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Abstract— Tor is a popular low-latency anonymous communi-
cation system. It is, however, currently abused in various ways.
Tor exit routers are frequently troubled by administrative and
legal complaints. To gain an insight into such abuse, we designed
and implemented a novel system, TorWard, for the discovery and
the systematic study of malicious traffic over Tor. The system
can avoid legal and administrative complaints, and allows the
investigation to be performed in a sensitive environment such
as a university campus. An intrusion detection system (IDS) is
used to discover and classify malicious traffic. We performed
comprehensive analysis and extensive real-world experiments to
validate the feasibility and the effectiveness of TorWard. Our
results show that around 10% Tor traffic can trigger IDS alerts.
Malicious traffic includes P2P traffic, malware traffic (e.g., botnet
traffic), denial-of-service attack traffic, spam, and others.
Around 200 known malwares have been identified. To mitigate
the abuse of Tor, we implemented a defense system, which
processes IDS alerts, tears down, and blocks suspect connections.
To facilitate forensic traceback of malicious traffic, we imple-
mented a dual-tone multi-frequency signaling-based approach to
correlate botnet traffic at Tor entry routers and that at exit
routers. We carried out theoretical analysis and extensive real-
world experiments to validate the feasibility and the effectiveness
of TorWard for discovery, blocking, and traceback of malicious
traffic.

Index Terms— Tor, malicious traffic, intrusion detection
system.

Manuscript received January 18, 2015; revised May 31, 2015 and
July 22, 2015; accepted July 22, 2015. Date of publication August 7,
2015; date of current version September 25, 2015. This work
was supported in part by the China National High Technology
Research and Development Program under Grant 2013AA013503,
in part by the National Natural Science Foundation of China under
Grant 61502100, Grant 61572130, Grant 61532013, Grant 61502098,
Grant 61502099, Grant 61272054, Grant 61202449, Grant 61402104, and
Grant 61320106007, in part by a Discovery Grant (195819339) from the
Natural Sciences and Engineering Research Council of Canada, in
part by the U.S. National Science Foundation under Grant 1461060,
Grant 1116644, Grant 1350145, and Grant CNS 1117175, in part by Jiangsu
Provincial Natural Science Foundation of China under Grant BK20150637,
Grant BK20150628, and Grant BK20150629, in part by Jiangsu Provincial
Key Technology R&D Program under Grant BE2014603, in part by Jiangsu
Provincial Key Laboratory of Network and Information Security under
Grant BM2003201, and in part by Key Laboratory of Computer Network
and Information Integration of Ministry of Education of China under Grant
93K-9. Any opinions, findings, conclusions, and recommendations in this
paper are those of the authors and do not necessarily reflect the views of
the funding agencies. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Wanlei Zhou.

Z. Ling and J. Luo are with the School of Computer Science and Engi-
neering, Southeast University, Nanjing 210096, China (e-mail: zhenling@
seu.edu.cn; jluo@seu.edu.cn).

K. Wu is with the Department of Computer Science, University of Victoria,
Victoria, BC V8W 3P6, Canada (e-mail: wkui@cs.uvic.ca).

W. Yu is with the Department of Computer and Information Sciences,
Towson University, Towson, MD 21252 USA (e-mail: wyu@towson.edu).

X. Fu is with the Department of Computer Science, University of Massa-
chusetts Lowell, Lowell, MA 01854 USA (e-mail: xinwenfu@cs.uml.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2015.2465934

I. INTRODUCTION

TOR IS a popular overlay network that provides
anonymous communication over the Internet for

TCP applications and helps fight against various Internet
censorship [1]. It serves hundreds of thousands of users and
carries terabyte of traffic daily. Unfortunately, Tor has been
abused in various ways. Copyrighted materials are shared
through Tor. The black markets (e.g., Silk Road [2], an
online market selling goods such as pornography, narcotics
or weapons1) can be deployed through Tor hidden service.
Attackers also run botnet Command and Control (C&C)
servers and send spam over Tor.

Attackers choose Tor because of its protection of com-
munication privacy, which is achieved in the following way.
A user uses source routing, selects a few (3 by default
while the hidden service uses a different mechanism [3])
Tor routers, and builds an anonymous route along these
Tor routers. Traffic between the user and the destination is
relayed along this route. The last hop, called exit router, acts
as a “proxy” to directly communicate with the destination.
Hence, Tor exit routers often become scapegoats and are
bombarded with Digital Millennium Copyright Act (DMCA)
notices and botnet and spam complaints. In some cases, they
are even raided by police [4]. Since Tor exit routers are
mainly hosted by volunteers, these abusing activities prevent
potential volunteers from hosting exit routers and hinder
the advancement of Tor as a large-scale privacy-enhancing
network.

Tor allows manual configuration of IP and port based
policies to block potential malicious traffic. However, traffic
over Tor has versatile ports such as P2P traffic, making manual
configuration a daunting job for common Tor router admin-
istrators. Hence, a pressing need is to investigate malicious
traffic over Tor. Our research in this paper fills this gap
and differs from the existing research efforts, which mainly
focus on traffic protocols and applications. For example,
McCoy et al. [5] reported that web traffic made up the majority
of the connections and bandwidth in 2008. Chaabane et al. [6]
conducted the analysis of the application usage over Tor
through deep packet inspection and found that BitTorrent
became the first contributor in terms of traffic volume
in 2010.

In this paper, we design and implement TorWard, which
integrates an Intrusion Detection System (IDS) at Tor exit
routers for Tor malicious traffic discovery, classification and
response. An early version of TorWard [7] can discover
and classify malicious traffic in Tor while the new TorWard

1On Oct. 2 2013, the FBI took down Silk Road.
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introduced in this paper can also block and track malicious
traffic.

First, TorWard can be deployed in a sensitive
environment such as a university campus without causing
legal and administrative complaints. It consists of
a NAT (Network Address Translation) gateway and a
Tor exit router behind the gateway. Tor traffic is routed
through the gateway to the exit router so that we can study
the outgoing traffic from Tor. The traffic leaving our exit router
is redirected into Tor again through the gateway to relieve
the university from legal liability. We understand rerouting
exit traffic into Tor incurs a burden on Tor. Nonetheless,
this is the only safe way to investigate malicious traffic over
Tor in a sensitive environment. An IDS is installed on the
NAT gateway to analyze the exit traffic before it is rerouted
into Tor. We revise the Tor source code and dynamically
maintain firewall rules to avoid interference with non-Tor
traffic. Since the use of TorWard in early 2012, we have not
received any legal and administrative warning, while a lot of
administrative complaints were received each day with a bare
exit router on campus.

Second, with TorWard, we carry out statistical analysis
of malicious traffic through Tor. A key observation is that
around 10% of Tor traffic triggers the IDS alerts. Alerts are
very diverse, raised over botnet traffic, DoS attack traffic, spam
traffic, and others. More than 200 malware are discovered from
the alerts, including 5 mobile malware, all targeting Android.
Although we did not manually filter out all false alarms given
the huge volume of traffic, we demonstrate examples of major
threats such as botnet traffic. Our goal of this paper is to
show the pressure of malicious traffic over Tor exits and
draw a baseline for future intrusion detection classification
and analysis. In addition, we derive traffic protocol and
application statistics, which is largely consistent with the study
in [5] and [6] while we now can observe traffic from mobile
devices. To the best of our knowledge, this is the first effort
to categorize malicious traffic over Tor.

Third, to mitigate the abuse of Tor, we design and imple-
ment a defense mechanism to block malicious traffic. The IDS
is configured to send alerts to a sentinel agent, which retrieves
the source IP addresses and ports of the suspicious traffic and
sends the tear-down command to the exit router through our
modified Tor control protocol. The exit router disconnects the
specific connection. We deploy the IDS with extensive rule
sets, which are updated regularly to block as much malicious
traffic as possible. Although IDS may produce false alarms,
the problem is outweighed by the benefit when more people
become willing to host Tor exit routers without concerning
administrative and legal issues.

Fourth, TorWard can be used to trace back malicious traffic
across Tor for forensic purpose. As an example that itself has
significance, we trace IRC botnet traffic, which composes the
majority of observed botnet traffic. We propose a dual-tone
multi-frequency (DTMF) signaling based approach to correlate
botnet traffic at Tor entries and that at Tor exits. We use
“phantom” IRC messages, which do not interfere with the
bot or botmaster, and pack these IRC messages into cells and
control the cell transmission frequencies at our exit router.

Fig. 1. Tor network.

Two frequencies are used to embed secret binary signals into
a target circuit. Once the two feature frequencies are detected
at our controlled entry routers, the suspect botnet IP address
can be identified. Administrative and legal procedures can be
taken against the suspect IP. We carry out theoretical analysis
and extensive experiments and our data shows that the DTMF
based traceback is simple, efficient (no need of injecting much
traffic), and effective.

The rest of this paper is organized as follows. We introduce
Tor and review related work in Section II. We present the
system architecture for malicious traffic discovery, system
setup, and theoretical analysis to demonstrate the effectiveness
of TorWard in Section III. We conduct a statistical analysis on
Tor traffic and investigate various alerts and malware activities
in Section IV. In Section V, we present approaches to blocking
and tracing malicious traffic. In Section VI, we analyze
the effectiveness of the traceback approach. In Section VII,
we show experimental results and validate our findings.
We conclude this paper in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Tor

Figure 1 illustrates the basic architecture of the Tor network.
It consists of four components: Tor clients, onion routers,
directory servers, and application servers. Generally speaking,
a Tor client installs onion proxy (OP), which is an interface
between Tor network and clients. Onion routers (OR) form the
core Tor network and relay traffic between a Tor client and
an application server. The directory servers hold all public
onion router information. An application server hosts a TCP
application service such as a web. Tor also provides a hidden
service to hide the location of servers. Bridge is introduced as
hidden onion routers to further resist censorship. Without loss
of generality, we will use Figure 1 as the example architecture
of the Tor network in this paper.

To anonymously communicate with the remote server over
Tor, the client downloads onion router information from a
directory server and chooses a series of onion routers to
establish a three-hop path, referred to as circuit. The three
onion routers are known as entry (OR1), middle (OR2), and
exit onion router (OR3), respectively. When a circuit is created
by the client, the client (i.e., OP) negotiates three distinct
Diffie-Hellman (DH) keys with these three routers - entry,
middle, and exit routers, respectively. To transmit data to a
remote server, the client packs the data into basic transmission
units, referred to as cells, where each cell has a fixed size
of 512 bytes. The cell will be encrypted in the onion-like
fashion using these three DH keys stored at the client side.
The encrypted cell will be transmitted and decrypted at each
router in the onion-like fashion. Finally, the exit router has
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Fig. 2. Centralized botnet.

the fully decrypted data and deliver it to the remove server.
Therefore, the client data is encrypted while being transmitted
inside the Tor network. An IDS can only inspect the content of
the client data at the exit router, but not at an entry or middle
router.

B. Botnet
Botnets have become a primary platform to launch var-

ious Internet attacks, such as spam, distributed denial-of-
service (DDoS), identify theft and phishing. There are two
typical botnet structures: P2P botnet and centralized botnet.
In the P2P botnet, bots can form an overlay network and
each bot can be controlled by the botmaster to distribute
commands to the other peers or collect information from them.
Although the P2P botnet is more complicated and probably
more costly to manage, this structure offers higher resiliency.
In the centralized botnet, protocols such as IRC and HTTP
are used to build a centralized command and control (C&C)
architecture. The centralized C&C channels have been widely
used by many botnets because of the simplicity and availability
of open source and reusable C&C server code.

Figure 2 illustrates the architecture of a common centralized
botnet C&C. As we can see, there are three components:
(i) Botmaster, which relies on the C&C channel to issue
commands to their bots and receives information from infected
hosts through the C&C server, (ii) C&C server, which relays
the commands to bots on behalf of the botmaster, collects
information from bots, or forwards results to the botmaster,
and (iii) Bots, which are compromised computers with botware
and receive control commands from the C&C server to actually
commit attacks.

C. Related Work

The most related work [5], [6] focuses on the network
protocol analysis to study the benign use of Tor. In compari-
son, our work explores malicious traffic over Tor and proposes
countermeasures.

Malware authors have used Tor to provide anonymous
communication between malware and C&C servers. For
example, Brown [8] showed how to configure Zeus bot through
Tor2Web [9] to connect to its C&C server, which is deployed
as a Tor hidden server. Malware Skynet was discussed in the
web site Reddit in 2012 [10]. It deploys the C&C server as
a hidden server and embeds a Tor client into the malware to
communicate with the hidden C&C server. Guarnieri studied
the detailed features of Skynet by dissecting malware
samples [11], [12]. Two malwares using Tor hidden
service [13], [14] were reported in July 2013.

Research has been performed to discover Tor
hidden servers [3], [15]–[18]. For example,

Fig. 3. System architecture for malicious traffic collection.

Øverlier and Syverson [15] proposed a traffic analysis
method based on packet counting to identify a hidden
server at entry onion routers. Zhang et al. [17]
leveraged HTTP features to identify a hidden server
at entry onion routers. Murdoch [16] employed an
approach using clock skew to check whether or not
a given Tor node is a hidden server. Ling et al. [3] proposed
a protocol-level approach for discovering hidden servers.
Biryukov et al. [18] studied the method of deploying the
hidden service directory to harvest hidden service information
and investigated the traffic analysis method based on packet
counting to locate hidden servers.

Like Tor, other anonymous communication systems were
widely abused. For example, Tian et al. [19] studied how to
trace back the receiver who is retrieving illegal file over the
Freenet [20]. Xiang et al. [21] and Yu et al. [22] investigated
the possible traceback techniques and countermeasures.

III. SYSTEM ARCHITECTURE OF TorWard

In this section, we first present the architecture design of
TorWard to collect and analyze malicious traffic in the live
Tor network and then elaborate the detailed system setup.
At last, we analyze the effectiveness of TorWard.

A. System Architecture

Tor traffic can be classified as inbound and outbound traffic.
Inbound Tor traffic is encrypted and transmitted between
OR and OR or between OP and OR. Outbound Tor traffic
is decrypted by the Tor exit router and forwarded to an
application server. An exit router behaves as a proxy for
a Tor client and communicates with the application server.
Hence, media companies, ISPs (Internet Service Providers),
and campus IT department may detect malicious outbound
Tor traffic and direct complaints to “offending” exit router
administrators.

It is nearly impossible to study malicious activities over
Tor on campus because of continuous administrative and legal
complaints. We design TorWard to address this challenge.
Figure 3 illustrates the structure of this system. TorWard
consists of four logical components: a firewall, an IDS,
a transparent proxy, and a Tor exit router. Port forwarding is
enabled at the firewall to enable communication between the
exit router and middle routers in the public network. To attract
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Fig. 4. Experiment setup for malicious traffic discovery.

other Tor clients to select our exit router, our exit router is
set to accept all traffic and has a relatively large average
bandwidth and burst bandwidth of 16Mbps and 32Mbps,
respectively.

To avoid administrative and legal complaints, TorWard redi-
rects outbound traffic at our exit router into the Tor network.
We develop an automatic management tool to automatically
add and delete forwarding rules for the firewall. We modify
the code of the exit router in order to send the outbound
connection information (i.e., the destination IP address and
port) to this tool. In particular, before an exit router initiates
an outbound connection, we send the connection’s destination
IP address and port to this tool and add a rule for the connec-
tion. When the Tor exit router closes the outbound connection,
the tool is informed to remove the corresponding rule from the
firewall. The Tor client is configured to act as a transparent
proxy [23] and listens on port 9040. The rules added by our
tool actually redirect corresponding outbound Tor connections
to this proxy port. This procedure is completely transparent to
the Tor exit router. To improve the performance, we modify
the client code to establish a two-hop circuit and relay the
outbound Tor traffic into the Tor network. In this way, the
remote real Tor clients actually use five-hop circuits.

B. System Setup
Figure 4 shows the system setup of TorWard. We use

one computer with two network interfaces as a gateway con-
nected to our private network on campus. Another computer
connects to the gateway as a Tor exit router. A firewall,
an IDS, and a transparent proxy are hosted at a NAT gateway
machine. We built a private network and set up a firewall
on the gateway, which connects the private network to the
campus network. The private network includes a computer
that works as a Tor exit router. Both computers use Fedora
Core 15. As stated in Section III-A, we enable NAT and port
forwarding at the firewall through iptables on the gateway.
A Tor client is installed at the gateway and is configured as
a transparent proxy. Our automatic firewall rule management
tool is deployed on the gateway and dynamically maintains
firewall rules to redirect outbound Tor traffic from the exit
router to the transparent proxy. The code of Tor exit router is
modified to send the connection information to the automatic
firewall rule management tool. An IDS, Suricata [24], is
deployed on the gateway. Notice that any IDS can be used
as the IDS component in TorWard. Since Suricata is one of
the well-known open source IDSs, we use Suricata as an
example to demonstrate how TorWard works. The IDS detects
the destination of outbound traffic from the Tor exit router and
uses signature-based rules to detect potential malicious traffic.

Fig. 5. Pn versus number of circuits.

We adopt the IDS rules from Emerging Threats [25] for
Suricata. It is worth noting that Suricata records alerts into
unified binary files, and Barnyard2 [26] is configured to read
the alerts stored in the unified binary files and sends alerts
to a MySQL database. The MySQL database is installed on
the gateway computer and Barnyard2 acts as a bridge to
promptly send the alerts from Suricata to MySQL. In addition,
BASE [27] is deployed as a GUI to display alerts stored in the
database.

C. Effectiveness of TorWard
To demonstrate the effectiveness of TorWard and confirm the

hypothesis that we can use a few or even one exit router to
derive reliable traffic statistics over Tor, we conduct theoretical
analysis to derive the probability that the malicious traffic
traverses our deployed Tor exit router. We assume that there
are m distinct types of malicious clients and each client
generates different malicious traffic through Tor. A Tor client
will create a three-hop circuit to relay malicious traffic to the
Tor exit router and the exit router will forward the traffic
to the real destination. If our exit router is selected by the
malicious Tor client, TorWard can detect the malicious traffic.
Consequently, we need to determine the probability P that the
malicious Tor client selects our Tor router as the exit router
in its circuits. According to the Tor weight bandwidth path
selection algorithm [28], the probability P can be derived by
the proportion of the bandwidth of our Tor exit router and the
total weighted bandwidth of Tor exit routers. Tor routers can
be categorized into four groups: pure entry routers, pure exit
routers, both entry routers and exit routers, and neither entry
routers nor exit routers, whose total bandwidth is denoted as
B, Be, Bx , and Bee respectively. Let b be the bandwidth of
our Tor exit router. Then, the probability that the malicious Tor
client selects our Tor router as the exit router in their circuits
can be calculated with (1),

P(b) = b

Bx + Bee ∗ w
, (1)

where the weight w is equal to max{0, 1 − B
3(Be+Bee)

}.
Assume a malicious Tor client builds several circuits to

send malicious traffic through Tor. Denote n as the number
of circuits. After creating n circuits, the probability that at
least one circuit traverse our exit router, denoted as Pn , is

Pn(b) = 1 − (1 − P(b))n. (2)

Hence, we can see that Pn grows significantly as n increases.
According to the current Tor router bandwidth real-world
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data [29], we can calculate the probability Pn(b) based on
the number of circuits n. We set up the bandwidth of our
exit router as 16Mb/s, while the theoretical maximum aver-
age bandwidth is 80Mb/s. Figure 5 illustrates the relation
between Pn(b) and the number of circuits. It can be observed
that the probability Pn(16) approaches 100% when a malicious
Tor client creates around 260 circuits, while the probability
Pn(80) approaches 100% at the Tor exit router with bandwidth
80Mb/s after creating around 45 circuits. Consequently, if we
have more bandwidth, we can collect malicious traffic more
efficiently.

Now we discuss how long it takes to observe all m types
of malicious traffic in Tor. Assume when n = k, Pn=k(b)
approaches 100%. Therefore, the average time T needed for
observing all m types of malicious traffic can be estimated as
follows

T = max{E(T 1
k ), . . . , E(T i

k ), . . . , E(T m
k )}, (3)

where E(T i
k ) is the average time for creating k circuits by the

i th type of malicious traffic.
Assume the process of creating circuits by malicious traffic

is a poisson process in the Tor network. λi is the average rate
of the i th type of malicious traffic creating circuits. Denote
T i

1 as the time required to create the first circuit and T i
j as

the time required creating the j th circuit after the ( j − 1)th is
created. Therefore the time needed for creating k circuits by
the i th type of malicious traffic is

T i
k = T i

1 + · · · + T i
k . (4)

The properties of the Poisson process tell us T i
1 , . . . , T i

k are
independently and identically distributed and E(T i

j ) = 1/λi .
Therefore, we can have

E(T i
k ) = k/λi . (5)

Then the average time T needed for observing all m types
of traffic is the largest E(T i

k ) required for observing different
types of malicious traffic,

T = max{ k

λ1
,

k

λ2
, . . . ,

k

λm
}. (6)

We need to profile malicious traffic in the Tor network in order
to obtain T . However Equation (6) tells us that the average
time of observing malicious traffic is inversely proportional
to its circuit creation rate. Different types of malicious traffic
will be observed at a Tor exit router given enough time if the
malicious traffic is active.

IV. STATISTICAL ANALYSIS OF MALICIOUS

TRAFFIC OVER Tor

In this section, we first show the statistics of traffic protocols
over Tor. We then study the alerts and divide them into several
groups. At last, we investigate severe malware activities. Note
that given the huge volume of traffic, we only used some
examples of major threats (e.g., botnet traffic) to show the
malicious traffic going through Tor exits. In addition, although
IDS may produce false alarms, we believe that the problem is
outweighed by the benefit of using an IDS since more people
will be willing to host Tor exit routers without concerns of
administrative and legal issues.

TABLE I

DATASETS

TABLE II

NETWORK STATISTICS (DATASET 2)

A. Discovered Traffic

We conducted our experiments with TorWard during
two periods: from October 3, 2012 to November 12, 2012, and
from June 12, 2013 to July 17, 2013. The traffic during the
two periods is stored in dataset 1 and dataset 2, respectively.
Table I describes the two datasets in detail. We applied a free
version of IDS ruleset, i.e., Emerging Threats ETOpen [25],
to obtain alerts for dataset 1. To discover more malicious
traffic, a commercial product of IDS ruleset, i.e., Emerging
Threats ETPro [25], was used to obtain alerts for dataset 2.
We observed similar traffic patterns in the two datasets, and
we will focus on presenting dataset 2 in this paper for
brevity.

We apply the deep packet inspection library nDPI [30] to
dataset 2 to derive the statistics of traffic protocols. As we
mentioned in Section III-A, the traffic traversing our Tor exit
node consists of inbound and outbound Tor traffic. To identify
inbound Tor traffic, we use TShark’s protocol filter [31] to
analyze original traffic and find that around 50% traffic is
TLS (Transport Layer Security) traffic, which is used by Tor
to encrypt the inbound Tor traffic. After filtering the Tor TLS
traffic, we employ a DPI program and obtain the statistical
results as shown in Table II. It can be observed from the
table that most of recognized traffic by nDPI is P2P and
file sharing traffic, showing that P2P and file sharing traffic
consumes more Tor bandwidth in comparison with the obser-
vation in [5] and [6]. The P2P traffic is the source of various
copyright infringement issues and is the reason why a Tor exit
node is bombarded with various Digital Millennium Copyright
Act (DMCA) complaints. Before introducing TorWard, we
deployed a Tor exit node on a university campus. In less
than 12 hours, we received a DMCA takedown from Warner
Bros. Entertainment Inc. that the exit node downloaded their
copyrighted materials.

One new trend of Tor usage not observed in [5] and [6]
is the traffic generated by mobile devices. Orbot [32] was
released in 2008 and is a Tor client on Android mobile
devices. Onion Browser [33] is a Tor-based web browser
implemented for apple mobile devices. We now know that
with the growth of mobile devices, Tor users begin to install
Tor client on their mobile devices to protect privacy of their
daily communications. If a mobile device is compromised,
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TABLE III

CLASSIFICATION OF ALERTS (DATASET 1)

TABLE IV

CLASSIFICATION OF ALERTS (DATASET 2)

malware on the mobile device may now route their traffic
through Tor.

B. Alert Classification

TorWard allows us to monitor outbound Tor traffic from our
exit router by using Suricata [24], a well known IDS. To study
malicious activities, we applied two distinct IDS rulesets,
ETOpen and ETPro, to the two datasets and automatically
updated the ruleset periodically. In the following, we introduce
various classes of raised alerts shown in Tables III and IV.

Unclassified alerts are mainly made up of Russian Business
Network (RBN) and Malvertiser. RBN is known for hosting
illegal contents, such as child pornography, phishing, spam,
and malware [34].

Policy-violation alerts consist of P2P alerts, online games
(e.g., Battle.net) alerts, various chat alerts, and others.
We found that around 99% of alerts in this category are
actually generated by P2P traffic.

Misc-attack alerts are generated for blacklisted hosts. The
IDS rules contain IP addresses of hosts or netblocks, which are
known to be bots, phishing sites, professional spammers, and
so on. The blacklist is obtained from various sources, includ-
ing Dshield [35], Spamhaus [36], Brute Force Blocker [37],
OpenBL.org [38], C.I.Army [39], and the Emerging Threats
Sandnet and SidReporter project [25].

Alerts for trojan-activity are for various detected
malwares. We observed alerts for the Ngrbot channel,
IRC channel on a non-standard port, Zeus, various
potential IRC bot user names, Ruskill/Palevo download
commands, iebar spyware, hotbar spyware, simbar spyware,
Zango Seekmo bar spyware, fun web products spyware,
AskSearch toolbar spyware, Cycbot/Bifrose/Kryptic traffic,
Vobfus/Changeup/Chinky download commands, known
hostile domain ilo.brenz.pl lookup, DNS queries for
.su (Soviet Union) that is considered as related to Malware,
and many others. We categorized these malwares into several
groups in Table V. Due to the space limit, we do not list
the full table of the classification, which is available upon
request. Because Tor clients are now available for mobile
devices, we discovered several well-known Android malwares
as well.

Misc-activity comprises various IRC commands, packed
executable downloads, .cn and .ru malware related domains,
.dyndns.org DNS lookup, and potential port scan behavior on
remote port 135, 139, 445, and 1433.

Bad-unknown consists of diverse DNS queries and HTTP
requests for suspicious domains, such as .co.cc, .tk, .org.pl,
.cz.cc, .co.tv, .xe.cx, and others. These suspicious domains
can be used by C&C servers. We also find alerts from HTTP
redirection to Sutra TDS (Traffic Direction System) that might
force a client to download malware.

Shellcode-detect alerts indicate that the content of the traffic
contains various no operation (NOOP) strings. The attacker
can send long strings of NOOPs to overflow the buffer and
gain root access to an x86 Linux system. We also find heap
spray string related alerts.

Not-suspicious alerts are for IP addresses blacklisted by
Abuseat.org, Robtex.com and Sorbs.net for spam emails.
Because Tor exit routers may relay spam emails, their
IP addresses are also blacklisted and recommended for
blocking by those websites.

Attempted-recon alerts include the potential SSH port scans.
The alerts suggest that some Tor clients probably attempt to
scan the SSH port. Also, we find the activities of retrieving
the external IP addresses of the Tor exit router from web
sites such as showip.net, myip.dnsomatic.com, cmyip.com,
ipchicken.com, whatismyip.com, showmyip.com, and others.
Because a number of malwares try to get the external
IP address once the victim host is infected, the inquiry traffic
might be rerouted into the Tor network and relayed by our
exit Tor router.

Alerts for attempted-admin include those for a type of
buffer overflow vulnerability caused by a boundary error in
the GIF image processing of Netscape extension 2. We also
discovered http post requests with negative content length
that can cause buffer overflow at a web server. Microsoft
DirectShow AVI file buffer overflow alerts were found. This
vulnerability allows a remote attacker to execute malicious
code at a Tor client.

Web-application-attack alerts are for two types of attacks:
attacks from the client side and attacks from the server side.
We observed that the alerts were from the client side, including
SQL injection attacks by using the Havij SQL injection tool.
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TABLE V

MALWARE DISCOVERED THROUGH ALERTS

Fig. 6. The relation between number of discovered alerts and ith day.

The alerts from the server side were from malware in the
web page and cross-site scripting attacks, which allow the
malicious code to be executed by a Tor client browser.

Attempted-user alerts are triggered by the inbound traffic,
which attempts to use various vulnerabilities of web browsers
(e.g., Mazilla Firefox and Microsoft Internet Explorer) at the
Tor client side to launch attacks. The remote attacker may
take advantage of these vulnerabilities to execute the malicious
code and control the machine where the Tor client is hosted.
For example, we found the alerts that report a remote server’s
attempt to return a file embedded with a Class ID (CLSID)
to the web client at the Tor client side. There are also alerts
related to cross-site scripting (CSS) attacks.

Attempted-dos alerts show that malicious code is detected
in the incoming traffic, exploiting the stack exhaustion vulner-
ability in the Microsoft Internet Explorer Script Engine. If the
Tor client uses a vulnerable version of the web client to open
the malicious web page, the web client can be terminated as
a result of DoS attacks.

C. Malicious Traffic Statistics

In Figure 6, the two upward curves show the cumulative
number of distinct alerts from datasets 1 and 2, respectively.

They increase very slowly after several days. The two down-
ward curves show the number of daily discovered new alerts.
Few new alerts are observed after a few days. These results
match our theoretical analysis in Section III-C. In a first few
days, we have captured most of alerts over Tor. Apparently,
new malicious traffic have been emerging according
to Figure 6.

According to the IDS ruleset classification [40], we
categorized the discovered alerts into several categories.
Tables III and IV list the number of alerts of various
groups collected in two datasets, and detailed description is
shown below. It is worth noting that we applied two distinct
IDS rulesets for these two datasets. In Tables III and IV,
there are 8, 116, 775 alerts for dataset 1 and 3, 624, 700 alerts
for dataset 2. Policy-violation alerts have the largest per-
centage, and they are incurred by P2P traffic. Alerts related
to malware include unclassified, misc-attack, trojan-activity,
not-suspicious, and misc-activity. These alerts involve well-
known or potential IP addresses of C&C servers, well-known
malicious traffic, suspicious DNS query traffic, spam traffic,
and suspicious IRC traffic.

To understand the traffic volume in different categories, we
compute the volume of incoming and outgoing traffic from
raw data based on the alerts. Tables VI and VII give the
traffic information of dataset 2. The results are sorted based
on the priority of the ruleset [40]. From Tables VI and VII, we
can observe that around (2.5G B + 162G B) = 164.5G B out
of 2.97T B traffic, i.e., around 5.5% traffic in dataset 2, can
trigger the alerts, while around (16G B + 375G B) = 391G B
out of 3.95T B traffic, i.e., around 10% traffic in dataset 1,
can trigger the alerts [3]. In addition, the policy-violation
traffic is the most dominant one, which was mainly caused
by P2P traffic. Then, the second dominant traffic is trojan-
activity traffic. In addition, the volume of traffic generating
high priority alerts is much larger than the volume of other
traffic.
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TABLE VI

INCOMING TRAFFIC STATISTICS (DATASET 2)

TABLE VII

OUTGOING TRAFFIC STATISTICS (DATASET 2)

Based on the diverse alerts, we conclude that outbound
Tor traffic consists of numerous malicious traffic, which may
potentially incriminate the party who hosts a Tor exit router.
In addition, third-party plug-ins of various browsers used by
some Tor users may leak their private information. In the
following subsection, we further explore the issues incurred
by malware activities to reveal the impact of the malicious
traffic.

D. Malware Activities

As shown in Table V, we discovered various activities
associated with malwares from the reported alerts, including
the communication between malware and C&C server, DoS
attacks, Spams, and others.

Communication Between Malware and Command and
Control Server: Some malwares are designed to connect to
a C&C server in order to report the information retrieved
from the victim machine, update the malware, download
the configuration file, and perform other operations. To hide
the communication between malware and the C&C server,
malware authors may adopt Tor to hide malicious traffic
and protect the real location of the C&C server from being
discovered. If the malware chooses our Tor exit router, the
malicious traffic will traverse the Tor circuit and establish the
connection to the C&C server through our exit Tor router.
Hence, our exit Tor router can detect such malicious traffic.
In dataset 2, we discovered 622 C&C server IP addresses
based on check-in messages from more than 70 different

Fig. 7. Spyeye checkin.

Fig. 8. Ngrbot.

known malware, 59 different IP addresses of known compro-
mised or hostile hosts that might be deployed as a C&C server,
71 C&C Server IP addresses reported by Shadowserver [41],
and 93 IP addresses obtained from various well-known track-
ers (e.g., Zeus, Spyeye, and Palevo trackers) that report
C&C servers’ IP addresses.

We now show a few examples found in our datasets on how
malwares communicate with their C&C servers. In Figure 7,
a Spyeye bot is connecting to its C&C server to
report the information of the victim machine. According
to the format of SpyEye C&C Message [42], we can
parse the information that includes a unique identi-
fier (guid=GT!GT-FDCCD9A7405D!30457F77), the version
of the bot infector (ver=10120), the status of the
bot (stat=ONLINE), the version of Internet Explorer
(ie=6.0.2900.5512), the version of Microsoft Windows oper-
ating system (os=5.1.2600), the type of the current user on
the victim machine (ut=Admin), the CPU load (cpu=61), the
CRC32 taken from the last four bytes of the bot configura-
tion file (ccrc=8115AE02), and the md5 of the bot infec-
tor (md5=16ab5c0e831612b94e193282537b97e8). Figure 8
shows that a Ngrbot logs into a IRC server, joins a chat room
and then receives a command to download another malware.
We found malicious traffic from mobile devices as well. As an
example, Figure 9 illustrates the malware communicating with
the remote server by using HTTP protocol.

DoS Attacks: A bot master can control a large number of
bots and malware to perform a DoS attack through Tor. For
example, in our measurements, we discovered 72, 894 DoS
attack alerts of Yoyo-DDoS bot where 457 distinct destina-
tions are found. Yoyo-DDos bots can receive the command
of attacking a target server from the bot master and then
continuously send HTTP requests to the target server so as to
launch HTTP flood attacks. The target servers of 96% DDoS
attacks that we found are located in two countries, the Unite
States and China.

Spam Traffic: We found 40, 834 related spam alerts and
8,186 distinct email server IP addresses from 115 different
countries in dataset 2. As we can see from Table VIII, 89.02%
alerts originate from only 10 countries, while around 50%
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Fig. 9. Mobile Malware (Android/Plankton.P).

TABLE VIII

SPAM ALERT STATISTICS (DATASET 2)

email servers are from only three countries. Due to the large
number of spams from Tor network, many email servers deny
the email relayed from the Tor network. This hurts benign Tor
users who send email through Tor.

Bitcoin Pool Traffic: We discovered 11, 216 alerts related
to communication between bitcoin miner and distinct bit-
coin pools in dataset 2. Bitcoin is a decentralized electronic
currency. To generate new bitcoins, a node should solve a
mathematical problem, i.e., creating a new block to show a
proof of work. According to [43], a new block yields around
25 bitcoins, which is about 25 ∗ 96 = 2400 US dollars in terms
of current price in the bitcoin exchange market. Nonetheless,
it is difficult for a computer with limited computation power to
generate a block. To address this issue, a bitcoin pool server
is used to split a block into pieces of small work and let
multiple users to work together to mine bitcoins. Hence, some
malicious botnets exploit the computational power of victim
machines to make profit by mining bitcoin. For example,
Skynet bots [11], [12] can deploy bitcoin miner in the victim
machines. Hence, the alerts from our datasets suggest that
some victim machines are installed with a bitcoin miner and
communicate with a bitcoin pool server.

E. Botnet Over Tor

Our experiments disclose that various malicious traffic
(e.g., P2P, botnet and spam) are routed through Tor.

Fig. 10. Botnet over Tor (scene 1).

Our experimental results, further detailed in later sections,
suggest that a botnet owner may use the Tor network to
hide the communication between bots, botmaster and the
C&C server. Before we introduce mechanisms to trace back
botnet traffic over Tor, we discuss possible strategies that
botnets may use to abuse Tor as anonymous stepping stones
to hide the botmaster and the C&C server.

A botnet can use the Tor network and hide communication
in two approaches. First, bots are installed with the Tor client
software. By setting the firewall rules, a bot can work as a
transparent proxy to force its traffic to go through Tor. Second,
a bot can be configured to connect to a traffic redirection
server, which forwards the bot traffic into the Tor network
to reach the real C&C server. We have managed to deploy
such a traffic redirection server to forward the traffic between
bots and Tor network. We integrate a reverse proxy Pen [44],
Tor client and transparent socks proxying library (tsocks [45])
with a traffic redirection server. The forwarding destination
of the reverse proxy is the C&C server. The reverse proxy
is configured to transparently forward the bot traffic to the
socks proxy of the Tor client through tsocks. We deploy
UnrealIRCd [46] as a remote IRC C&C server and install
Ngrbot in a virtual machine. We set the C&C server option of
the malware as the redirection server. The bot first connects
to the redirection server and is then redirected to the hidden
IRC C&C server through Tor network. Ultimately, the bot
can obtain the commands from the botmaster through the
C&C server.

The first approach of bundling bots with Tor and transparent
proxy is harder to deploy. In particular, while most reported
bots run over Windows, there is no such transparent proxy for
Windows systems. The attacker may modify the code to embed
the proxy functionality into botware. Nonetheless, botware
source code may not be always available. A builder of botware
often does not have the option of using Tor.

The second approach of using a redirection server to relay
the bot traffic to the C&C server is more realistic due to the
ease of deploying the redirection server in diverse operating
systems. Figure 10 illustrates this deployment. With this
method, the attacker can hide the real C&C server even if
bots are discovered. The above mentioned botnet over Tor
deployed by us is a simplified version of the Zeus botnet using
a hidden server over Tor [8], in which an attacker deploys the
C&C server of Zeus as a Tor hidden server, and bots com-
municate with the hidden C&C server through Tor2Web [9].
Tor2Web is a third-party tool designed to help access the
hidden web servers without a Tor client and facilitate the
Zeus bots, which do not support the proxy functionality to



2524 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 10, NO. 12, DECEMBER 2015

Fig. 11. Botnet over Tor (scene 2).

Fig. 12. Blocking malicious traffic.

connect to the hidden C&C server. Our traffic redirection
server works as a private Tor2Web to forward the traffic
to a specific destination. To resist the single point of
failure (SPOF), the botnet owner can deploy several backup
redirection servers. For example, the builder of Ngrbot
provides three backup C&C server options.

A botmaster can also connect to the C&C server through
Tor and hides itself from traceback, as illustrated in Figure 11.
In our experiments, we found all botnet traffic passing through
our Tor exit router is not encrypted. Hence, it is possible
to detect the botmaster traffic using IDS. For example, in
a centralized IRC botnet, the botmaster actively sends com-
mands to bots using IRC PRIVMSG messages through the
C&C channel, while bots wait for the commands from the
botmaster. We can configure IDS to monitor the incoming
IRC PRIVMSG messages at the Tor exit router and detect the
potential bot commands.

V. BLOCKING AND TRACING MALICIOUS

TRAFFIC OVER Tor

In this section, we first introduce TorWard as a system for
blocking malicious traffic detected by IDS at Tor exit routers.
Blocking is a passive countermeasure to various malicious
activities. To further deter illegal activities and promote legal
use of Tor, TorWard can also be used to trace severe attacks.
This is possible and legal if exit and entry routers collaborate.
When the suspect IP is identified, we can refer the case to
law enforcement for further collection of evidence and even
prosecution.

A. Blocking Malicious Traffic

TorWard can be used to block potential malicious traffic
at Tor exit routers. We use the intrusion detection alerts from
IDS and make a decision of either disconnecting or keeping the
corresponding outbound traffic through our custom Tor control
protocol. Figure 12 illustrates the structure of TorWard for this
purpose.

In TorWard defense system, there are four components:
a Tor exit router, an IDS, a sentinel, and a database. The
IDS monitors traffic passing through the exit router and
sends alerts to the sentinel for real-time processing and to
the database for off-line analysis. The sentinel retrieves the
destination of a suspect connection from the alerts and sends
our customized disconnection command to the Tor exit router
through the Tor control protocol. The Tor exit router obtains
the IP address and port, and then searches its connection
list. Once the suspect connection is found, the corresponding
connection will be terminated.

For IDS, we can choose either Suricata [24] or Snort. The
IDS can be configured to send the alerts through a Unix
domain socket to the sentinel. Snort has a configuration option
of using Unix domain socket. Suricata does not have the Unix
domain socket functionality. Nonetheless, we can configure
Suricata to record the alerts in a binary file. Barnyard2 [26]
can then be used to parse the file and send the alerts to the
sentinel with the “alert_unixsock” option in its configuration
file. Both Snort and Suricata are signature-based IDS and we
adopt the Vulnerability Research Team (VRT) rules [47] and
Emerging Threats (ET) rules [25] for them. Rules can also
be customized in the IDS configuration file to detect certain
category of threats. For example, if we concern about the P2P
traffic through the exit Tor router, we can include only relevant
P2P rules into the IDS configuration file. It is worth noting
that our developed system is generic and other anomaly-based
detection algorithms can be deployed.

Upon obtaining alerts from IDS, sentinel processes the
alerts, retrieves the IP address and the port number of the
potential malicious traffic, and disconnects the correspond-
ing connection through our custom Tor control protocol.
We use the Tor control protocol [48] to send our customized
commands to the exit router, which executes the designated
task. For example, command “CLOSEEXITCONN ip port”
is added to tear down the suspicious connection. Once
the exit router receives this command, it sends the remote
client a “RELAY_COMMAND_END” cell with the reason
“REASON_CONNECTREFUSED” to inform that the connec-
tion is closed.

To carry out an off-line analysis of alerts, the IDS is
configured to record the alerts in a database. In our case,
MySQL is used. The IDS stores alerts in a binary file, and
Barnyard2 reads the file and sends the alerts to the database.
The database is also managed by a front application, Basic
Analysis and Security Engine (BASE) [27]. It is worth noting
that the database is not necessarily an essential component for
TorWard, which can work smoothly without the database.

TorWard cannot prevent the malicious traffic from the
source, although it can effectively disrupt the malicious traffic
at the exit router. According to our observation, the involved
circuit is not really destroyed by TorWard. Instead, the remote
Tor client may choose a new Tor router, which is not equipped
with TorWard, and adds it into this current circuit as the
new exit router. Then, the remote Tor client will use the
four-hop circuit to communicate with the destination again.
To effectively block malicious traffic, we should track down
the offending Tor client. In the next subsection, we design
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Fig. 13. Workflow of the DTMF signaling based approach.

an approach and take the IRC botnet traffic as an example to
show how to discover the remote botnet hosts.

B. Dual-Tone Multi-Frequency Signaling Based Traceback

The goal of traceback is to correlate botnet traffic at an
exit router and that at an entry router across Tor. For this
purpose, we adopt the dual-tone multi-frequency (DTMF)
signaling approach [49], which has been used for telecom-
munication signaling over analog telephone lines in the voice-
frequency band between telephone handsets, other communi-
cations devices and the switching center. In DTMF, to send
a single key such as “9”, we select a low frequency and
a high frequency, and send a sinusoidal tone of the two
frequencies. The tone is decoded by the switching center to
determine the key that was transmitted. The original DTMF
adopts 8 frequencies to represent 4 × 4 = 16 keys. Inspired
by DTMF, we design a DTMF signaling based approach to
tracing the botmaster or bots over Tor. In the following, we
will introduce the basic idea and the workflow, and discuss
the critical issues of using DTMF for traffic traceback.

1) Basic Idea: Recall that in the cyber attack scenario
shown in Figure 11, the exit router discovers botnet traffic
from a suspect circuit. We want to find the offending entity
that generates the bot traffic at the other side of Tor, which
can be a redirection server or botmaster. Our goal is to find
the botnet IP address through our signaling approach. Assume
that we control a small percentage of exit and entry onion
routers by donating computers to Tor. Because Tor is operated
in a voluntary manner, this assumption is valid in practice and
has been widely used [15], [50]–[52]. Notice that the traceback
helps the law enforcement possess the capability of identifying
the malicious source in case of severe crime activties such as
child pornography downloading observed at an exit router.

The basic idea of tracing botnet traffic is that at the
controlled exit router, we first inject extra cells at alternating
frequencies that represents a signal into the suspect circuit
and then attempt to confirm the signal at our controlled entry
routers. If one entry detects the signal, this entry will be used
to identify the IP addresses of botnet hosts, which actually
creat the suspect circuit. Our DTMF signaling uses two dif-
ferent frequencies to represent bit 0 and bit 1, respectively.
A signal is a sequence of binary bits.

2) Workflow of DTMF Signaling: Figure 13 illustrates the
workflow of the DTMF signaling method. We now introduce
individual steps in detail.

Step 1 (Detecting Suspect Circuit): With the help of an
IDS, the exit router can find the suspect connection and
corresponding circuit, which transmits the IRC bot traffic. The
IP address and port are obtained accordingly.

Step 2 (Modulating Traffic): Once a suspect circuit is
detected, we can inject artificial cells into the circuit and
start the traceback procedure. For an IRC channel, messages
in the injected cells should not be displayed. An empty
IRC PRIVMSG message works for this purpose. Two dis-
tinct frequencies for transmitting cells, denoted as feature
frequencies, are selected to represent 0 and 1, respectively,
and modulate a signal into the injected traffic. For example,
to encode a bit 0, we send cells with an interval time of
500ms (i.e., a feature frequency of 2Hz); to encode bit 1, we
send cells with an interval time of 333.33ms (i.e., a feature
frequency of 3Hz). Each bit can last for a longer interval, such
as 2 seconds, denoted as bit interval.

Step 3 (Collecting and Pre-Processing Data): At our con-
trolled entry routers, we record cells for each circuit in order
to derive the feature frequency embedded in cells and recover
a signal. A traffic volume time series is derived by counting
the number of cells in a sampling interval Ts , corresponding
to the sampling frequency Fs = 1/Ts . We denote the time
series as

X (F0, F1, Fs) = {x1, . . . , xN }, (7)

where F0 and F1 are the two feature frequencies to represent
bits 0 and 1, N is the sample size, and xi is the number of
cells in the i th sampling interval.

Sampling frequency Fs has to be carefully selected to
recover an embedded feature frequency. We expect that
the feature frequency should show a strong amplitude than
noise around the expected feature frequency in the fre-
quency domain. In order to recover the feature frequency FI

(I is 0 or 1), sampling frequency Fs (corresponding to the
sampling interval Ts ) must be carefully chosen. According to
Nyquist sampling theory, we have

Fs ≥ 2FI . (8)

One issue of recovering feature frequencies is how to syn-
chronize modulation and demodulation at the exit and entry.
That is, we want to know the time when (at which cell) cells
for 0 and 1 start. This issue can be solved in our case because
we control the cell sending at the exit router. Botnet traffic into
the suspect circuit toward the entry can be blocked before we
inject the traceback cells into the circuit. Hence, an appropriate
silence period such as 1 second can be introduced to indicate
the starting time of transmitting the signal. Recall that the entry
must monitor all its circuits. Circuits without such a silence
period will be eliminated immediately. For circuits with the
silence period, we can count the cells. Because we know the
time when “1” and “0” start and end, respectively, we can
carry out the Fourier Transform on the corresponding traffic
segment.

Step 4 (Recovering Signal): In this step, we apply the
Fourier transform to X (F0, F1, Fs ). Recall that we introduce
periodicity while sending cells at the entry. If a circuit
indeed carries the botnet traffic, strong amplitudes will be
observed at feature frequencies F0 and F1, which correspond
to bits 0 and 1, respectively. The IP address that creates the
suspect circuit will disclose the suspect botnet.
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Fig. 14. Sampling cells in noise-free environment.

C. Issues of DTMF for Traceback

Several critical issues listed as follows should be addressed
when using DTMF for traceback.

• We modulate a signal bit into cells by sending cells at a
specific feature frequency. When the cells pass through
Tor, how does network dynamics affect cell timing? If the
cell timing is changed, the feature frequency could be
distorted.

• In our traceback strategy, feature frequencies will be
identified in the frequency domain. Recall that we may
have to monitor multiple circuits and identify the circuit
that carries the feature frequencies. What is the rule for
deciding whether a feature frequency exists given that the
network dynamics may have distorted cell timings along
the circuit?

• How do we choose feature frequencies? Are those fre-
quencies are arbitrarily selected?

We will answer these questions in the next section.

VI. ANALYSIS

In this section, we address the issues of using the DTMF
based approach to trace botnet traffic: (i) the impact of noise,
(ii) the decision rule for recognizing a signal bit, and (iii) the
selection of feature frequencies. Also, we will investigate
two performance metrics: detection rate and false positive rate.

A. Interference of Noise

When injected cells into a suspect circuit pass through Tor,
the cells can be interfered with in various ways. Figure 14
illustrates the case in a noise-free environment. Two consec-
utive cells are observed in the correct sampling interval Ts .
By using the Fourier transform, we can derive the correct
feature frequency. Nonetheless, the Tor router may be con-
gested and the Internet may also delay the cells (wrapped
in network packets) randomly, the inter-arrival times of the
cells will be disturbed. The feature frequency will be affected
accordingly.

To better understand the impact of noise on feature frequen-
cies, we study the following two cases:

Case 1 (Cell Shifting): Denote the time instants when cells
arrive at OR1 as {T1, . . . , Tm}, where m is the total number
of cells. Denote Tα as the one-way trip delay between OR3
and OR2, and Tβ as the one-way trip delay between OR2 and
OR1. Denote the processing time of data at OR2 as Tη. Hence,
the relationship between Ti and Ti+1 can be represented by,

Ti+1 = Ti + TI + Tα + Tβ + Tη, (9)

where 1 ≤ i < m and TI is the interval time for sending
cells at a feature frequency. Because the delay introduced

Fig. 15. Shifted cells in noisy environment.

Fig. 16. Merged period in noisy environment.

by network dynamics and the load of middle onion router
is uncertain, we denote the uncertain factor as random vari-
able Tθ , where Tθ = Tα + Tβ + Tη. Then, we have

Ti+1 = Ti + TI + Tθ . (10)

Even with noise, each cell can be in the correct sampling
interval if Ti + TI < Ti+1 < Ti + TI + Ts , as illustrated in
Figure 14. If the interference is large enough to cause Tθ > Ts ,
then the (i + 1)th cell will be shifted into the next segment,
as illustrated in Figure 15, or even further. In this case, the
amplitude of the feature frequency is reduced or the frequency
itself can be changed.

Case 2 (Cell Merging at the Middle Onion Router): Denote
the time instants when cells arrive at OR2 as {T ′

1, . . . , T ′
m},

where m is the number of the cells. Denote the interval-arrival
time between T ′

i and T ′
i+1 as Tρ , where Tρ = TI + Tα . Then,

the relationship between T ′
i and T ′

i+1 can be represented by,

T ′
i+1 = T ′

i + TI + Tα. (11)

Basically, if the current cell arriving at the middle router
can be promptly transmitted to the entry router before the
following cell arrives at the middle router, these two cells
will not be combined, that is, T ′

i + Tη < T ′
i+1. Based on

Equation (11), we can obtain T ′
i + Tη < T ′

i + TI + Tα and
eventually derive Tη < Tρ . Hence, if Tη > Tρ , two consecutive
cells will be combined, as illustrated in Figure 16. In this case,
feature frequency in these two segments will be changed due
to the interference of the period.

B. Decision Rule for Recovering the Signal

We now discuss how feature frequencies and the signal are
recovered from the traffic volume time series. As we have
shown, a feature frequency is introduced by injecting cells
periodically. If we treat the traffic volume as a continuous
function of time f (t), the Fourier transform of a periodic
function f (t) can be represented by a Fourier series as follows,

f (t) =
∞∑

k=−∞
cke

i2π k
TI

t =
∞∑

k=−∞
ckei2πkFI t , (12)
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where TI is the periodical time for transmitting cells, FI is the
a feature frequency, eik2π FI t = cos(2πk FI t) + i sin(2πk FI t)
and ck is the kth coefficient. Note that without noise, in the
frequency domain, only frequency components at k FI have
no-zero amplitude. That is, the power Ps of the signal can be
written as follows,

Ps =
∞∑

k=−∞
|ck |2, (13)

where |ck |2 corresponds to the power of the corresponding
frequency component.

Nonetheless, network dynamics may distort feature frequen-
cies along the circuit, and noise is added into the power
spectrum of the traffic volume function f ′(t),

f ′(t) = f (t) + ζ, (14)

where f (t) is the traffic volume function that we introduce
at the entry router. We assume that ζ is Gaussian white
noise (WGN) with distribution N(0, σ 2).

According to Parseval’s theorem, we can derive the
power P ′

s corresponding to f ′(t),

P ′
s = 1

2�

∫ �

−�
( f (t) + ζ )2 dt, (15)

and the expectation of the signal power is derived by,

E(P ′
s ) = E

(
1

2�

∫ �

−�
( f (t) + ζ )2 dt

)
(16)

= 1

2�
E

(∫ �

−�

(
f (t)2 + 2 f (t)ζ + ζ 2

)
dt

)
(17)

= 1

2�

∫ �

−�

[
f (t)2 + 2E(ζ ) f (t) + E(ζ 2)

]
dt . (18)

Since E(ζ ) = 0 and E(ζ 2) = σ 2, we have

E(P ′
s ) = 1

2�

(∫ �

−�
f (t)2dt

)
+ σ 2, (19)

= Ps + σ 2. (20)

Therefore, we can derive the signal-to-noise ratio (SNR),

SN R = E(P ′
s )

σ 2 . (21)

Substituting (20) and (13) into (21), we have

SN R =
∞∑

k=−∞

|ck |2
σ 2 + 1. (22)

From Equation (22), SNR at each frequency component must
be large enough so that the feature frequency can be recog-
nized.

After we apply the Fourier Transform to the suspect traffic
volume time series, the feature frequency is expected with
large amplitude. We can use a threshold λ to determine
whether the feature frequency has a large enough amplitude.
That is, if

SNR at the expected feature frequency > λ, (23)

the feature frequency and corresponding signal bit are recov-
ered. The threshold value can be selected through off-line
training.

C. Selection of Feature Frequencies

Because cells may shift or merge along a Tor circuit due
to network dynamics, feature frequencies have to be carefully
selected to avoid large signal distortion. If a high frequency
is used to transmit cells, the interval between cells would be
small and cells would be likely to merge at the middle router.
Hence, a low frequency is more appropriate for a feature
frequency. Nonetheless, a lower frequency implies a longer
traceback time.

Because we use two frequencies to represent signal
bits 0 and 1, respectively, and recognize them in the frequency
domain, the two frequencies must not overlap in the frequency
domain. Assume feature frequency F0 < F1. If F1 = k F0,
where k is a positive integer, according to Equation (13),
the power spectrum of feature frequency F0 will have a
frequency component at feature frequency F1. Hence, another
criterion for selecting feature frequencies is that the two
frequencies should not overlap in the frequency domain within
half of the sampling frequency Fs . Note that the Fourier
transform will smooth out frequency components higher
than Fs/2.

D. Performance Metrics

We now discuss two metrics, detection rate and false
positive rate, for evaluating the detection of a signal injected
into a suspect circuit. Detection rate PD is defined as the
probability that all bits of a signal is correctly identified. The
signal to noise ratio determines the probability that a feature
frequency and the corresponding bit is identified. Denote the
probability that feature frequency F0 is recognized as pd0 and
the probability that feature frequency F1 is recognized as pd1,
respectively. Detection rate can be derived by,

PD = pm
d0 pk

d1, (24)

where m is the number of 0 and k is the number of 1 in the
signal. Because suspect connections may choose our exit and
entry Tor routers simultaneously multiple n times, the overall
detection rate after n times will be

PD,n = 1 − (1 − PD)n. (25)

When n approaches infinity, PD,n approaches 100%. This
implies that if a Botnet continuously uses Tor, we will detect
it sooner or later.

False positive rate PF is the probability that there is no
signal embedded into the traffic and the signal is incorrectly
recovered from the traffic. Denote the probability that feature
frequency F0 appears in normal Tor traffic as p f 0 and the
probability that F1 appears in normal Tor traffic as p f 1. The
false positive rate can be derived as follows,

PF = pm
f 0 pk

f 1, (26)

where m is the number of 0 and k is the number of 1 in
the signal. Hence, by controlling the signal length, we can
effectively reduce the false positive rate.
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Fig. 17. Experiment setup for traceback.

VII. EXPERIMENTAL EVALUATION

OF TRACEBACK APPROACH

We have implemented the dual-tone multi-frequency
signaling based traceback approach. Extensive real-world
experiments were conducted to demonstrate the feasibility and
effectiveness of our approach.

Figure 17 shows the experimental setup to evaluate the
DTMF based traceback. We use PlanetLab [53] to deploy an
entry router in Hong Kong. The exit router is deployed in USA,
while the Tor client and IRC server are in Canada. The version
of Tor in our experiments is 0.2.2.35. mIRC [54] is used as the
IRC client of the botmaster and UnrealIRCd [46] emulates the
IRC C&C server. By configuring the proxy setting of mIRC,
we let mIRC communicate with the IRC server through the
Tor network. Using the configuration file and manipulatable
parameters, such as EntryNodes, ExitNods, StrictEntryNodes,
and StrictExitNodes [55], we can control the client to choose
both the entry and exit router along the circuit to carry out
our experiments.

To evaluate the duel-tone multi-frequency signaling based
traceback approach, we let the IRC client communicate with
the emulated C&C server 30 times over Tor. At the Tor exit
router, we choose two frequencies and control transmission
frequency of Tor cells in order to embed our signal in the
target traffic. At the entry onion router, the cells arriving at
the circuit queue are recorded in a log file and the signal
detection approach is applied to extract the feature frequency
to recover a signal.

When we evaluate the false positive rate, the IRC client
communicates with the emulated C&C 30 times through Tor
again. Nonetheless, no signal is embedded into the traffic at the
exit onion router. Denote the traffic without embedded signal
as the clean traffic. We apply the detection approach to the
clean traffic collected at the entry onion router. By checking
whether a given signal is detected in the clean traffic, we obtain
the false positive rate.

Figure 18 shows the relationship between frequency and
amplitude in the frequency domain. In this set of experiments,
the signal is 4-bits “1010”. We adopt frequency 3Hz and 2Hz,
or frequency 3Hz and 4Hz to encode bit “1” and bit “0”,
respectively. To extract these frequencies, we use the sampling
frequency of 12Hz. In the upper row of Figure 18, frequency
3Hz is used for encoding bit “1”, while frequency 2Hz for
bit “0”. We can clearly observe the high amplitudes at these
feature frequencies to decode the specific signal bit “1010”.
In the second row of Figure 18, frequency 3Hz is used for
encoding bit “1” and frequency 4Hz for bit “0”, respectively.

Fig. 18. Upper row: bits 1010 by feature frequencies 3 and 2 Hz;
Bottom row: bits 1010 by feature frequencies 3 and 4 Hz.

Fig. 19. Signal length (number of bits) versus rate.

Fig. 20. Signal bit interval versus detection rate.

Likewise, we can identify the amplitudes at the feature fre-
quencies using appropriate threshold λ. Using the decision
rule in Section VI-B, we can recover the signal. Our results
demonstrate that the DTMF approach works effectively.

Figure 19 illustrates the relationship between the detection
rate and the signal length. As we can see from this figure, when
the signal length is increased from 8 bits to 18 bits, the true
positive rate will be slightly decreased by using frequencies
3Hz and 2Hz to embed the signal. When the signal length is
between 8 bits and 14 bits, 100% positive rate can be achieved.
However, when the signal length is 18 bits, the positive
rate reduces to 92%. In addition, the positive rate when
using frequencies 3Hz and 2Hz is much better than that of
using frequencies 3Hz and 4Hz. It demonstrates that using
high frequencies in DTMF may cause cell merging, which
impacts the recovery of signals. This observation matches our
analysis in Section VI. The false positive rate of these exper-
iments approaches 0%, further validating the effectiveness of
our traceback approach.

Figure 20 shows the relationship between the interval of
signal bits and the detection rate. In this figure, we adopt the
frequencies 3Hz and 2Hz to encode the signal, and test the
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method with different signal lengths, i.e., 16 bits and 18 bits.
We observe that when the interval of signal bits increases, the
detection rate slightly increases. This observation also matches
our analysis in Section VI.

VIII. CONCLUSION

In this paper, we presented a novel system, TorWard, for
discovery, classification, and response of malicious traffic
over Tor. In particular, TorWard inspects the passing traffic
through an IDS at a Tor exit router while avoiding admin-
istrative and legal troubles by redirecting the traffic into
Tor. We analyzed the data collected over a long period and
discovered that a large amount of malicious traffic, including
various P2P, botnet, spam, and other malware traffic, was
carried over Tor. Among the 3, 624, 700 alerts recorded in one
of our datasets, 78.03% of them are caused by P2P traffic,
while 8.99% are related to malwares. To block malicious
traffic at an exit router, we deployed IDS to forward alerts
to a sentinel agent of TorWard, which can dynamically disrupt
malicious traffic through our Tor control protocol. To facil-
itate forensic analysis, we designed an effective duel-tone
multi-frequency (DTMF) signaling based approach to tracing
malicious traffic across Tor. As an example that itself has
significant practical meaning, we successfully traced the botnet
traffic over Tor. The effectiveness and feasibility of TorWard
were validated through a combination of extensive theoretical
analysis and real-world experiments.
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