, “On the
Self-Similar Nature of Ethernet Traffic (Extended),” IEEE/ACM
Trans. Networking, vol. 2, no. 1, pp. 1-15, Feb. 1994.

[16] J. Beran, Statistics for Long-Memory Processes. Chapman & Hall,
Oct. 1994.

[17] Anonymizer, Inc., http://www.anonymizer.com/, 2011.
[18] T. Ylonen and C. Lonvick, “The Secure Shell (Ssh) Transport Layer

Protocol, RFC 4253,” http://www.ietf.org/rfc/rfc4253.txt, Jan.
2006.

[19] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Authentication
Protocol, RFC 4252,” http://www.ietf.org/rfc/rfc4252.txt, Jan.
2006.

[20] T. Ylonen and C. Lonvick, “The Secure Shell (SSH) Connection
Protocol, RFC 4254,” http://www.ietf.org/rfc/rfc4254.txt, Jan.
2006.

[21] D. Ramsbrock, X. Wang, and X. Jiang, “A First Step Towards Live
Botmaster Traceback,” Proc. 11th Int’l Symp. Recent Advances in
Intrusion Detection (RAID), Sept. 2008.

[22] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-
Based Covert Timing Channels: Automated Modeling and
Evasion,” Proc. 11th Int’l Symp. Recent Advances in Intrusion
Detection (RAID), Sept. 2008.

[23] H.E. Hurst, “Long Term Storage Capacity of Reservoirs,” Trans.
Am. Soc. Civil Engineers, vol. 116, pp. 770-799, 1951.

[24] R.G. Clegg, “A Practical Guide to Measuring the Hurst Para-
meter,” Proc. 21st UK Performance Eng. Workshop, 2005.

[25] B.B. Mandelbrot and J.W.V. Ness, “Fractional Brownian Motions,
Fractional Noises and Applications,” Soc. Industrial and Applied
Math., vol. 10, no. 4, pp. 422-437, Oct. 1968.

[26] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital
Watermarking and Steganography, second ed. Morgan Kaufmann,
2007.

[27] J. Soto and L. Bassham, “Randomness Testing of the Advanced
Encryption Standard Finalist Candidates,” NIST IR 6483, Nat’l
Inst. of Standards and Technology, 1999.

[28] H.-K. Choi and J.O. Limb, A Behavioral Model of Web Traffic,”
Proc. IEEE Int’l Conf. Network Protocols (ICNP), Sept. 1999.

[29] J.J. Lee and M. Gupta, “A New Traffic Model for Current User
Web Browsing Behavior,” technical report, Intel Corp., Santa
Clara, Calif, 2007.

[30] X. Fu, B. Graham, Y. Guan, R. Bettati, and W. Zhao, “NetCamo:
Camouflaging Network Traffic for Real-Time Applications,” Proc.
Texas Workshop Security of Information Systems, Apr. 2003.

[31] W. Dai, “Pipenet 1.1,” http://weidai.com/pipenet.txt, 2011.
[32] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The

Secondgeneration Onion Router,” Proc. 13th USENIX Security
Symp., Aug. 2004.

[33] X. Fu, B. Graham, R. Bettati, and W. Zhao, “Analytical and
Empirical Analysis of Countermeasures to Traffic Analysis
Attacks,” Proc. Int’l Conf. Parallel Processing (ICPP), 2003.

[34] V. Shmatikov and M. hsiu Wang, “Timing Analysis in Low-
Latency Mix Networks: Attacks and Defenses,” Proc. European
Symp. Research in Computer Security (ESORICS), 2006.

[35] “Pen,” http://siag.nu/pen, 2011.
[36] “Adobe Flash Player,” http://www.adobe.com/products/

flashplayer/, 2011.

LING ET AL.: NOVEL PACKET SIZE-BASED COVERT CHANNEL ATTACKS AGAINST ANONYMIZER 2425

[37] D.X. Song, D. Wagner, and X. Tian, “Timing Analysis of
Keystrokes and Timing Attacks on SSH,” Proc. 10th USENIX
Security Symp., Aug. 2001.

[38] N. Kiyavash, A. Houmansadr, and N. Borisov, “Multi-Flow
Attacks against Network Flow Watermarking Schemes,” Proc.
17th USENIX Security Symp., July/Aug. 2008.

[39] Y.J. Pyun, Y.H. Park, X. Wang, D.S. Reeves, and P. Ning, “Tracing
Traffic through Intermediate Hosts that Repacketize Flows,” Proc.
IEEE INFOCOM, May 2007.

[40] C.V. Wright, S.E. Coull, and F. Monrose, “Traffic Morphing:
An Efficient Defense against Statistical Traffic Analysis,” Proc.
Network and Distributed Security Symp. (NDSS), Feb. 2009.

[41] P. Peng, P. Ning, and D.S. Reeves, “On the Secrecy of Timing-
Based Active Watermarking Trace-Back Techniques,” Proc. IEEE
Security and Privacy Symp. (S&P), May 2006.

[42] X. Wang and D.S. Reeves, “Robust Correlation of Encrypted
Attack Traffic through Stepping Stones by Manipulation of Inter-
Packet Delays,” Proc. ACM Conf. Computer and Comm. Security
(CCS), Nov. 2003.

[43] G. Shah, A. Molina, and M. Blaze, “Keyboards and Covert
Channels,” Proc. 15th USENIX Security Symp., July/Aug. 2006.

[44] S. Cabuk, C.E. Brodley, and C. Shields, “IP Covert Timing
Channels: Design and Detection,” Proc. ACM Conf. Computer and
Comm. Security (CCS), Oct. 2004.

Zhen Ling received the BS degree in computer
science from Nanjing Institute of Technology,
China, in 2005, and is working toward the PhD
degree in the School of Computer Science and
Engineering, Southeast University, Nanjing,
China. He joined Department of Computer
Science at the City University of Hong Kong
from 2008 to 2009 as a research associate, and
then joined Department of Computer Science at
the University of Victoria from 2011-2013 as a

visiting scholar. His research interests include network security, privacy,
and forensics. He is a member of the IEEE.

Xinwen Fu received the BS and MS degrees in
electrical engineering in 1995 and 1998, respec-
tively, from Xi’an Jiaotong University, China, and
the University of Science and Technology of
China, respectively. He received the PhD degree
in 2005 in computer engineering from Texas
A&M University. He is an associate professor in
the Department of Computer Science, University
of Massachusetts Lowell. From 2005 to 2008, he
was an assistant professor with the College of

Business and Information Systems at Dakota State University. In the
summer of 2008, he joined University of Massachusetts Lowell as a
faculty member. His current research interests include network security
and privacy. He is a member of the IEEE.

Weijia Jia received the BSc and MSc degrees
from Center South University, China, in 1982
and 1984, respectively, and the master’s of
applied sciences and the PhD degree from
Polytechnic Faculty of Mons, Belgium in 1992
and 1993, respectively, all in computer science.
He is currently a full professor in the Department
of Computer Science and the director of Future
Networking Center, ShenZhen Research Insti-
tute of City University of Hong Kong (CityU). He

joined German National Research Center for Information Science
(GMD) in Bonn (St. Augustine) from 1993 to 1995 as a research fellow.
In 1995, he joined Department of Computer Science, CityU as an
assistant professor. His research interests include next generation
wireless communication, protocols and heterogeneous networks;
distributed systems, multicast and anycast QoS routing protocols.

Wei Yu received the BS degree in electrical
engineering from Nanjing University of Technol-
ogy in 1992, the MS degree in electrical
engineering from Tongji University in 1995, and
the PhD degree in computer engineering from
Texas A&M University in 2008. He is an assistant
professor in the Department of Computer and
Information Sciences, Towson University, Mary-
land. Before that, he was with Cisco Systems Inc.
for almost nine years. His research interests

include cyber space security, computer network, and distributed
systems. He is a member of the IEEE and the IEEE Computer Society.

Dong Xuan received the BS and MS degrees
in electronic engineering from Shanghai Jiao
Tong University (SJTU), China, in 1990 and
1993, and the PhD degree in computer en-
gineering from Texas A&M University in 2001.
Currently, he is a full professor in the Depart-
ment of Computer Science and Engineering,
The Ohio State University (OSU). He was with
the faculty of Electronic Engineering at SJTU
from 1993 to 1998. His research interests

include distributed computing, computer networks, and cyberspace
security. He received the US National Science Foundation (NSF)
CAREER Award in 2005 and the Lumley Research Award from the
College of Engineering, OSU in 2009. He is a member of the IEEE.

Junzhou Luo received the BS degree in
applied mathematics from Southeast University
in 1982, and the MS and PhD degrees in
computer network both from Southeast Univer-
sity in 1992 and in 2000, respectively. He is a
full professor in the School of Computer
Science and Engineering, Southeast University,
Nanjing, China. His research interests include
next generation network, protocol engineering,
network security and management, grid and

cloud computing, and wireless LAN. He is a member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 12, DECEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

