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a b s t r a c t

Smart devices, as themostwidely used platforms for themobile cyber–physical system (CPS) applications,
such as smart home and health care systems, are becoming the prime targets of various attackers for
users’ considerable private and confidential data in them. To fight against side channel attacks aiming
to obtain credentials, e.g., passwords, during the process of user authentication, touch pattern based
implicit authentication has been proposed. However, such a defensive technique fails to obtain an entire
pattern of user operation byderiving user operation data via a touch-enabled screen. Considering that user
operations, including on-screen and in-air finger movements, are performed in three-dimensional (3D)
space, we propose a novel 3D magnetic finger motion pattern based implicit authentication technique,
referred to as FingerAuth. To use FingerAuth, a user operates on her mobile device, e.g., texting a message
and browsing websites, with a magnetic ring on the finger she uses. With the help of a built-in three-axis
magnetometer on the mobile device, we can derive the 3D magnetic finger motion pattern as a human
behavioral feature for implicitly authenticating the user. By using machine learning techniques, a robust
3D magnetic finger motion pattern detection model can be constructed. Two rounds of usability tests are
conducted for the evaluation of FingerAuth. In the initial usability test targeting a given group of smart
device users, we test the uniqueness of the proposed trait in typing scenario, achieving high average
accuracy of 96.38%, low average false acceptance rate (FAR) of 4.06%, and false rejection rate (FRR) of
3.18%. In the second user usability test, we further evaluate the permanence of 3D fingermotion pattern in
multiple user–device interaction scenarios. There is an interim of two-week period between the training
data collection phase and the testing data collection phase. The results of the high accuracy of over 80%,
as well as the FAR and FRR of below 15%, indicate the applicability of FingerAuth.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Mobile cyber–physical systems are a prominent subcategory
of cyber–physical systems. Smart phones, with significant com-
putational resources, multiple sensory input/output devices and
communication mechanisms, etc., serve as ideal platforms for mo-
bile CPS applications, e.g., smart home and health care systems.
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As the most commonly used devices to access various services in
these systems, smart phones save extensive sensitive user infor-
mation. As a result, a growing number of viruses, Trojan horses,
and mobile computing worms that target smart phones have been
found in the past a few years [1–3]. To prevent disclosure of
users’ private and confidential data, authentication techniques are
pervasively adopted. However, most current authentication tech-
niques (e.g., password, fingerprint recognition andAndroid pattern
look) used on smart devices nowadays are merely invoked at the
beginning of a session. Therefore, by retrieving the authentication
credential through diverse side channels [4–8], attackers could
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still pose a severe security threat and thus perform impersonation
attacks against mobile devices in these systems.

Despite of some secure input methods [9] proposed to defend
against side channel attacks, implicit authentication [10,11] is gen-
erally regarded as amore promising technique to resolve the above
issue. Differing from explicit authentication which requires users
to perform predefined authentication actions, either by entering
the password or placing the finger on top of certain sensor, implicit
authentication senses and employs the traits of users in a more
transparentway. The built-in sensors on amobile device helpmake
the authentication of users implicit. Considering most of human–
device interactions are performed through touchscreens, some
researchers [11] focus mainly on geometric patterns of users’ in-
teraction behavior on the touchscreens for implicit authentication.
Though part of the finger interaction data (e.g., timestamp, touch
pressure, touchposition, and area of the finger touching the screen)
can be recorded in this way, the fingermotion pattern could hardly
be completely modeled as users’ operations are performed in
three-dimensional space. Therefore, touch pattern based implicit
authentication cannot provide accurate user identification.

In this paper, we propose a novel implicit authentication ap-
proach by exploiting a 3D magnetic finger motion pattern. A user
is asked to wear a magnetic ring on her finger and to interact
with her mobile device on which a built-in magnetometer senses
the nearby caused magnetic field changes. Since the finger length,
the angle between the finger and the touchscreen, and the in-air
finger gestures may vary from person to person, various magnetic
field changing pattern caused by a certain user’s finger motion can
be utilized to distinguish different users. The finger motion mag-
netometer data can be obtained during user–device interactions
when the influence of backgroundmagnetic field is excluded.With
the extracted effective features and classification algorithms, the
user finger pattern for implicit authentication can be detected. To
demonstrate the effectiveness and efficiency of this approach, we
perform extensive empirical experiments.

The following is the major contribution of this paper.

• FingerAuth sets a precedent for future authentications as it
is the first of its kind for implicit authentication over mobile
devices. Most importantly, as a less-demanding approach,
what it requires is merely a magnetic ring and a magne-
tometer which is a common integral part of mobile devices.
Users’ finger and motion pattern contain both physiological
and behavioral characteristics, which we make use of the
magnetic ring to retrieve for implicit authentication pur-
pose.

• To authenticate users implicitly, effective features are ex-
tracted from the magnetometer data containing 3D finger
motion pattern. To evaluate the feasibility and effectiveness
of the proposed approach, we conduct two rounds of usabil-
ity tests. The results of an average accuracy of above 80% and
an average false acceptance rate and false rejection rate of
below 15% indicate the uniqueness and permanence of 3D
finger motion pattern in ordinary user–device interaction
scenarios.

An early version of the FingerAuth is presented in [12]. In
the conference version, we first designed the 3D magnetic finger
motion pattern based implicit authentication and then performed
an offline test on its feasibility. In the journal version, we perform
two rounds of usability tests on the FingerAuth installed into the
smartphone to evaluate the runtime performance. The empirical
results illustrate the effectiveness and efficiency of this approach.

The structure of the rest of this paper is as follows. The related
work is presented in Section 2, and in Section 3 the threat model as
well as the basic idea of our proposed approach will be introduced.
The results of the first usability study will be listed in Section 4,

demonstrating the uniqueness of the proposed trait among a given
group of smart device users. In Section 5, we present the results
of the second usability test, further verifying the permanence of
the proposed implicit authentication approach. Section 6 is the
conclusion part.

2. Related work

Without any explicit actions, implicit authentication identifies
normal user activities in a transparent way [13]. Implicit authen-
tication technique could either be utilized at login or post-login
phase. When adopted at login phase, as a secondary factor for
authentication [10], it helps effectively prevent the system from
potential attackers who have already obtained a legitimate user’s
knowledge or possession factor for explicit authentication. At post-
login phase, implicit authentication re-authenticates the user so
that the attacker who is able to get access to a system authenti-
cated by a legitimate user might fail to obtain the unauthorized
information.

The majority of implicit authentication techniques commonly
exploit behavioral biometrics [14] for verifying the user’s authen-
ticity. Many researchers focus on various characteristics of touch
behaviors for authentication purpose since most user–device in-
teracting behaviors are performed through a touch screen. A touch-
screen record raw date, e.g., timestamp, touch pressure, touch po-
sition, and size (area of the finger touching the screen), fromwhich
statistical and/or geometric features are extracted. For authenti-
cation, algorithms and techniques e.g., dynamic time warping and
machine learning are directly applied to the raw data or extracted
features [11,15,16]. Previous studies on keystroke dynamics in
the past decades [17–19] make typing one of the chief research
subjects among various touch interactions. Different fromprevious
studies putting much emphasis on physical keyboards for tradi-
tional systems, typing is often performed on a mobile device with
an on-screen virtual keyboard. Consequently, this approach turns
out to bemore promising due to the combination of touch features
with traditional ones, e.g., latency, interval, dwell time, and flight
time [20]. Moreover, other built-in sensors are investigated, for
example, accelerometer and/or gyroscope used to extract biomet-
ric from gait [21,22], typing [23,24], or other user behaviors [25].
Cameras [26] are applied in some of the studies, too.

Meanwhile, some existing works investigate the built-in mag-
netometer in the field of human–computer interaction [27–29] and
explicit authentication [30]. The study of [30] uses a magnet to
derive a user signature for explicit authentication, while we make
implicit authentication possible with a magnetic ring. There is no
comparable work to FingerAuth in this paper, to the best of our
knowledge.

There is an apparent tendency to use multiple traits for implicit
authentication for that every proposed approach might have pros
and cons under diverse conditions. Generally speaking, implicit
authentication techniques using human behavioral biometrics on
mobile devices are at a premature stage, hence more thorough
studies should be performed on evaluating distinctiveness and
permanence of proposed characteristics over larger group of users
in the long run.

3. The FingerAuth approach

The threat model will be presented in this section, and we
would elaborate on the basic idea of FingerAuth approach and
introduce the techniques for sensor data processing.
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Fig. 1. A magnetic ring on the user’s index finger.

3.1. Threat model

Assuming that an attacker is able to obtain a legitimate user’s
authentication credential including PIN, password or even finger-
print, there would be a high possibility that she could bypass
the explicit authentication mechanism which is widely applied in
most mobile devices, or have the device under control during an
authorized session by all means. Due to the lack of effective pro-
tection mechanism adopted by the operating system of the device,
the attacker could effortlessly obtain legitimate users’ privacy and
priceless information.

3.2. Basic idea

What we propose is that the behavioral biometric extracted
fromusers’ fingermotion during daily interactionswith themobile
device could be helpful in implicit authentication. Considering that
most user–device interactions happen between the finger and the
touchscreen, our implicit authentication through the 3D finger
motion pattern ensures users’ superior security compared to the
earlier workwhich tend to extract their fingermotion patternwith
the touchscreen data only.

A built-in three-axis magnetometer is required for deriving the
3D magnetic finger motion pattern. For the purpose, the user is
asked to wear a magnetic ring on one of her fingers as shown in
Fig. 1. So that when she interacts with the device, the magnetic
ring will cause changes in the magnetic field value around the
device, which could be sensed by a built-in magnetometer. The
changing pattern of magnetic field value indicates the 3D motion
pattern of the finger. The magnetometer readings from a typical
typing scenario are shown in Fig. 2. During the normal user–device
interactions, we record the readings and apply machine learning
techniques to them so to implicitly verify whether the current
user is a legitimate one or not. Fig. 3 presents the workflow of our
proposed system. We elaborate on the workflow as follows.

3.3. Sensor data preprocessing

We collect and obtain readings on the magnetometer every
day when the user wearing a magnetic ring interacts with the
mobile device. Having eliminated the background magnetic field,
we divide the magnetic field data into segments corresponding
to on-screen and in-air gestures. What is noteworthy is that the
device attitude data is recorded for the cancellation of background
magnetic field, while the touchscreen data is for data segmentation
purpose.

A magnetometer refers to a three-axis sensor which is typically
applied for navigation on mobile devices. On iOS platform, the
sensor is often of vector magnetometer type and can measure the
vector components of a magnetic field at a point in space. Fig. 4

Fig. 2. Magnetometer readings during sentence typing.

Fig. 3. Workflow of the FingerAuth approach.

Fig. 4. Coordinate system of the used mobile device.

depicts the coordinate system used on iOS devices, in which the
field strength sensed by amagnetometer along each axis is in units
of microteslas, while the direction of the field is represented by
signs of sensor readings. The readings of strength and signs change
as the finger moves around the device. What is more, different
locationsmight have an impact on the environmentmagnetic field,
which we have to exclude during study to mitigate unexpected
influence.
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3.3.1. Outlier processing and multi-sensor time alignment
To eliminate the influence of the sensor outlier in the exper-

iment, the potential magnetic field sensor outlier data should be
filtered. Through the analysis of the magnetic field sensor data,
it is found that the normal value ranges from tens to hundreds.
Accordingly, we set an upper limit of the magnetic field strength
value as T = 1000. If the reading of the magnetic field sensor
on any axis of magnetic field meets the criteria of |Bk (i)| >

T , where k ∈ {x, y, z} and i ∈ [1, n], it is treated as an outlier.
The filter process of the magnetic field sensor outlier is as follows:

• Traverse each data in the record of themagnetic field sensor
data Bk(i);

• Based on the upper limit T , determine whether the current
magnetic field sensor data is normal or not. If not, the outlier
would be processed in the following step. Otherwise, the
next data would be processed;

• Determine whether the current data belongs to the first
record of the magnetic field sensor record. If so, set its value
to zero and process the next data. If not, proceed to the next
step;

• Determine whether the current data belongs to the last
record of the magnetic field sensor record. If so, set its value
to zero and process the next data. Otherwise, proceed to the
next step;

• Determine whether the data before and after the current
data is an outlier or not. If both are not, the current data
will be set to the value of an average of the data before and
after it, and the next data will be processed. Otherwise, the
current data will be set to zero and the next data will be
processed.

There must exist differences in sampling frequency among
a variety of built-in sensors. Taking the iPhone 5s used in the
experiment for example, the sampling frequency of its built-in
magnetic field senor is about 50Hz, with that of the attitude sensor
reaching about 100 Hz. Therefore, it is necessary to perform time
alignment on the data of relevant sensors before using the data of
multiple sensors in a comprehensive way. Specifically, we use the
sensor data of a relatively low sampling frequency as a benchmark
(in this experiment, we use the magnetic field sensor data as a
benchmark), and denote the corresponding timestamp of each
record by the benchmark sensor as tbase (i), and that of each data
recorded by other sensor (in this experiment, mainly refer to the
attitude sensor) as tother (j). In order to realize the time alignment
of the multi-sensor data, it is necessary to traverse the timestamp
corresponding to eachmagnetic field sensor data and then to select
a record which satisfies the minimum value |tbase (i) − tother (j)| in
the attitude sensor recording to realize the time alignment of the
two records.When dealingwith the last magnetic field sensor data
record, we delete the redundant attitude sensor data so as to make
multi-sensor data time alignment possible.

3.3.2. Background magnetic field cancellation
The overall magnetic field around a phone (BT) is the superpo-

sition of the magnetic field from the magnetic ring (BR) and the
environment (BE, it is a superposition of magnetic field from Earth
and nearby ferromagnetic materials). Thus, we have:

BT = BR + BE. (1)

Due to device rotations and the presence of hard-iron and soft-
iron effects on the magnetometer, the magnetic field measured by
a smart phone (BP) is as follows [31]:

BP = W · M · BT + V (2)

where M denotes the rotation matrix of the smart phone, while
W and V represent soft-iron and hard-iron effects for simplicity,
respectively. Permanently magnetized ferromagnetic components
of the sensor contribute to the hard-iron effect, and soft-iron effect
is defined as ‘‘the interfering magnetic field induced by the geo-
magnetic field onto unmagnetized ferromagnetic components on
the PCB’’ [31]. To eliminate the above effects, there are many cali-
bration methods offered by most smart phone operating systems.
We further mitigate potential side efforts that could be caused
by environment magnetic field. The magnetic field measured by
a smart phone after the standard calibration process will be:

BP = M · (BR + BE). (3)

We could regard the magnetic field strength of BE in Eq. (3) as
a constant at a given location without significant environmental
change, (e.g., increasing temperature). For the purpose of canceling
the background magnetic field, we first collect it with the built-
in magnetometer without existence of the magnetic ring. Let BE0
be the recorded background magnetic field vector, and M0 be the
rotation matrix corresponding to the attitude of the smart phone
during environment magnetic field collection, since the inverse of
a rotationmatrix is its transpose, thenwe can have the background
magnetic field:

BE0 = M0 · BE (4)

BE = (M0)−1
· BE0 = (M0)T · BE0. (5)

For magnetic field vector BP recorded with the presence of the
magnetic finger ring, we have:

BP = M · (BR + BE) = B′

R + M · BE

= B′

R + M · ((M0)T · BE0). (6)

In Eq. (6), M is the rotation matrix corresponding to a new
attitude of the smart phone, while B′

R is the measured magnetic
field introduced by the ring. As the concern of our study, we have
the measure magnetic field of the magnetic ring:

B′

R = BP − M · ((M0)T · BE0). (7)

We could directly obtainBE0 andBP from the recorded data, and
calculate the rotation matrix M0 and M using the rotation angles
of the mobile device. According to Eq. (7), we might minimize
potential side effects triggered by environment magnetic field on
later experiment. Later we could concentrate on the analysis of the
magnetic field changing pattern introduced by the magnetic ring
on the user’s finger.

3.3.3. Sensor data segmentation
There are three types of sensor data to be collected, including

magnetometer data, touchscreen sensor data, and device attitude
data.Wedenote themagnetometer readings of series of timestamp
and values of the magnetic field along each axis as T (i), Bx(i), By(i),
and Bz(i), respectively. Touch information such as timestamp and
touch phase can be found in touchscreen sensor data. And the
device attitude data serves for background magnetic field cancel-
lation.

The first step is to segment out magnetic field sensor data
corresponding to user operations according to the timestamp of
the first touch press and the last touch release. Due to the sampling
rate difference betweenmagnetometer and orientation sensor, the
second step of data alignment between magnetometer readings
and device attitude values is of great necessity. For each record
from magnetometer readings, the timestamp T (i) is used to find
the corresponding device attitude record with a minimum time
difference. Followed after the data alignment is the background
magnetic field cancellation process, which is performed based on
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Table 1
Definition of some features.

Feature Definition

Coefficient of Variation CV =
σ
µ

Kurtosis κ =
1
n
∑n

i=1(xi−x)4

( 1n
∑n

i=1(xi−x)2)2

Skewness s =
1
n
∑n

i=1(xi−x)3

(
√

1
n
∑n

i=1(xi−x)2)3

Root Mean Square rms =

√
1
n

∑n
i=1x

2
i

Zero Crossing Rate zcr =
1

n−1

∑n
i=21R<0(xi · xi−1)

where 1R<0 is an indicator function

Table 2
Counting information of input instances.

Participant ID Count of Instances
with Different Labels

Total Count

Legitimate Illegitimate

#1 1529 1526 3055
#2 1563 1554 3117
#3 1904 1904 3808
#4 1920 1918 3838
#5 1544 1540 3084
#6 1470 1470 2940
#7 1561 1554 3115
#8 1443 1442 2885
#9 1937 1932 3869
#10 1528 1526 3054
#11 1456 1456 2912
#12 1570 1568 3138
#13 1687 1680 3367
#14 1375 1372 2747
#15 1462 1456 2918

Eq. (7). The last step is to further classify magnetometer data into
smaller segments in terms of on-screen and in-air finger move-
ments for the purpose of later data analysiswith touch information
recorded from touch sensor.

4. First study: uniqueness of 3Dmagnetic fingermotionpattern
in typing scenario

In this section, we conduct the first usability study to test the
uniqueness of the proposed trait among a given group of smart
device users.

4.1. Feature extraction

After the data is properly preprocessed, a feature extraction
process is performed. For each magnetic field data segment Si

obtained from data segmentation phase, a corresponding feature
vector F = {f1(Si), f2(Si), . . . , fn(Si)} is extracted for each axis data.
Sixteen features are adopted: Mean, Median, Variance, Standard
Deviation, Mode, Coefficient of Variation, Kurtosis, Skewness, Root
Mean Square, Zero Crossing Rate, and the 1st, 5th, 25th, 75th, 95th,
99th Percentile. Apart from somewell-known ones, the definitions
are given in Table 1.

4.2. Data collection

We design and conduct extensive experiments to test the ap-
plicability of using magnetometer to collect and extract motion
pattern information of the finger with a magnetic ring on, and the
effectiveness of utilizing this pattern to implicitly authenticate the
user. In this study, only the typing scenario is considered, which
mainly involves tap gesture, as well as in-air gestures between
taps.

In order to collect sensor data in the scenario mentioned above,
an app for iOS devices is designed and implemented, and it logs
data from touch and magnetic field sensors, as well as device
attitude data for preprocessing purpose while the user is typing.
Fifteen volunteers from our campus are recruited to participate in
the data collection activity, and each one is asked to type the same
ten predefined sentences for three times using the app we have
developed. Since the application scenario is that a user’s mobile
phone needs to be able to identify whether the current user is
the owner, the same iPhone 5s smartphone is used, as well as the
same magnetic ring, which is put on each participant’s right index
finger with identical direction, and all operations are performed
using the index finger. Before each collection session, background
magnetic field value without the presence of magnetic ring is also
collected for backgroundmagnetic field cancellation purpose. Each
extracted feature vector is first labeled with corresponding partic-
ipant’s name to make the data traceable. Then, each participant
is assumed as a legitimate user in turn. Corresponding data is
copied and labeledwith the string ‘‘legitimate’’, and approximately
the same amount of ‘‘illegitimate’’ data is produced by evenly
copying data from other participants with the labels are changed
to ‘‘illegitimate’’. The newly generated data, referred to as input
instances, is stored in specific format that the machine learning
software later used could utilize it. Counting information of input
instances for each participant is as Table 2 shows.

4.3. Performance evaluation

We use both classification and authentication metrics to eval-
uate the performance of the proposed approach, specifically, clas-
sification accuracy, false acceptance rate (FAR), and false rejection

Table 3
Evaluation results of first study.

Participant ID Naive Bayes Random Forest Support Vector Machine

Accuracy FAR FRR Accuracy FAR FRR Accuracy FAR FRR

#1 90.44% 18.02% 1.11% 97.68% 3.54% 1.11% 93.72% 7.27% 5.30%
#2 76.48% 44.66% 2.50% 97.34% 2.25% 3.07% 95.73% 4.89% 3.65%
#3 64.44% 65.97% 5.15% 95.06% 5.36% 4.52% 87.50% 11.08% 13.92%
#4 64.36% 69.24% 2.08% 95.44% 5.53% 3.59% 85.10% 19.34% 10.47%
#5 65.99% 60.91% 7.19% 99.42% 0.78% 0.39 98.80% 1.69% 0.71%
#6 83.57% 17.96% 14.90% 97.79% 1.43% 2.99% 94.80% 4.69% 5.71%
#7 67.67% 61.39% 3.40% 96.73% 4.25% 2.31% 86.04% 7.79% 20.12%
#8 68.77% 59.85% 2.63% 97.61% 1.32% 3.47% 95.42% 4.37% 4.78%
#9 72.09% 54.24% 1.65% 96.33% 1.97% 5.37% 87.34% 12.63% 12.70%
#10 73.12% 52.10% 1.70% 95.68% 6.29% 2.36% 89.95% 10.16% 9.95%
#11 66.41% 65.80% 1.37% 90.69% 12.84% 5.77% 77.30% 19.71% 25.69%
#12 71.03% 57.02% 0.96% 95.60% 4.34% 4.46% 87.09% 11.86% 13.95%
#13 92.16% 2.44% 13.22% 98.40% 0.48% 2.73% 96.35% 3.39% 3.91%
#14 88.75% 6.49% 16.00% 98.91% 0.66% 1.53% 97.67% 2.62% 2.04%
#15 68.71% 60.58% 2.12% 93.04% 9.82% 4.10% 75.91% 25.41% 22.78%
Average 74.27% 46.44% 5.06% 96.38% 4.06% 3.18% 89.91% 9.79% 10.38%
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Table 4
Geometric features.

No. Features Description

1 lenOfLineSeg The distance between the first point and the last point
2 avgLineSegLen The average distance between the adjacent points
3 angleBtwnFirstLastVec The angle between the vector formed by the first two points and the vector formed by the last two points
4 angleBtwnVecXYPlane The angle between the vector formed by the first and last point and the XY plane
5 angleBtwnVecXZPlane The angle between the vector formed by the first and last point and the XZ plane
6 angleBtwnVecYZPlane The angle between the vector formed by the first and last point and the YZ plane
7 angleBtwnPlaneXYPlane The angle between the plane defined by the first, middle and last point and the XY plane
8 angleBtwnPlaneXZPlane The angle between the plane defined by the first, middle and last point and the XZ plane
9 angleBtwnPlaneYZPlane The angle between the plane defined by the first, middle and last point and the YZ plane
10 lenFPointXYPlane The distance between the first point and the XY plane
11 lenFPointXZPlane The distance between the first point and the XZ plane
12 lenFPointYZPlane The distance between the first point and the YZ plane
13 lenLPointXYPlane The distance between the last point and the XY plane
14 lenLPointXZPlane The distance between the last point and the XZ plane
15 lenLPointYZPlane The distance between the last point and the YZ plane
16 lenMPointXYPlane The distance between the middle point and the XY plane
17 lenMPointXZPlane The distance between the middle point and the XZ plane
18 lenMPointYZPlane The distance between the middle point and the YZ plane
19 volOfFirstCuboid The volume of the cuboid that contains the first two data points, divided by the number of data points
20 volOfLastCuboid The volume of the cuboid that contains the last two data points, divided by the number of data points
21 volOfCuboid The volume of the cuboid that contains all the data points, divided by the number of data points

Table 5
Counting information of train and test instances.

ID Sentence typing Picture browsing Web surfing

Train Test Train Test Train Test

#1 3055
(1529/1526)

4748
(2396/2352)

1094
(548/546)

979
(499/480)

1766
(884/882)

1532
(776/756)

#2 3117
(1563/1554)

4023
(2021/2002)

1548
(778/770)

905
(463/442)

2409
(1205/1204)

2576
(1302/1274)

#3 3808
(1904/1904)

3753
(1891/1862)

869
(435/434)

468
(242/226)

2549
(1275/1274)

3628
(1822/1806)

#4 3838
(1920/1918)

4195
(2109/2086)

989
(499/490)

446
(234/212)

2166
(1088/1078)

3686
(1852/1834)

#5 3084
(1544/1540)

3953
(1993/1960)

1803
(907/896)

775
(398/377)

2420
(1216/1204)

2102
(1052/1050)

#6 2940
(1470/1470)

4808
(2414/2394)

1769
(887/882)

1045
(535/510)

2660
(1330/1330)

2331
(1169/1162)

#7 3115
(1561/1554)

4127
(2083/2044)

1206
(604/602)

595
(303/292)

2410
(1206/1204)

1842
(932/910)

#8 2885
(1443/1442)

3846
(1942/1904)

2219
(1113/1106)

1061
(539/522)

2163
(1085/1078)

1452
(738/714)

#9 3869
(1937/1932)

3744
(1882/1862)

1626
(814/812)

834
(421/413)

2268
(1134/1134)

2316
(1168/1148)

#10 3054
(1528/1526)

4005
(2017/1988)

1576
(792/784)

978
(500/478)

2522
(1262/1260)

1653
(841/812)

#11 2912
(1456/1456)

3923
(1977/1946)

1038
(520/518)

403
(207/196)

1823
(913/910)

2073
(1051/1022)

#12 3138
(1570/1568)

3949
(1989/1960)

1435
(721/714)

598
(306/292)

1855
(931/924)

1104
(558/546)

#13 3367
(1687/1680)

4260
(2146/2114)

1156
(582/574)

538
(272/266)

3506
(1756/1750)

2938
(1482/1456)

#14 2747
(1375/1372)

4458
(2246/2212)

1176
(588/588)

523
(269/254)

1466
(738/728)

2053
(1031/1022)

#15 2918
(1462/1456)

3809
(1919/1890)

1297
(653/644)

787
(403/384)

1772
(890/882)

1166
(592/574)

rate (FRR). In classification scenarios, accuracy is the proportion of
correctly classified instances over a given instances set, while FAR
and FRR are used in biometric systems to measure the probability
of incorrectly accepting a malicious user and falsely rejecting a
legitimate user respectively [13]. Let TP denote the number of
instances that correctly classified as legitimate, TN denote the
number of instances correctly classified as illegitimate, FP denote
the number of instances that incorrectly classified as legitimate,
FN denote the number of instances that incorrectly classified as
illegitimate. Then, the formulas for calculating the accuracy, the
FAR and the FRR are shown as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

FAR =
FP

FP + TN
(9)

FRR =
FN

FN + TP
(10)

Recall that the goal is to study the feasibility of using the 3D
magnetic finger motion pattern to verify current user’s authen-
ticity, which could be abstracted as a classification problem in
the domain of machine learning over feature vectors extracted
from corresponding sensor data. Since the study itself is not tar-
geting at machine learning issues, the widely used open-source
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Table 6
Algorithms used in second study.

No. Algorithm (Weka API)

1 weka.classifiers.bayes.NaiveBayes
2 weka.classifiers.functions.Logistic
3 weka.classifiers.functions.SimpleLogistic
4 weka.classifiers.functions.SMO
5 weka.classifiers.rules.DecisionTable
6 weka.classifiers.rules.Jrip
7 weka.classifiers.rules.OneR
8 weka.classifiers.rules.PART
9 weka.classifiers.rules.ZeroR
10 weka.classifiers.trees.DecisionStump
11 weka.classifiers.trees.HoeffdingTree
12 weka.classifiers.trees.J48
13 weka.classifiers.trees.RandomForest
14 weka.classifiers.trees.RandomTree
15 weka.classifiers.trees.REPTree
16 weka.classifiers.functions.LibSVM
17 weka.classifiers.functions.MultilayerPerceptron

machine learning software Weka [32] is used. Three classifica-
tion algorithms are employed upon the same input data to learn
which algorithm has the best potential performance. Specifically,
the algorithms used are Naive Bayes, Random Forest and Support
Vector Machine, all of which are supported by Weka. Evaluation
results using 10-fold cross-validation are shown in Table 3. From
the table we could see that although Naive Bayes could achieve
high accuracy on some users’ data, the FAR and FRR remain high
comparedwith those of the other two algorithms,which could lead
to security and usability issues. Although SVM has considerable
performance, it fails on some users’ data. In general, Random
Forest has the best performance among the three, with an average
accuracy of 96.38%, an average FAR of 4.06%, and an average FRR of
3.18%.

The promising results verifies the uniqueness of the proposed
trait among the given group of users, as well as the applicability of
the proposed approach for implicit authentication purpose.

5. Second study: permanence of 3D finger motion pattern in
multiple user–device interaction scenarios

Auseful biometric trait should also remain sufficiently invariant
over a period of time, thus we further conduct the second usability
study to evaluate the permanence of the proposed trait.

5.1. User–device interaction scenarios

Typing constitutes only a small portion of user–device inter-
action gestures, we therefore take users’ other gestures into con-
sideration as well, specifically, swipe and zoom gestures. In order

Fig. 5. Snapshot of the unzoomed and zoomed picture.

to test these gestures in a natural way that resembles users’ daily
activities, we consider three user–device interaction scenarios,
namely, sentence typing, picture browsing and web surfing. The
same fifteen participants from the first usability study are recruited
in the second study.

The training data collection procedure of sentence typing sce-
nario is the same as that in the first usability study. In order to
collect sensor data under the other two scenarios, we develop an
image gallery app and a web surfing app, and the sensor data
recording code is added into both apps. For picture browsing,
twenty-six pictures are used, and every picture is watermarked
with a string composed of two digits and two letters, while the
position of the watermark is randomized. The initial size of the
watermark is quite small that a participant can hardly recognize
without a zoom in action, as shown in Fig. 5. Upon browsing, each
participant is first required to zoom in the picture to the extent
that she could see the watermark string clearly, then zoom out and
swipe to the next picture. For web surfing, ten web page addresses
are used, all of which are from well-known news websites. Upon
surfing the Internet, each participant is required to read every web
page in a way that resembles her daily behavior to the greatest
extent.

5.2. Geometric features

In the first usability study, sixteen features are extracted, but
most of them are statistical ones. By taking the magnetic field

Table 7
Experiment results considering scenarios jointly.

ID Algorithm No. Parameter No. Feature Selection Scenario Accuracy FAR FRR

#1 16 92 GSCE WS 89.36% 13.10% 8.25%
#2 6 25 GSCE PB 84.20% 17.42% 14.25%
#3 15 75 GR PB 83.12% 16.37% 17.36%
#4 16 84 GSCE WS 87.17% 10.09% 15.55%
#5 17 98 GR PB 93.16% 9.02% 4.77%
#6 4 14 GSCE WS 87.99% 10.41% 13.60%
#7 16 81 GR ST 73.03% 27.30% 26.64%
#8 16 89 GSCE WS 95.18% 4.34% 5.28%
#9 1 3 GR PB 85.13% 9.69% 19.95%
#10 14 66 GSCE WS 85.18% 10.71% 18.79%
#11 6 26 GR WS 86.06% 14.77% 13.13%
#12 16 92 GR WS 98.91% 1.10% 1.08%
#13 11 45 GSCE WS 76.51% 36.81% 10.39%
#14 16 84 GSCE WS 68.58% 25.73% 37.05%
#15 17 100 GSCE WS 93.31% 7.67% 5.74%
Average 85.79% 14.30% 14.12%
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Table 8
Algorithm parameters used.

No. Parameter String (Weka API) Algorithm No.

1 ‘‘’’
12 ‘‘-D’’

3 ‘‘-K’’

4 ‘‘’’
25 ‘‘-R 1.0E-8 -M -1 -num-decimal-places 4’’

6 ‘‘-C -R 1.0E-8 -M -1 -num-decimal-places 4’’

7 ‘‘’’

38 ‘‘-I 0 -M 500 -H 50 -W 0.0’’
9 ‘‘-I 0 -M 200 -H 50 -W 0.0’’
10 ‘‘-I 0 -S -M 500 -H 50 -W 0.0 –A’’

11 ‘‘’’

4

12 ‘‘-C 1.0 -L 0.001 -P 1.0 E-12 -N 0 -V -1 -W 1 -K
\‘‘weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007\’’ -calibrator
\‘‘weka.classifiers.functions.Logistic -R 1.0 E-8 -M -1 -n um-decimal-places 4\’’’’

13 ‘‘-C 1.0 -L 0.001 -P 1.0 E-12 -N 1 -V -1 -W 1 -K
\‘‘weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007\’’ -calibrator
\‘‘weka.classifiers.functions.Logistic -R 1.0 E-8 -M -1 -n um-decimal-places 4\’’’’

14 ‘‘-C 1.0 -L 0.001 -P 1.0 E-12 -N 1 -V -1 -W 1 -K
\‘‘weka.classifiers.functions.supportVector.RBFKernel -G 0.01 -C 250007\’’ -calibrator
\‘‘weka.classifiers.functions.Logistic -R 1.0 E-8 -M -1 -n um-decimal-places 4\’’’’

15 ‘‘-C 1.0 -L 0.001 -P 1.0 E-12 -N 0 -M -V -1 -W 1 -K
\‘‘weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007\’’ -calibrator
\‘‘weka.classifiers.functions.Logistic -R 1.0 E-8 -M -1 -n um-decimal-places 4\’’’’

16 ‘‘-C 1.0 -L 0.001 -P 1.0 E-12 -N 1 -M -V -1 -W 1 -K
\‘‘weka.classifiers.functions.supportVector.PolyKernel -E 1.0 -C 250007\’’ -calibrator
\‘‘weka.classifiers.functions.Logistic -R 1.0 E-8 -M -1 -n um-decimal-places 4\’’’’

17 ‘‘’’

5

18 ‘‘-X 1 -S \‘‘weka.attributeSelection.BestFirst -D 1 -N 5\’’’’
19 ‘‘-X 1 -E auc -S \‘‘weka.attributeSelection.BestFirst -D 1 -N 5\’’’’
20 ‘‘-X 1 -S \‘‘weka.attributeSelection.GreedyStepwise -T -1.7976931348623157E308 -N

-1 -num-slots 1\’’’’
21 ‘‘-X 1 -S \‘‘weka.attributeSelection.GreedyStepwise -C -T -1.7976931348623157E308

-N -1 -num-slots 1\’’’’
22 ‘‘-X 1 -E auc -S \‘‘weka.attributeSelection.GreedyStepwise -T

-1.7976931348623157E308 -N -1 -num-slots 1\’’’’
23 ‘‘-X 1 -E auc -S \‘‘weka.attributeSelection.GreedyStepwise -C -T

-1.7976931348623157E308 -N -1 -num-slots 1\’’’’

24 ‘‘’’
625 ‘‘-F 3 -N 2.0 -O 2 -S 1’’

26 ‘‘-F 3 -N 2.0 -O 2 -S 1 –P’’

27 ‘‘’’

728 ‘‘-B 6’’
29 ‘‘-B 50’’
30 ‘‘-B 120’’

31 ‘‘’’

8

32 ‘‘-M 2 -C 0.25 -Q 1’’
33 ‘‘-R -M 2 -N 3 -Q 1’’
34 ‘‘-M 2 -C 0.25 -Q 1 –J’’
35 ‘‘-M 2 -C 0.25 -Q 1 –doNotMakeSplitPointActualValue’’
36 ‘‘-B -M 2 -C 0.25 -Q 1’’
37 ‘‘-M 7 -C 0.25 -Q 1’’
38 ‘‘-M 7 -C 0.25 -Q 1 –doNotMakeSplitPointActualValue’’
39 ‘‘-U -M 7 -C 0.75 -Q 1 –doNotMakeSplitPointActualValue’’
40 ‘‘-U -M 7 -C 0.75 -Q 1’’

41 ‘‘’’ 9

42 ‘‘’’ 10

43 ‘‘’’

11

44 ‘‘-L 2 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0’’
45 ‘‘-L 0 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0’’
46 ‘‘-L 1 -S 1 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0’’
47 ‘‘-L 0 -S 0 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0’’
48 ‘‘-L 2 -S 0 -E 1.0E-7 -H 0.05 -M 0.01 -G 200.0 -N 0.0’’

49 ‘‘’’

12

50 ‘‘-C 0.25 -M 2’’
51 ‘‘-C 0.25 -M 2 –doNotMakeSplitPointActualValue’’
52 ‘‘-C 0.25 -M 2 –A’’
53 ‘‘-C 0.25 -M 2 -A –doNotMakeSplitPointActualValue’’
54 ‘‘-C 0.25 -M 7 –doNotMakeSplitPointActualValue’’
55 ‘‘-C 0.25 -M 7’’

(continued on next page)
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Table 8 (continued)

No. Parameter String (Weka API) Algorithm No.

56 ‘‘’’

13

57 ‘‘-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1’’
58 ‘‘-P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 –B’’
59 ‘‘-P 100 -I 100 -num-slots 1 -K 13 -M 1.0 -V 0.001 -S 1’’
60 ‘‘-P 100 -I 100 -num-slots 1 -K 13 -M 1.0 -V 0.001 -S 1 –B’’
61 ‘‘-P 100 -I 100 -num-slots 1 -K 27 -M 1.0 -V 0.001 -S 1 –B’’
62 ‘‘-P 100 -I 100 -num-slots 1 -K 27 -M 1.0 -V 0.001 -S 1’’
63 ‘‘-P 100 -I 100 -num-slots 1 -K 51 -M 1.0 -V 0.001 -S 1 –B’’
64 ‘‘-P 100 -I 100 -num-slots 1 -K 51 -M 1.0 -V 0.001 -S 1’’

65 ‘‘’’

14

66 ‘‘-K 0 -M 1.0 -V 0.001 -S 1’’
67 ‘‘-K 0 -M 1.0 -V 0.001 -S 1 –B’’
68 ‘‘-K 13 -M 1.0 -V 0.001 -S 1’’
69 ‘‘-K 13 -M 1.0 -V 0.001 -S 1 –B’’
70 ‘‘-K 27 -M 1.0 -V 0.001 -S 1’’
71 ‘‘-K 27 -M 1.0 -V 0.001 -S 1 –B’’
72 ‘‘-K 51 -M 1.0 -V 0.001 -S 1’’
73 ‘‘-K 51 -M 1.0 -V 0.001 -S 1 –B’’

74 ‘‘’’
1575 ‘‘-M 2 -V 0.001 -N 3 -S 1 -L -1 -I 0.0’’

76 ‘‘-M 2 -V 0.001 -N 3 -S 1 -L -1 -P -I 0.0’’

77 ‘‘’’

16

78 ‘‘-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1’’
79 ‘‘-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
80 ‘‘-S 0 -K 2 -D 3 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
81 ‘‘-S 0 -K 2 -D 3 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1’’
82 ‘‘-S 0 -K 3 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1’’
83 ‘‘-S 0 -K 3 -D 3 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1’’
84 ‘‘-S 0 -K 3 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
85 ‘‘-S 0 -K 3 -D 3 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
86 ‘‘-S 0 -K 3 -D 3 -G 0.0 -R 1000.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
87 ‘‘-S 0 -K 3 -D 3 -G 0.0 -R -1000.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -s eed 1’’
88 ‘‘-S 0 -K 1 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1’’
89 ‘‘-S 0 -K 1 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
90 ‘‘-S 0 -K 1 -D 3 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
91 ‘‘-S 0 -K 1 -D 2 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
92 ‘‘-S 0 -K 1 -D 4 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’
93 ‘‘-S 0 -K 1 -D 5 -G 0.5 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -Z -seed 1’’

94 ‘‘’’

17

95 ‘‘-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’’
96 ‘‘-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a –I’’
97 ‘‘-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a –D’’
98 ‘‘-L 0.8 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’’
99 ‘‘-L 0.15 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’’
100 ‘‘-L0.55 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’’
101 ‘‘-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a –R’’

data of x, y, and z axis as points in the three-dimensional space,
21 geometric features are further extracted, such as the length
of line segments, the angle between vectors, the angle between
vector and plane, etc. The full list of extracted geometric features
is illustrated in Table 4.

5.3. Data collection

Apart from the data logging app developed for typing scenario,
two more data logging apps are designed and implemented on
iOS platform for picture browsing and web surfing scenarios re-
spectively. These apps log magnetometer data, touch sensor data
and device attitude data during the user performing interaction
gestures under aforementioned scenarios. The same fifteen people
from the first study participated in this data collection task. For
typing scenario, the data collected in the first study is used as
the training data. For the remaining two scenarios, the training
data logging procedure lasted for two weeks, during which every
participant accomplished the data collection tasks three times
for each scenario. The testing data logging procedure lasted for
four weeks, and each participant accomplished the data collection
task once every week under each scenario. In order to evaluate
the permanence of the proposed trait, there exists a two week

time separation between the training data collection task and the
testing data collection task. The background magnetic field data is
first logged at the beginning of each data collection session, which
is the same as that in the first study.

After all data collection tasks are accomplished, the background
magnetic field is canceled out using themethoddescribed in sensor
data preprocessing section. Besides the statistical features as listed
in the feature extraction part of the first study, geometric features
are extracted as well, which are listed in Table 4. Then each partic-
ipant is regarded as the legitimate user of the smart device system
in turn, and the feature vectors are labeled accordingly. Counting
information of training instances and testing instances for each
participant under different scenarios is shown in Table 5. Please
note that since different users have dissimilar interacting habits,
thus the sizes of the data sets vary among participants.

5.4. Feature standardization and selection

The range of feature values may vary a lot, without a proper
scaling, and algorithms using the distance between points during
the learning process may not work properly. Generally speaking,
standardization is one of the commonly used methods, which
scales the values by calculating the z-score. The formula is as



Y. Zhang, M. Yang, Z. Ling et al. / Future Generation Computer Systems 108 (2020) 1324–1337 1333

Table 9
Filtered results of sentence typing (Information Gain Ratio)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1

2 6 53.69% 27.42% 64.86%
10 42 52.61% 34.74% 59.81%
16 85 46.74% 73.00% 33.89%
16 89 43.60% 52.64% 60.10%

#2

4 12 71.64% 34.12% 22.66%
13 60 66.72% 17.78% 48.64%
16 83 43.80% 55.69% 56.70%
16 91 72.09% 45.20% 10.79%

#3
10 41 35.23% 65.74% 63.83%
16 82 74.85% 44.63% 5.98%
16 83 73.33% 16.54% 36.65%

#4
10 42 49.23% 53.50% 48.08%
16 82 60.29% 51.20% 28.35%
16 88 62.34% 71.14% 4.55%

#5

4 15 68.45% 30.71% 32.36%
16 79 71.41% 41.99% 15.40%
16 80 70.02% 30.97% 29.00%
17 97 64.76% 25.87% 44.46%

#6
5 21 48.84% 62.32% 40.10%
8 39 62.48% 16.12% 58.74%

12 52 63.87% 6.85% 65.16%

#7

1 2 77.80% 41.93% 2.83%
6 25 65.71% 34.30% 34.28%
8 38 62.35% 25.64% 49.45%

16 81 73.03% 27.30% 26.64%

#8 5 23 51.79% 47.22% 49.18%
16 83 57.90% 6.99% 76.52%

#9 6 26 65.87% 23.85% 44.31%
16 88 70.49% 24.81% 34.17%

#10

5 23 47.97% 54.48% 49.63%
6 25 70.51% 24.60% 34.31%
8 33 72.28% 19.32% 35.99%

15 76 68.31% 18.56% 44.62%

#11
4 12 57.25% 7.09% 77.85%
5 23 34.34% 65.26% 66.06%

11 47 55.57% 53.85% 35.15%

#12 5 20 51.81% 49.80% 46.61%
14 67 64.95% 18.62% 51.23%

#13
9 41 50.38% 100.00% 0.00%

16 82 49.60% 44.56% 56.15%
16 83 49.74% 64.81% 35.93%

#14
16 83 69.52% 38.79% 22.31%
16 85 38.78% 60.71% 61.71%
16 93 58.82% 37.79% 44.52%

#15
7 28 57.29% 24.76% 60.40%

10 42 39.14% 60.95% 60.76%
16 84 52.19% 48.41% 47.21%

follows, where µ is the mean of the feature values, and σ is the
standard deviation of the feature values.

x′
=

x − µ

σ
. (11)

To remove the irrelevant and redundant features, a feature
selection procedure is usually needed. Upon performing the fea-
ture selection procedure, the algorithm first search through a rea-
sonable subsets of the original features, then certain evaluation
criteria is applied tomeasure ‘‘how good’’ the feature subset is [33].
Specifically, two classification algorithm irrelevant feature selec-
tionmethods are applied, of which one is based on the information
gain ratio, and the other is based on the APIs that Weka provides.
Through dividing the information gain by the entropy, information
gain ratio could alleviate the drawback of information gain that
tends to choose features with more distinct values. For the second
approach, the weka.attributeSelection.GreedyStepwise searching
method is used to greedily search the subsets of features, and the

Table 10
Filtered results of sentence typing (GreedyStepwise + CfsSubsetEval)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1
5 23 59.41% 24.62% 56.26%

10 42 52.61% 34.74% 59.81%
16 85 44.23% 78.49% 33.47%

#2
4 14 69.85% 13.39% 46.76%
5 23 58.09% 42.06% 41.76%
8 39 77.31% 15.58% 29.74%

#3 10 42 35.23% 65.74% 63.83%
16 83 53.88% 45.01% 47.22%

#4 10 42 49.23% 53.50% 48.08%
16 83 71.82% 46.12% 10.43%

#5
4 14 80.52% 23.21% 15.81%

16 78 70.20% 21.22% 38.23%
16 93 66.84% 30.61% 35.67%

#6
5 15 49.02% 67.71% 34.38%

12 52 57.40% 21.18% 63.84%
16 81 57.07% 64.04% 22.00%

#7

8 33 65.59% 32.58% 36.20%
10 42 71.94% 56.31% 0.34%
13 59 70.63% 9.98% 48.39%
16 80 59.20% 39.77% 41.81%

#8
5 21 51.27% 47.48% 49.95%

16 85 56.55% 41.33% 45.52%
16 88 61.57% 23.74% 52.83%

#9 16 85 52.38% 45.70% 49.52%
16 88 67.36% 43.45% 21.94%

#10
2 6 62.95% 29.93% 44.08%

16 78 63.85% 30.89% 41.35%
17 97 62.25% 37.53% 37.98%

#11
9 41 50.40% 100.00% 0.00%

16 85 48.08% 50.67% 53.16%
16 90 58.55% 20.35% 62.22%

#12 16 85 61.15% 45.26% 32.53%

#13 17 100 51.69% 49.81% 46.83%
17 101 54.04% 42.72% 49.16%

#14

2 6 63.48% 17.86% 54.90%
4 16 62.61% 20.52% 54.01%
9 41 50.38% 100.00% 0.00%

16 82 56.01% 27.94% 59.80%

#15

5 21 59.88% 59.42% 21.10%
16 79 58.13% 39.10% 44.61%
16 84 54.79% 47.09% 43.36%
16 90 57.60% 36.51% 48.20%

weka.attributeSelection.CfsSubsetEval evaluation method is used
to evaluate the worth of subsets of features for classification pur-
pose. Since the selected feature subset using the second approach
contains about 20 features on average, when applying the informa-
tion gain ratio approach, 20 features with the highest information
gain ratio are selected.

5.5. Experimental evaluation

To better test the applicability of using the proposed trait for
user authentication purpose, more classification algorithms are
taken into consideration in this usability study, specifically, sev-
enteen algorithms are used in this experiment, which are listed
in Table 6. Different algorithms may have various numbers of
parameters, and some parameters have continuous possible value
range, so it is infeasible to exhaustively seek best values for the
parameters. A list of possible values for the parameters are empir-
ically determined and used in the experiment, which is shown in
Table 8 in Appendix.

The experiment is conducted using Weka APIs, and aforemen-
tioned algorithms and parameters are applied on the training and
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Table 11
Filtered results of picture browsing (Information Gain Ratio)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1
3 10 59.14% 22.08% 58.92%
8 33 58.73% 25.42% 56.51%

16 85 53.12% 81.25% 13.83%

#2

1 2 84.86% 29.64% 1.30%
8 37 82.21% 20.36% 15.33%

14 67 75.80% 24.21% 24.19%
16 81 72.93% 11.99% 41.47%

#3
5 20 69.02% 30.97% 30.99%
7 30 72.22% 8.41% 45.87%

15 75 83.12% 16.37% 17.36%

#4
2 6 66.82% 17.92% 47.01%
8 35 65.25% 33.96% 35.47%
8 36 65.47% 33.49% 35.47%

#5
5 21 81.29% 18.83% 18.59%

13 60 80.65% 8.22% 29.90%
17 98 93.16% 9.02% 4.77%

#6

6 25 75.60% 29.61% 19.44%
13 57 69.09% 11.96% 48.97%
14 66 70.81% 30.39% 28.04%
17 97 78.37% 35.49% 8.41%

#7 16 91 59.33% 34.93% 46.20%

#8

7 29 74.74% 11.30% 38.78%
10 42 79.08% 14.94% 26.72%
16 81 76.34% 21.07% 26.16%
16 82 56.55% 43.87% 43.04%

#9

1 2 85.49% 5.33% 23.52%
1 3 85.13% 9.69% 19.95%

16 93 80.34% 19.37% 19.95%
17 100 77.46% 1.94% 42.76%

#10 8 33 74.23% 24.27% 27.20%
11 46 74.44% 6.69% 43.60%

#11
1 1 81.14% 19.90% 17.87%
2 6 68.73% 13.27% 48.31%

16 85 54.34% 44.90% 46.38%

#12
16 83 43.65% 58.56% 54.25%
16 85 76.09% 33.56% 14.71%
16 92 67.73% 23.29% 40.85%

#13
7 28 55.20% 36.84% 52.57%

16 85 55.76% 61.28% 27.57%
16 93 66.36% 7.89% 58.82%

#14 8 33 63.10% 31.50% 42.01%
16 78 52.20% 47.24% 48.33%

#15
1 3 73.82% 22.40% 29.78%

16 79 67.73% 16.67% 47.15%
16 89 67.09% 30.21% 35.48%

testing data sets. For a biometric authentication system, the com-
bination of algorithm and parameter that has a high accuracy with
low FAR and low FRR is usually preferred, since that a higher FAR
means the attacker could breach the systemwith less efforts, while
a higher FRR means the legitimate user is falsely rejected more
frequently. In order to reach a proper balance among accuracy, FAR
and FRR, algorithms and parameters are first filtered using four
criteria: (1) the combination of algorithm and parameter with the
highest accuracy, (2) the combination of algorithm and parameter
with the minimum value of |FAR − FRR|, (3) the combination of
algorithm and parameter with α × (100%−Accuracy)+ (1− α)×
|FAR − FRR| reaches a minimum value, where α = 0.7, (4) the
combination of algorithm and parameter with the minimum value
of FARwhile FRR < 50%.

The filtered results are shown in tables from Table 9 to Table 14
in Appendix. These results reveal that the finger motion pattern
under the scenario of sentence typing has a relatively not so good
performance on permanence over a longer period of time. The
accuracy on most users’ data is below 80%, while FAR and FRR

Table 12
Filtered results of picture browsing (GreedyStepwise + CfsSubsetEval)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1

3 9 69.05% 26.04% 35.67%
3 10 69.77% 21.88% 38.28%
4 12 68.23% 20.00% 43.09%

16 88 60.67% 40.21% 38.48%

#2 6 25 84.20% 17.42% 14.25%
13 64 79.56% 20.36% 20.52%

#3 1 2 82.69% 17.70% 16.94%
7 30 72.22% 8.41% 45.87%

#4 17 99 80.72% 18.40% 20.09%
17 101 76.46% 10.38% 35.47%

#5 13 58 81.81% 5.31% 30.40%
15 75 87.87% 12.20% 12.06%

#6

5 19 67.46% 32.35% 32.71%
8 36 71.77% 12.75% 42.99%

16 90 80.67% 31.18% 8.04%
17 97 76.46% 20.39% 26.54%

#7
16 85 51.93% 48.29% 47.85%
16 88 65.71% 42.47% 26.40%
17 97 66.22% 18.15% 48.84%

#8
4 13 70.31% 10.15% 48.61%

10 42 79.08% 14.94% 26.72%
16 85 64.84% 38.89% 31.54%

#9

1 2 86.69% 4.12% 22.33%
1 3 84.17% 11.62% 19.95%

13 57 80.70% 1.69% 36.58%
16 90 72.30% 27.36% 28.03%

#10
16 89 79.14% 12.34% 29.00%
17 96 76.28% 19.46% 27.80%
17 98 71.98% 28.03% 28.00%

#11
8 34 66.75% 17.35% 48.31%

17 100 79.65% 21.43% 19.32%
17 101 81.89% 27.04% 9.66%

#12
3 10 69.73% 30.14% 30.39%

16 92 74.08% 10.62% 40.52%
17 98 76.59% 22.95% 23.86%

#13 5 23 48.33% 54.14% 49.26%
16 85 70.82% 34.59% 23.90%

#14

4 13 60.61% 42.52% 36.43%
7 28 63.86% 58.66% 14.87%
8 38 55.07% 44.88% 44.98%

17 100 58.89% 31.89% 49.81%

#15
1 2 72.68% 12.76% 41.19%

16 82 65.44% 36.46% 32.75%
16 88 68.23% 28.65% 34.74%

remain relatively high, indicating that the security and usability of
the authentication technique is not so ideal when only using the
trait from typing. This is because the gesture that a user performs
when typing is relatively simple, which may lack robust biometric
information for verifying the user’s identity. But the proposed trait
under the other two scenarios performs better, for the accuracy is
around 80% for most occasions, and reaches a high value of 90% for
certain participants, while the FAR and FRR remain relatively low
comparing with those under the typing scenario. The interaction
gestures under picture browsing andweb surfing scenarios are rel-
atively more complex, with a higher probability to contain richer
and more robust biometric information.

The individually filtered results indicate that using the pro-
posed trait of a single scenario is not robust enough for im-
plicit authentication purpose. Thus, when deploying the proposed
authentication technique, finger motion pattern under different
interaction scenarios should be taken into consideration jointly.
When the trait of different scenarios considered collectively, the
combinations of algorithms and parameters with better perfor-
mance are manually filtered out for all participants, of which the
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Table 13
Filtered results of web surfing (Information Gain Ratio)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1 2 6 81.59% 18.52% 18.30%
11 48 69.58% 11.64% 48.71%

#2

16 80 67.20% 16.09% 49.16%
16 84 72.59% 33.28% 21.66%
16 88 78.11% 41.44% 2.76%
16 89 67.08% 29.59% 36.18%

#3

3 9 72.96% 30.40% 23.71%
3 10 72.30% 29.51% 25.91%
8 33 63.09% 27.85% 45.88%
8 35 67.31% 32.00% 33.37%

#4 10 42 79.68% 37.19% 3.62%
16 82 70.02% 29.93% 30.02%

#5 16 83 78.21% 37.62% 5.99%
16 88 56.04% 45.43% 42.49%

#6

6 26 73.49% 14.46% 38.49%
11 47 81.08% 25.90% 11.98%
12 52 78.08% 20.14% 23.70%
17 97 72.24% 27.71% 27.80%

#7
7 30 54.94% 46.70% 43.45%

12 54 66.67% 16.48% 49.79%
16 92 76.17% 31.98% 15.88%

#8 8 33 74.10% 2.52% 48.51%
16 84 93.80% 5.18% 7.18%

#9
4 12 76.04% 22.82% 25.09%
4 16 69.39% 15.33% 45.63%

16 84 81.00% 35.45% 2.83%

#10

7 30 82.21% 25.25% 10.58%
15 75 75.98% 7.88% 39.60%
16 80 73.08% 26.48% 27.35%
17 100 79.49% 19.09% 21.88%

#11 6 26 86.06% 14.77% 13.13%
12 55 73.08% 4.31% 48.91%

#12 16 81 80.25% 0.00% 39.07%
16 92 98.91% 1.10% 1.08%

#13

5 20 67.67% 13.87% 50.47%
5 21 67.49% 14.42% 50.27%

16 82 53.44% 34.62% 58.30%
16 85 65.90% 66.69% 2.09%

#14

16 79 59.52% 31.60% 49.27%
16 84 63.22% 35.32% 38.22%
16 85 63.52% 73.29% 0.00%
16 89 38.33% 61.45% 61.88%

#15

3 10 91.77% 11.85% 4.73%
8 38 76.07% 3.66% 43.58%

16 84 91.34% 10.63% 6.76%
17 97 87.14% 13.41% 12.33%

results are shown in Table 7. In the table, ‘‘GR’’ represents the fea-
ture selection method using information gain ratio, while ‘‘GSCE’’
represents the feature selection method using ‘‘GreedyStepwise’’
subset searching approach and ‘‘CfsSubsetEval’’ subset evaluation
approach. Moreover, ‘‘ST’’ is short for ‘‘Sentence Typing’’, while
‘‘PB’’ and ‘‘WS’’ are short for ‘‘Picture Browsing’’ and ‘‘Web Surfing’’
respectively.

As the table depicts, by considering different interaction scenar-
ios jointly, the combination of algorithm and parameter with high
performance is picked out for each participant. On the logged data
of the fifteen participants, the proposed implicit authentication
approach could reach an average accuracy of 85.79%, an average
FAR of 14.30%, and an average FRR of 14.12%. Moreover, there exist
four participants with high accuracy above 90%, while the average
FAR and FRR are both below 10%. Considering the data collec-
tion procedure lasts for about eight weeks from the beginning of
training data collection task to the end of testing data collection
task, such experiment results reveal that the proposed trait has
certain degree of distinctiveness and permanence over the fifteen

Table 14
Filtered results of web surfing (GreedyStepwise + CfsSubsetEval)

User ID Algorithm No. Parameter No. Accuracy FAR FRR

#1
1 2 76.50% 5.56% 40.98%

16 92 89.36% 13.10% 8.25%
17 98 85.25% 14.42% 15.08%

#2
1 3 70.92% 15.15% 42.70%

10 42 66.11% 37.83% 30.03%
16 88 74.11% 31.63% 20.28%

#3
3 10 68.22% 24.97% 38.53%
8 34 67.31% 32.61% 32.77%

16 84 77.07% 27.35% 18.55%

#4
13 58 79.68% 3.33% 37.15%
16 83 78.84% 20.28% 22.03%
16 84 87.17% 10.09% 15.55%

#5

4 14 69.89% 17.33% 42.87%
16 83 76.07% 32.19% 15.68%
16 84 74.02% 30.19% 21.77%
16 88 68.22% 28.67% 34.89%

#6

4 14 87.99% 10.41% 13.60%
13 59 87.30% 12.99% 12.40%
13 64 86.83% 13.17% 13.17%
16 78 80.74% 7.31% 31.14%

#7

5 23 41.42% 54.18% 62.88%
7 29 72.04% 11.54% 43.99%

16 84 71.50% 23.41% 33.48%
16 88 76.76% 36.59% 10.19%

#8
16 85 93.32% 6.86% 6.50%
16 89 95.18% 4.34% 5.28%
17 100 75.83% 0.98% 46.61%

#9
5 23 60.58% 38.24% 40.58%

14 68 71.07% 8.80% 48.72%
16 82 81.87% 22.65% 13.70%

#10

5 21 83.48% 18.47% 14.63%
14 66 85.18% 10.71% 18.79%
15 75 78.64% 21.31% 21.40%
16 81 71.26% 7.76% 48.99%

#11
8 36 86.01% 17.32% 10.75%

12 53 74.29% 6.75% 44.15%
12 55 84.85% 16.05% 14.27%

#12

1 2 97.28% 0.55% 4.84%
16 79 96.83% 4.03% 2.33%
16 81 85.87% 0.00% 27.96%
16 83 95.11% 5.49% 4.30%

#13 11 45 76.51% 36.81% 10.39%
16 81 55.21% 39.63% 49.87%

#14
7 30 61.37% 39.63% 37.63%

16 84 68.58% 25.73% 37.05%
16 85 71.36% 49.12% 8.34%

#15

4 12 88.85% 11.15% 11.15%
16 89 77.70% 2.61% 41.39%
17 98 93.48% 8.71% 4.39%
17 100 93.31% 7.67% 5.74%

participants, and thus could be used for implicit authentication
purpose.

6. Conclusion

In this paper, we proposed a novel 3D magnetic finger motion
pattern based implicit authentication technique, effectively ward-
ing off attacks that explicit authentication fails to defend against.
By extracting effective features frommagnetic field value triggered
by a magnetic ring on user’s finger, we uncovered the hidden
finger motion pattern. By means of machine learning techniques,
we could further construct robust models. Also, a promising dis-
tinctiveness of the proposed trait among fifteen participants was
demonstrated according to the experiment results of the first us-
ability test. What is more, the second usability test verified the
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possibility of the proposed 3D magnetic finger motion pattern
being applied for implicit authentication. It is encouraging that
the experiment results considering three different interaction sce-
narios show an average accuracy rate of above 80%, together with
average FAR and FRR of below 15%.

We would delve further into the causes and countermeasures
of false acceptances and false rejections targeting a larger group
of users so that an approach of real-world application could be
obtained. It cannot be denied that the necessity of a magnetic
ring sets limits on wide range deployment. Nevertheless, as more
and more mobile devices have been equipped with certain kind of
sensors that could track the finger motion in a three-dimensional
way, the problem would soon be resolved. Furthermore, since
authentication and authorization issues have not been studied in
depth in the context of cyber–physical systems [34], our future
work will expand on the application of implicit authentication
techniques for device identification purpose.

Acknowledgments

This work was supported by the National Key R&D Program
of China (No. 2017YFB1003000), National Natural Science Foun-
dation of China (Nos. 61572130, 61502100, 61532013, 61632008
and 61320106007), Jiangsu Provincial Natural Science Foundation
of China (No. BK20150637), Qing Lan Project of Jiangsu Province,
China, Jiangsu Provincial Key Laboratory of Network and Infor-
mation Security, China (No. BM2003201), and Key Laboratory of
Computer Network and Information Integration of Ministry of
Education of China (No. 93K-9).

Appendix

See Tables 8–14.

References

[1] Y. Wang, S. Wen, Y. Xiang, W. Zhou, Modelling the propagation of worms in
networks: A survey, IEEE Commun. Surv. Tutor. (2014) 942–960.

[2] S. Wen, W. Zhou, J. Zhang, Y. Xiang, W. Zhou, W. Jia, Modeling propagation
dynamics of social network worms, IEEE Trans. Parallel Distrib. Syst. 24 (8)
(2013) 1633–1643.

[3] J.J. Jiang, S. Wen, S. Yu, Y. Xiang, W. Zhou, Identifying propagation sources
in networks: State-of-the-art and comparative studies, IEEE Commun. Surv.
Tutor. 19 (1) (2017) 465–481.

[4] A.J. Aviv, K. Gibson, E. Mossop, M. Blaze, J.M. Smith, Smudge attacks on
smartphone touch screens, in: Proc. of the 4th USENIXWorkshop on Offensive
Technologies, Washington, DC, 2010.

[5] L. Cai, H. Chen, TouchLogger: inferring keystrokes on touch screen from smart-
phonemotion, in: Proc. of the 6th USENIXWorkshop onHot Topics in Security,
San Francisco, CA, 2011.

[6] Q. Yue, Z. Ling, X. Fu, et al., Blind recognition of touched keys on mobile
devices, in: Proc. of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, 2014, pp. 1403–1414.

[7] X. Pan, Z. Ling, A. Pingley, et al., Password extraction via reconstructedwireless
mouse trajectory, IEEE Trans. Dependable Secure Comput. 13 (2016) 461–473.

[8] Y. Zhang, P. Xia, J. Luo, et al., Fingerprint attack against touch-enabled devices,
in: Proc. of the 2nd Workshop on Security and Privacy in Smartphones and
Mobile Devices, Raleigh, NC, 2012, pp. 57–68.

[9] Z. Ling, J. Luo, Q. Chen, et al., Secure fingertipmouse formobile devices, in: Proc.
of the 35th IEEE International Conference on Computer Communications, San
Francisco, CA, 2016, pp. 343–351.

[10] M. Jakobsson, E. Shi, P. Golle, R. Chow, Implicit authentication for mobile
devices, in: Proc. of the 4th USENIX Workshop on Hot Topics in Security,
Montreal, 2009.

[11] M. Frank, R. Biedert, E. Ma, I. Martinovic, D. Song, Touchalytics: on the
applicability of touchscreen input as a behavioral biometric for continuous
authentication, IEEE Trans. Inf. Forensics Secur. 8 (2013) 136–148.

[12] Y. Liu, M. Yang, Z. Ling, J. Luo, Implicit authentication for mobile device
based on 3D magnetic finger motion pattern, in: Proceedings of the IEEE 21st
International Conference onComputer SupportedCooperativeWork inDesign,
CSCWD, Wellington, New Zealand, April 26–28, 2017.

[13] R. Amin, T. Gaber, G. ElTaweel, A.E. Hassanien, Biometric and traditional mo-
bile authentication techniques: overviews and open issues, in: Bio-inspiring
Cyber Security and Cloud Services: Trends and Innovations, Springer, Berlin,
Germany, 2014, pp. 423–446.

[14] A.K. Jain, A. Ross, S. Prabhakar, An introduction to biometric recognition, IEEE
Trans. Circuits Syst. Video Technol. 14 (2004) 4–20.

[15] A. De Luca, A. Hang, F. Brudy, et al., Touch me once and I know it’s you!:
implicit authentication based on touch screen patterns, in: Proc. of the 30th
ACM Conference on Human Factors in Computing Systems, Austin, TX, 2012,
pp. 987–996.

[16] A. Serwadda, V.V. Phoha, Z. Wang, Which verifiers work?: a benchmark eval-
uation of touch-based authentication algorithms, in: Proc. of the IEEE 6th
International Conference on Biometrics: Theory, Applications and Systems,
Washington, DC, 2013.

[17] G.E. Forsen, M.R. Nelson, R.J. Staron, Personal Attributes Authentication Tech-
niques, Pattern Analysis and Recognition Corp, Rome, NY, 1977.

[18] J.A. Robinson, V.M. Liang, J.A. Michael Chambers, C.L. MacKenzie, Computer
user verification using login string keystroke dynamics, IEEE Trans. Syst. Man
Cybern. A 28 (1998) 236–241.

[19] A. Peacock, X. Ke, M. Wilkerson, Typing patterns: a key to user identification,
IEEE Secur. Priv. 2 (2004) 40–47.

[20] R. Moskovitch, C. Feher, A. Messerman, et al., Identity theft, computers and
behavioral biometrics, in: Proc. of the 2009 IEEE International Conference on
Intelligence and Security Informatics, Richardson, TX, 2009, pp. 155–160.

[21] M.O. Derawi, C. Nickel, P. Bours, C. Busch, Unobtrusive user-authentication on
mobile phones using biometric gait recognition, in: Proc. of the 6th Interna-
tional Conference on Intelligent Information Hiding and Multimedia Signal
Processing, Darmstadt, 2010, pp. 306–311.

[22] C. Nickel, T. Wirtl, C. Busch, Authentication of smartphone users based on the
way they walk using k-NN algorithm, in: Proc. of the 8th International Con-
ference on Intelligent Information Hiding and Multimedia Signal Processing,
Piraeus-Athens, 2012, pp. 16–20.

[23] C. Giuffrida, K. Majdanik, M. Conti, H. Bos, I sensed it was you: authenticating
mobile users with sensor-enhanced keystroke dynamics, in: Proc. of the 11th
Conference on Detection of Intrusions and Malware & Vulnerability Assess-
men, Egham, London, 2014.

[24] U. Burgbacher, K. Hinrichs, An implicit author verification system for text
messages based on gesture typing biometrics, in: Proc. of the 32nd ACM Con-
ference on Human Factors in Computing Systems, Toronto, 2014, pp. 2951–
2954.

[25] M. Conti, I. Zachia-Zlatea, B. Crispo, Mind how you answer me!: transparently
authenticating the user of a smartphone when answering or placing a call, in:
Proc. of the 6th ACM Symposium on Information, Computer and Communica-
tions Security, Hong Kong, 2011, pp. 249–259.

[26] P.N.A. Fahmi, E. Kodirov, D.J. Choi, et al., Implicit authentication based on ear
shape biometrics using smartphone camera during a call, in: Proc. of the 2012
IEEE International Conference on Systems, Man, and Cybernetics, Seoul, 2012,
pp. 2272–2276.

[27] H. Ketabdar, M. Roshandel, K.A. Yüksel, MagiWrite: towards touchless digit
entry using 3D space around mobile devices, in: Proc. of the 12th Interna-
tional Conference on Human–Computer Interaction with Mobile Devices and
Services, Lisbon, 2010, pp. 443–446.

[28] S. Hwang, A. Bianchi, M. Ahn, K. Wohn, MagPen: magnetically driven pen
interactions on and around conventional smartphones, in: Proc. of the 15th In-
ternational Conference on Human–Computer Interaction withMobile Devices
and Services, Munich, 2013, pp. 412–415.

[29] S. Hwang, M. Ahn, K. Wohn, MagGetz: customizable passive tangible con-
trollers on and around conventional mobile devices, in: Proc. of the 26th ACM
SymposiumonUser Interface Software and Technology, St. Andrews, 2013, pp.
411-416.

[30] H. Ketabdar, K.A. Yüksel, A. Jahnbekam, M. Roshandel, D. Skripko, MagiSign:
user identification/authentication based on 3D around device magnetic sig-
natures, in: Proc. of the 4th International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies, Florence, 2010.

[31] T. Ozyagcilar, Calibrating an eCompass in the presence of hard and soft-iron
interference, November, 2015. [Online] Available: http://cache.freescale.com/
files/sensors/doc/app_note/AN4246.pdf.

http://refhub.elsevier.com/S0167-739X(17)32600-6/sb1
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb1
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb1
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb2
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb2
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb2
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb2
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb2
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb3
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb3
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb3
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb3
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb3
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb7
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb7
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb7
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb11
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb11
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb11
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb11
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb11
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb13
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb14
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb14
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb14
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb17
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb17
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb17
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb18
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb18
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb18
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb18
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb18
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb19
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb19
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb19
http://cache.freescale.com/files/sensors/doc/app_note/AN4246.pdf
http://cache.freescale.com/files/sensors/doc/app_note/AN4246.pdf
http://cache.freescale.com/files/sensors/doc/app_note/AN4246.pdf


Y. Zhang, M. Yang, Z. Ling et al. / Future Generation Computer Systems 108 (2020) 1324–1337 1337

[32] M. Hall, E. Frank, G. Holmes, et al., TheWEKA datamining software: an update,
ACM SIGKDD Explor. Newsl. 11 (2009) 10-18.

[33] S.B. Kotsiantis, D. Kanellopoulos, P.E. Pintelas, Data preprocessing for super-
vised leaning, Int. J. Comput. Sci. 1 (2006) 111–117.

[34] S. Ivan, S. Wen, X. Huang, H. Luan, An overview of fog computing and its
security issues, Concurr. Comput.: Pract. Exper. 28 (10) (2015) 2991–3005.

Yiting Zhang is currentlyworking toward the Ph.D. degree
in Computer Science at Southeast University, China. Her
research interests include network security and privacy.

Ming Yang received the Ph.D. degree in computer science
from Southeast University, China, in 2007. Currently, he
is an associate professor at the School of Computer Sci-
ence and Engineering in Southeast University, Nanjing,
China. His research interests include network security and
privacy. Dr. Yang is a member of CCF and ACM, as well
as Deputy Director of Key Laboratory of Computer Net-
work and Information Integration, Ministry of Education
of China.

Zhen Ling received the B.S. degree (2005) and Ph.D. de-
gree (2014) in Computer Science from Nanjing Institute
of Technology, China and Southeast University, China, re-
spectively. He is an associate professor in the School of
Computer Science and Engineering, Southeast University,
Nanjing, China. He won ACM China Doctoral Dissertation
Award and China Computer Federation (CCF) Doctoral
Dissertation Award, in 2014 and 2015, respectively. His
research interests include network security, privacy, and
Internet of Things.

Yaowen Liu is currently working toward the M.S. degree
in Computer Science at Southeast University, China. His
research interests include network security and privacy.

Wenjia Wu received the B.S. and Ph.D. degrees in com-
puter science in 2006 and 2013, respectively, from South-
east University. He is an associate professor at the School
of Computer Science and Engineering in Southeast Uni-
versity. His research interests include wireless andmobile
networks.

http://refhub.elsevier.com/S0167-739X(17)32600-6/sb32
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb32
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb32
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb33
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb33
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb33
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb34
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb34
http://refhub.elsevier.com/S0167-739X(17)32600-6/sb34

	FingerAuth: 3D magnetic finger motion pattern based implicit authentication for mobile devices
	Introduction
	Related work
	The FingerAuth approach
	Threat model
	Basic idea
	Sensor data preprocessing
	Outlier processing and multi-sensor time alignment
	Background magnetic field cancellation
	Sensor data segmentation


	First study: uniqueness of 3D magnetic finger motion pattern in typing scenario
	Feature extraction
	Data collection
	Performance evaluation

	Second study: permanence of 3D finger motion pattern in multiple user–device interaction scenarios
	User–device interaction scenarios
	Geometric features
	Data collection
	Feature standardization and selection
	Experimental evaluation

	Conclusion
	Acknowledgments
	Appendix
	References


