
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 1

Multiagent-Based Resource Allocation for
Energy Minimization in Cloud Computing

Systems
Wanyuan Wang, Yichuan Jiang*, Senior Member, IEEE, Weiwei Wu

Abstract—Cloud computing has emerged as a very flexible service paradigm by allowing users to require virtual machine (VM)

resources on-demand and allowing cloud service providers (CSPs) to provide VM resources via a pay-as-you-go model. This

paper considers the CSP’s problem of efficiently allocating VM resources to physical machines (PMs) with the aim of minimizing

the energy consumption. Traditional energy-aware VM allocations either allocate VMs to PMs in a centralized manner or

implement VM migrations for energy reduction without considering the migration cost in cloud computing systems. We address

these two issues by introducing a decentralized multiagent(MA)-based VM allocation approach. The proposed MA works by first

dispatching a cooperative agent to each PM to assist the PM in managing VM resources. Then, an auction-based VM allocation

mechanism is designed for these agents to decide the allocations of VMs to PMs. The theoretical analyses suggest that this

auction-based mechanism has a high performance on reducing energy cost. Moreover, to tackle system dynamics and avoid

incurring prohibitive VM migration overhead, a local negotiation-based VM consolidation mechanism is devised for the agents to

exchange their assigned VMs for energy savings. We evaluate the efficiency of the MA by using both static and dynamic

simulations. The static experimental results demonstrate that the MA can incur acceptable computation time to reduce system

energy cost compared with traditional bin packing-based and genetic algorithm-based centralized approaches. In the dynamic

setting, the energy cost of the MA is similar to that of benchmark centralized resource consolidation approaches, but the MA

largely reduces the migration cost.

Index Terms—Cloud computing systems, resource allocation, energy cost, migration cost, multiagent, negotiation.

——————————  ——————————

1 INTRODUCTION

loud computing provides flexible and cost-effective
services for enterprises, organizations and individu-
als running computational and data-intensive appli-

cations [1]. Through cloud computing platforms (e.g.,
Amazon EC2, Google AppEngine, and Microsoft Azure),
users can submit their resource (e.g., CPU, memory, stor-
age and network, etc.) request to cloud service providers
(CSPs). The CSPs then provide the users the required re-
source in the form of a virtual machine (VM, acting like a
real computer) in exchange for financial remuneration [2].
Generally, an effective VM resource allocation should not
only deliver scalable services to satisfy various user re-
quirements with the aim of increasing the CSP’s profit
[3][4], but also conserve the energy consumption of the
physical machines (PMs) used for running users’ applica-
tions with the aim of decreasing the CSP’s cost [5-7]. In
this paper, we are mainly concerned with developing en-
ergy-aware resource allocation approach of allocating
VMs to PMs with the aim of minimizing system energy
cost, which is a fundamental problem in cloud computing
systems [8-27].

A straightforward idea to make a cloud system energy
efficient is to develop energy-proportional PMs, i.e., each
PM consumes energy only in proportion to the VM loads
it undertakes [8]. For this purpose, many technologies
such as using high-quality power supplies and voltage

regulation modules, have been introduced to achieve PM
energy proportionality [9][10]. However, even though
equipped with energy-proportional PMs, the cloud sys-
tem’s energy consumption is far from optimal due to inef-
ficient allocation of VMs to PMs [11-15]. In cloud compu-
ting systems, PMs are heterogeneous with various re-
sources and operation costs and VMs are heterogeneous
with different resource requirements [16]. An undesirable
allocation of allocating the large-size VMs to costly PMs
might consume tremendous energy [17-20].

Due to its significance to build green cloud systems,
the energy-aware VM resource allocation problem has
been studied widely, and a number of approaches have
been proposed [11-27]. However, from these approaches,
we find there are two aspects that need to improve. First,
most of existing approaches assume that there is a central
resource manager that can monitor and maintain infor-
mation about all PMs and VMs and thus can allocate VMs
to PMs in a centralized manner [11-14][16-26]. Although
centralization can guarantee high system performance, its
low robustness with a single point of failure creates a

————————————————

The authors are with the School of Computer Science and Engineering,
Southeast University, Nanjing 211189, China, and also with the Key
Laboratory of Computer Network and Information Integration (South-
east University), Ministry of Education, China. (*Corresponding author:
Yichuan Jiang, email: yjiang@seu.edu.cn).

Manuscript received 28 March 2015, revised 3 September 2015, accepted 30
November.

. . .User1 User2 Userm

VM Request

VM1 VM2 . . . VMm

Cloud
Computing

System

Stage 1:
VM Allocation

...
PM1 PM2 PMn

VM1
VM2

VM3

VMm

Stage 2:
VM Consolidation

...
PM1 PM2 PMn

VM1
VM2

VM3

VMm

User3

VM3

Fig. 1. The multiagent-based resource allocation framework.

C

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

vulnerable cloud system [28][29]. Second, because cloud
systems are dynamic with dynamic VMs arrival and de-
parture, VM live migration is necessary for resource con-
solidation. The migration cost (e.g., network traffic cost),
occurs when a VM is migrated from one PM to another
PM, which is also crucial to the performance of cloud
computing systems [30][31]. However, many approaches
[15][19][23][24] transfer VMs among PMs without consid-
ering the VM migration cost.

To address the above two issues, in this paper we in-
troduce a decentralized multiagent(MA)-based resource
allocation approach by dispatching a cooperative agent to
each PM to assist the PM in managing resources. For a set
of VM requests newly submitted to the cloud systems, the
proposed MA approach allocates these VMs to suitable
PMs by the following two sequential stages (Fig. 1 depicts
the framework of the MA resource allocation approach):
 Auction-Based VM Allocation. In the first stage, an

auction-based VM allocation mechanism is devised for
agents to decide which PM hosts which newly submit-
ted VMs. Theoretical analyses suggest that the auction-
based VM allocation mechanism has a high perfor-
mance guarantee on reducing energy cost compared
with the optimal solution.

 Negotiation-Based VM Consolidation. To tackle sys-
tem dynamics and avoid incurring prohibitive VM mi-
gration overhead, a local negotiation-based VM consol-
idation mechanism is devised for agents to exchange
their assigned VMs for energy cost savings.
We conduct both static and dynamic simulations to

evaluate the effectiveness of the MA resource allocation
approach. In the static setting with hundreds of VMs,
within several seconds, the MA approach can reduce sys-
tem energy cost significantly compared with benchmark
bin packing-based and genetic algorithm-based central-
ized approaches [13][23][24]. The dynamic experimental
results demonstrate that the MA approach can adapt to
system dynamics well by consuming as little energy as
the centralized and distributed resource consolidation
approaches [11][13][15][23][24], but largely reducing the
migration cost, showing its great potential for real-world
applications.

The remainder of this paper is organized as follows. In
Section 2, we provide a thorough review of related work
on resource allocation in cloud computing and multiagent
systems. In Section 3, we formulate the VM allocation
problem with the objective of energy cost minimization.
In Section 4, we propose MA-based resource allocation
and consolidation mechanisms. In Section 5 we conduct
two series of experiments to validate the MA approach’s
effectiveness in reducing system energy cost. Finally, we
conclude our paper and discuss future work in Section 6.

2 RELATED WORK

Generally, from the CSP’s perspective, effective
(VM)resource allocation should satisfy the following two
properties: i) allocating the VMs to the users optimally
such that the social welfare achieved from the user maxi-
mal; and ii) allocating the VMs to PMs optimally such
that the energy cost produced by the PMs minimal.
Therefore, in this section, we first discuss the social-aware
and energy-aware resource allocation researches in Sec-
tion 2.1 and Section 2.2, respectively. Since the main con-
tribution of this paper is to utilize multiagent technology
to address the resource allocation problem in cloud com-

puting systems, then finally we briefly review multiagent-
based resource allocation in traditional applications in
Section 2.3. Fig. 2 depicts the classifications of resource
allocation researches in cloud computing systems.

2.1 Social Welfare-Aware Resource Allocation in
Cloud Computing Systems

Auction-based resource allocation model has been used as
an economic paradigm for the CSPs providing the VM
resources to the valuable users [32-38]. In the auction
model, the users first submit their request on how many
VM resources they require and how much they value the
required VMs and then the CSP determines to allocate
which VM resources to which users such that social wel-
fare maximal. To maximize social welfare while inducing
the users to declare their true private information, Nejad
et al. [32] propose a VCG-based truthful mechanism to
achieve the optimal social welfare. However, since the
social-welfare maximization problem is a NP-hard com-
binatorial optimization problem [33], VCG mechanism is
computation intractable in the large-scale cloud systems.
Therefore, the approximation truthful mechanisms with
tolerable computation time are more desirable for CSP
[34]. Moreover, to deal with the real world dynamic envi-
ronment, an online truthful mechanism is introduced by
[35], which is invoked as soon as a user summits a request
or some of the allocated VMs are released and become
available. Zhang et al. [36] improve the online truthful
mechanism by designing a randomized mechanism that
can provide a constant approximation ratio on social wel-
fare and Zhang et al. [37] improve the online mechanism
by considering the more flexible bidding language such
that a user can also be satisfied if his required resources
are accessible during a time period. Although these
mechanisms are efficient in achieving desirable social
welfare, all of them do not consider the operation cost
such as energy cost for running the users’ application.
Reducing the energy cost not only increases the CSP’s net
revenue, but also helps build green cloud systems [38].

Huu and Tham [38] first integrate the energy cost fac-
tor into the auction model, where they propose a truthful
and competitive truthful mechanism to optimize the
CSP’s net revenue (i.e., social welfare minus energy cost).
On the other hand, Xu and Li [6] propose a pricing mech-
anism to adjust the price optimally to make a tradeoff
between the revenue achieved from the users and the en-
ergy cost produced by the PMs. All these market-driven
mechanisms only focus on allocating how many resources
to users and which VMs to which users to maximize
CSP’s revenue, they do not focus on how to allocate the
VM applications to the PMs in the back-end cloud data
centers to minimize energy cost. Our study mainly focus-
es on developing an effective resource allocation ap-
proach to minimize system energy cost, which is also a
fundamental problem in cloud computing systems [8-27].

2.2 Energy-Aware Resource Allocation in Cloud
Computing Systems

The energy-aware resource allocation researches can be
further classified into three groups: bin-packing based
static resource allocation (i.e., given a set of VMs and
PMs, how to allocate the VMs to PMs to minimize PMs’
energy cost), energy-aware dynamic resource consolida-
tion (i.e., systems are dynamic with new VM request
submitted and old VMs released, how to consolidate sys-
tem VMs for energy cost savings) and energy and Service

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 3

Level Agreement(SLA)-aware dynamic resource consoli-
dation (i.e., how to consolidate system VMs with the bi-
objectives of reducing energy cost and SLA violation).

2.2.1 Bin Packing-Based Static Resource Allocation

Recent studies have shown that PMs, which are used to
run VMs, consume a high percentage of the power in
cloud computing systems [10]. One natural objective of
efficiently allocation of VMs to PMs is to reduce the num-
ber of active PMs, which can be called static resource allo-
cation. Intuitively, the static energy-aware resource allo-
cation problem can be modeled as the bin-packing prob-
lem, where VMs and PMs are the items and bins, respec-
tively in the bin packing problem. For this transformed
bin packing problem with liner usage costs, Cambazard et
al. [21] first compute the lower bound of the optimal solu-
tion and then design a polynomial cost-based propaga-
tion allocation algorithm. By considering the multi-
dimensional resource types of PMs, Li et al. [17] present a
multi-dimensional space partition model for the multi-
dimensional bin packing problem. Based on this model,
they then propose a balance VM allocation approach to
alleviate the imbalanced utilization of the multi-
dimensional resources and thus lower the energy con-
sumption. These static resource allocation approaches are
all restricted to the one-shot or offline setting, not target-
ing on an online setting where VMs arrive and depart the
cloud system dynamically. In this kind of dynamic cloud
systems, VM consolidation is very necessary to reduce
system energy cost [11][15][27][39].

2.2.2 Energy-Aware Dynamic Resource Consolidation

Live migration technology [40], allowing a VM to be mi-
grated from one PM to another PM, has proved to be ef-
fective in addressing resource consolidation [13][27]. Mo-
tived by the classical online bin packing approach, Song
et al. [19] propose an adaptive resource consolidation ap-
proach to minimize the number of active PMs. During
VM migration, on the one hand, the system should move
VMs on source PM with a low resource utilization to an-
other target PM, thus allowing the source PM to switch off
without consuming any power. On the other hand, the
system should also avoid the target PM over-utilized. To
achieve these goals, a threshold-based resource consolida-
tion approach has been investigated [13][15][20][39]. This
approach works by first predetermining two thresholds,
the high threshold th and the low threshold tl. When the re-
source utilization of a PM pi, exceeds th, the system will
transfer some VMs on pi to another PM for hotspot avoid-
ance. When the resource utilization of pi falls below tl, the
system will migrate all of the VMs on pi to another target

PM for energy saving. In dynamic cloud systems, to pre-
dict the two thresholds th and tl precisely, these researches
all assume that there exists a central manager that moni-
tors and maintains information about all PMs and VMs.
Our approach does not need such a central manager, in-
stead allowing the PMs to manage resources in a distrib-
uted manner, thereby improving system robustness.
Moreover, another deficiency of these dynamic energy-
aware resource consolidation approaches is that they only
focus on the advantage of live migration on reducing en-
ergy cost, do not consider its negative effect on violating
Service Level Agreement (SLA), such as reducing system
throughput and increasing system response time [41][42].

2.2.3 Energy and SLA-Aware Dynamic Resource
Consolidation

To reduce system energy consuming while reducing SLA
violation, Verma et al. [11] and Ardagna et al. [12] first
transform this bi-objective (i.e., energy cost minimization
and SLA violation minimization) problem to a single ob-
jective problem by setting a tradeoff weight between
these two objectives. And then they model this single ob-
jective problem as a mixed integer nonlinear program-
ming problem, which can be solved by the competitive
approximate algorithms [11][12]. One challenge of trans-
forming the bi-objective problem to a single objective
problem is how to set the tradeoff weight between the
two objectives. Kord and Haghighi [22] exploit the fuzzy-
based Analytic Hierarchy Process (AHP) method to de-
termine the tradeoff weight between the multiple objec-
tives. The main idea behind the fuzzy-AHP model is that
the system first determines the relative importance of
each objective by pairwise comparison. And then deter-
mine the related intermediate priorities of these candidate
destination PMs with respect to each objective. Finally,
the global priority of each candidate PM is determined by
summing all priorities with respect to each objective [43].

Another efficient way to tackle the bi-objective re-
source allocation problem is to utilize the evolutionary
computation (EC) algorithms, including the Genetic Algo-
rithm (GA) [23][24], swarm intelligence algorithms such
as Particle Swam Optimization (PSO)[25][26] 1 and Ant
Colony Optimization (ACO) [27]. For example, in the GA
algorithm [23], a “chromosome” represents an allocation
solution of VMs to PMs. To begin, GA randomly gener-
ates a population of potential chromosomes and evaluates
the fitness values (i.e., objective value) of these candidate
solutions. And in the second step, the desirable chromo-

1 For more details on evolutionary computation-based resource alloca-
tion approaches in cloud systems, we refer interested readers to the re-
cent survey paper [44] and the references therein.

Resource Allocation in Cloud
Computing Systems

Social Welfare Aware

Auction Based

Energy Aware Multiagent Based

VCG-Based Truthful Mechanism [32]

Approximation Truthful Mechanism [33][34]

Online Truthful Mechanism [35][37]
Randomized Truthful Mechanism [36]

Bin Backing-Based
Static Resource Allocation

Integer Programming [21]

Multi-dimensional resource type [17]

Energy-Aware Dynamic
Resource Consolidation

Threshold-Based [13][15][20][39]
Genetic Algorithm [23][24]

Particle Swarm Optimization [25][26]

Ant Colony Optimization [27]

Fuzzy-Based Analytic Hierarchy Process [22]

Energy and Service Level
Agreement (SLA)-Aware

Dynamic Resource Consolidation

 Bilateral Bargaining-Based Resource
Negotiation [52]

Multiagent-Based Resource
Trading [53]

Agent-Based Service Discovery,
Negotiation and Composition

[54][55]

Fig. 2. Classification of resource allocation researches in cloud computing systems.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

somes with higher fitness values (e.g., produce little ener-
gy cost and violate SLA little) are selected as the parent
chromosomes and to crossover the next generation chro-
mosomes. The PSO has a similar optimization process
with GA, where in the first step, a set of particles that rep-
resent VM allocation solution are randomly initialized. In
the second step, based on the local best position and the
global best position, each particle improves its fitness val-
ue by updating its current position in the population [25].
In the ACO algorithm, a VM migration plan s=(ps,v,pd),
which means the VM v is migrated from the source PM ps
to the destination PM pd, is modeled as the edge connect-
ed the cities in traveling salesman problem. Then the ants
will deposit some pheromone on the migration plan s if s
not only reduces energy cost but also guarantees SLA.
Iteratively, the migration plan associated with higher
pheromone concentration will constitute the global VM
migration solution [27]. Although these nature-inspired
EC algorithms and fuzzy control-based heuristics are effi-
cient in improving cloud system performance such as
reducing energy cost and guaranteeing SLA performance,
their efficiency depends much on system parameters such
as the mutation probability in GA, the acceleration coeffi-
cients of the local and global best position in PSO, the
pheromone evaporation rate in ACO, the evolution ter-
mination condition in GA, ACO, and PSO, and the im-
portance intensity between any pair of objectives in
fuzzy-based AHP approach. In contrast, our multiagent
approach depends less on system parameters, making it
more practical for the real-world applications.

2.3 Multiagent-Based Resource Allocation

Multiagent technology, which is derived from distributed
artificial intelligence (DAI), has shown its effectiveness in
addressing distributed system problems [45]. Example
applications include coalition formation in the business-
to-business (B2B) domain [46], routing in robotics [47],
mobile agent-based load balancing in grids [48], negotia-
tion-based task allocation in grids and social networks
[49][50], and agent-based modeling for social networks
[51]. Recently multiagent technology to tackle cloud re-
source allocation has received increasing attention. For
example, An et al. [52] introduce a bilateral bargaining-
based resource negotiation mechanism for users accessing
necessary resources. Zhao et al. [53] propose a multia-
gent-based resource trading protocol to trade efficient
and fair resource among selfish users in community cloud
systems. Sim [54] presents a systematic agent-based cloud
computing model, where agents are developed to support
service discovery, service negotiation and service compo-
sition. The work of Sim [54] is further investigated by
Chen et al. [55] by extending contract net technology to
maximize a cloud system’s throughput.

Although these approaches are efficient in addressing
traditional resource allocation problems, they are inade-
quate for VM resource allocation in network cloud sys-
tems. In network cloud systems, PMs are always inter-
connected by a communication network. Because of arbi-
trary negotiation and task migration among PMs, the
above approaches [45-55] will consume prohibitive net-
work bandwidths, thereby violating SLA largely. This
paper proposes an efficient local resource negotiation
mechanism that limits agents’ coordination domain local-
ly. Under this local coordination domain constraint, an
efficient negotiation-based VM consolidation mechanism
is proposed to reduce system energy cost while incurring

tolerable migration overhead.

3 PROBLEM DESCRIPTION

We consider a cloud system CS=<P, E> consisting of a set
of PMs P={p1,p2,…,pm} interconnected by a communication
network and ∀(pi,pj)∈E indicates that pi and pj can com-
municate with each other through only one switch. De-
noted by d(pi,pj) the communication distance between
PMs pi and pj and d(pi,pj) is computed as the number of
switches along the shortest path between pi and pj. Let
Θ={θ1,θ2,…,θn} be the set of VM resource (e.g., CPU,
memory, storage, bandwidth, etc.) required by users. For
simplicity, in this study we consider only one type of re-
source requirement (e.g., CPU) and denoted by ri the
amount of resources required by VM θi∈Θ. Each PM
owns a number of resources that are capable of running
multiple VMs and denoted by ci the amount of resources
at PM pi. To satisfy the submitted VMs’ resource require-
ments, some suitable PMs should be selected to host
them, which can be called the VM allocation problem. A
feasible VM allocation {Θ(p1),Θ(p2),…,Θ(pm)} is defined as
a mapping of PM ∀pi∈P to a set of VMs Θ(pi), which must
satisfy the following two conditions:
1) Each VM is allocated to at least one PM and no VM is

allocated to more than one PM, i.e.,

() , () () , 1 , ,
ip P i i jp p p i j m i j          (1)

2) For each PM, the total resource requirements of its
hosted VMs do not exceed its available resources, i.e.,

()
, 1

j i
j ip

r c i m
 

    (2)

In addition to satisfying the above two conditions, the
ultimate objective of VM allocation is to minimize the
total system PMs’ energy cost. Although many technolo-
gies have been used to develop energy-proportional PMs
[9][10], each PM is far from energy-proportional [5][13].
Therefore, to simulate a more practical application, we
can model the energy cost function of each PM pi as

(1) , 0;
()

0, 0.

i i i i i i

i i

i

u u
e u

u

        
 



 (3)

where λi is the maximum energy consumed when pi is
fully utilized, αi is the fraction of the maximum energy
consumed when pi is idle and ui is the resource utilization
of pi, which is computed as ui=Σθj∈Θ(pi)rj/ci. When pi is active
for running VMs (i.e., ui>0), its energy cost ei(∙) then is an
affine function of its resource utilization ui. Otherwise,
when pi is idle (i.e., ui=0), pi should be turned off, avoiding
consuming any energy cost. Now, we will give the formal
definition of the VM allocation problem.

Definition 1. VM Allocation Problem. Given a set of
VMs Θ={θ1,θ2,…,θn} and a set of PMs P={p1,p2,…,pm}, the
VM allocation problem is to determine the optimal alloca-
tion of VMs Θ to PMs P with the minimum energy cost E,
i.e.,

1

1

1

1

Minimize = ()

Subject to :

, 1,...,

, 1,...,

{0,1}, 1, 1,..., , 1,...,

m

i ii

n

j ij ij

n

i j ij ij

m

ij iji

E e u

r x c i m

u r x c i m

x x i m j n









  

  

    









MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 5

The variable xij∈{0,1} is the decision variable, where xij=1
indicates VM θj is allocated to PM pi; otherwise xij =0.

It is not hard to determine that solve this VM alloca-
tion problem is NP-hard because the traditional NP-
hard Bin-Packing problem [56] is a special case of this
problem by setting α1=α2=…=αm=α, λ1=λ2=…=λm=λ and
c1=c2=…=cm=c. Therefore, it is very essential to devise effi-
cient polynomial approximation algorithms.

4 MULTIAGENT-BASED RESOURCE ALLOCATION

We formulate the distributed multiagent-based resource
allocation approach as follows. First, we dispatch a co-
operative agent ai to each PM pi. These agents A={a1,
a2,…,am} are deployed to assist the PMs in managing re-
sources (hereafter, the terms “agent” and “PM” are used
interchangeably). And then we devise the coordination
mechanism for these agents to make decisions on which
PMs should host which VMs in pursuit of the energy
cost minimization. For a set of newly submitted VMs,
this multiagent-based VM allocation approach of allo-
cating these VMs to PMs mainly consists of the follow-
ing two complementary stages:
 Auction-Based VM Allocation. An auction-based

mechanism is devised for the agents to decide the allo-
cation of the submitted VMs to PMs (Section 4.1).

 Negotiation-Based VM Consolidation. A local negoti-
ation-based VM consolidation mechanism is devised
for the agents to exchange their assigned VMs for en-
ergy cost saving (Section 4.2).

4.1 Auction-Based VM Allocation

In the market-oriented auction architecture [46], the bid-
ders represent the commodity demanders that have a
pressing need for the commodities. They express their
needs by submitting bids on the price they would like to
spend on the commodities. The proposed auction-based
VM allocation mechanism works as described in Algo-
rithm 1, where agents are modeled as bidders and VMs
are modeled as commodities. In Algorithm 1, initially, all
newly submitted VMs Θ are unallocated. At each bidding
round (Steps 2~8), each agent ai only bids for a single VM
and it always bids for the largest unallocated VM that it is
capable of hosting (Step 3). After bidding for the target
VM θai*, each agent ai broadcasts its bid Bi to all other
agents for winner determination. A bid Bi=<pi,λi/ci> con-
sists of the PM identity pi and its cost-capacity ratio λi/ci

(Step 5). After all bids are broadcasted, all of the agents
send a winner acknowledgment message <Ack> to the
winner agent that has the minimum cost-capacity ratio
(Step 7). In the event of a tie, the agent that has the small-
est index is selected as the winner. In step 8, the agent ai
that receives acknowledgment from all other agents wins
the current round bidding. The winner agent ai then is
responsible for running its target VM θai*, informing all
other agents that θai* has been allocated. The above bid-
ding process (Steps 2~8) proceeds round by round until
all VMs are allocated (Step 1).

Besides simplification, another important property of
Algorithm 1 is its efficiency on reducing energy cost,
which can be measured by the approximation ratio [57].

Definition 2. Approximation Ratio. For a cloud system
with a list of VMs Θ to and a set of PMs P, let A(Θ,P) and
OPT(Θ,P) be the system energy cost generated by the ap-
proximation algorithm A and the optimal solution OPT,

respectively. The approximation ratio S(A) of algorithm A
then can be defined as:

() sup{ (,) (,)}S A A P OPT P   (4)

Before presenting the approximation ratio of Algo-
rithm 1 in Theorem 1, we first present a simple proposi-
tion that is helpful to prove Theorem 1.

Proposition 1. Assume two positive integer sets
X={x1,x2,…,xm} and Y={y1, y2,…,yn} satisfy xi<yj, ∀1≤i≤m and
1≤j≤n. If we randomly pick k1 elements Xk1={x1, x2,…,xk1}
from X, k2 elements Yk2={y1,y2,…,yk2} from Y, and Xk1 and

Yk2 satisfy
1 2i k i k

i ix X y Y
x y

 
  , then we have k1>k2.

Theorem 1. The approximation ratio of Algorithm 1
S(A1)=1+λmax/λmin, where λmax=max{λi, 1≤i≤m} and λmin=min{λi,
1≤i≤m}.

Proof. We first summarize Algorithm 1 in a centralized
manner: first, the PMs P={p1,p2,…,pm} are ranked in in-
creasing order of their cost-capacity ratio λi/ci, i.e.,
λ1/c1≤λ2/c2≤…≤λm/cm and the VMs Θ={θ1,θ2,…,θn} are
ranked in decreasing order of their size, i.e., r1≥r2≥…≥rn.
Then, we allocate the VMs to PMs by a greedy method.
This centralized greedy method works as follows: select
the first PM p1 that has the minimum cost-capacity ratio
and fill p1 with VMs one by one in order of these VMs’
rank. If at a certain step, a VM θx cannot be allocated to p1
due to its capacity constraint, the successive VM θy (y>x)
that has a smaller size is considered. This process of fill-
ing p1 with VMs continues until either p1 has been fully
utilized or no unallocated VMs that can be allocated to p1.
After the allocation of VMs to p1 finishes, a similar process
of allocating VMs to p2 repeats. This greedy procedure
proceeds until all VMs have been allocated.

Now, we will present the approximation ratio of Algo-
rithm 1. On the one hand, from the perspective of the op-
timal solution, in the best case, the optimal solution will
only use the first k1 PMs with the minimal cost-capacity
ratios, i.e.,

k1=min{j∈{1,…,m}:Σ1≤i≤jci≥R} (5)
where R is the sum of resources required by all VMs, i.e.,
R=Σθj∈Θrj.

On the other hand, from the perspective of Algorithm
1, assume that Algorithm 1 uses the first k2 PMs to host

Algorithm 1. Auction-Based VM Allocation

/*Θ={θ1,θ2,…,θn} the set of VMs that need to be allocated.*/
1. while (Θ≠∅) do
2. for ai∈A do

3. Bid the VM *

()
arg max{ | 0}

i k i
j

a j i k jp
r c r r









   
.

4. if(θai*≠∅), then
5. Broadcast the bid Bi=<pi,λi/ci> to all other agents.
6. end for
7. Each agent receives and stores all bids, and then

sends an acknowledge message <Ack> to the agent
a* that has the minimal cost-capacity ratio, i.e.,
λ*/c*=min{λk/ck, 1≤k≤m}.

8. The agent ai that receives acknowledgement from
all other agents becomes the winner agent and is
responsible for running its target VM θai*. After θai*

has been allocated, the winner ai informs all other
agents that θai* has been allocated and removes θai*
from the VM list Θ.

9. end while

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

system VMs. For these k2 PMs, denoted by li the VM loads
on pi (i.e., li=Σθj∈Θ(pi)rj, 1≤i≤k2) and wi the residual capacity
of pi (i.e., wi=ci-li, 1≤i≤k2). In Algorithm 1, the next PM is
selected to host VMs if and only if the previous PM can-
not host any VM. Then, we have

wi<lj, ∀1≤i≤k1, k1+1≤j≤k2 (6)

Next, we divide the proof into two cases according to
whether the k1th PM in the optimal solution is fully uti-
lized or not.
Case 1: the k1th PM is fully utilized. In this case, for Algo-
rithm 1, the VMs that have not been allocated to the first
k1 PMs should be allocated to the successive (k2-k1) PMs

(i.e., {pk1+1,…,pk2}), indicating that

1 1 21 1i ji k k j k
w l

    
  (7)

Case 2: the k1th PM is not fully utilized. In this case, Let
lk1(Opt) and lk1(A1) denote the VM loads on the k1th PM in
the optimal solution and Algorithm 1, respectively. Then,
we can derive that

1 1 1 2
1 11 1 1 1
(Opt) (1)i i k k ji k i k k j k

w w l l A l
       

      (8)

Combing inequalities (7) and (8), we can derive that

1 1 21 1i ji k k j k
w l

    
  (9)

Combing inequalities (6) and (9) and Proposition 1, we
can determine that the additional number of used PMs in
Algorithm 1 (i.e., k2-k1) is less than the number of PMs
used in the optimal solution (i.e., k1), that is k2-k1<k1.

Up to this point, we can determine that the approxima-
tion ratio of Algorithm 1 is

1 2

1 2 1 2 max

min 1 min 1 min

(,) ()1(,)
(1) sup

(,) (,)

(1)
1 1 1

i ik i k

i i i i i ik i k k i k

OPT P e uA P
S A

OPT P OPT P

u

k k

     

  

 

   

 
 

 

 
     



 

Therefore, we have Theorem 1. 

In addition to analyzing the approximation ratio of Al-
gorithm 1, in cloud computing systems, the efficiency of
the distributed algorithm should also be evaluated in terms
of computation and communication complexities.

Computation and communication complexities of the
distributed auction-based VM allocation algorithm (i.e.,
Algorithm 1). Recall that in Algorithm 1, exactly one VM
is allocated at each auction round. Therefore, n auction
rounds are needed to allocate all n VMs, where n is the
number of VMs. At each round, each agent takes O(n)
operations to compute the best bid (Step 3). In step 5, for
each agent, m-1 bid messages need to be sent to all other
agents, where m is the number of PMs. Next, in step 7,
each agent takes O(n) computations to select the optimal
bid with the minimal cost-capacity ratio. For each of the m
agents, it needs to send a winner acknowledgement to the
winner agent. Finally, in Step 8, the winner agent needs to
send m-1 messages to all other agents to inform them that
the target VM it bids for has been allocated. Therefore, the
total computation of Algorithm 1 is O(n(n+n))=O(n2) and
the total communication messages are O(n(m(m-1)+m-
1+m-1))=O(nm2). Notice that both of the bid and acknowl-
edgement messages contain at most two real numbers,
which can be coded by several bytes. Hence, Algorithm 1
consumes little network bandwidth.

4.2 Negotiation-Based VM Consolidation

4.2.1 The Reason for Negotiation-Based VM

Consolidation

Although the auction-based VM allocation mechanism
has several desirable properties, there are two deficiencies
that can be further improved. In the following, we use
two illustrative examples to highlight the advantages of
the negotiation-based VM consolidation mechanism in
addressing these two deficiencies.

The first deficiency is that the auction-based VM allo-
cation does not always achieve the optimal solution. Con-
sider, for example (Example 1), the simple VM allocation
problem presented in Fig. 3. In Fig. 3(a), there is a cloud
system consisting of three interconnected PMs p1, p2 and
p3, where p1 and p2 can communicate directly and p2 and p3
can communicate directly. These PMs are denoted by
p1=<14,42u1>, p2=<12,48u2> and p3=<8,16u3>, where the first
value denotes the capacity and the second function de-
notes the energy cost model (for convenience, here we
assume αi=0, ∀1≤i≤3) and ui is pi’s resource utilization.
Now assume that there are four newly submitted VMs
{θ1,θ2,θ3,θ4} and their required resources are r1=6, r2=6, r3=9
and r4=5, respectively (Fig. 3(b)). By the auction-based VM
allocation mechanism, VM θ3 is allocated to PM p2, θ1 is
allocated to p3 and θ2 and θ4 are allocated to p1. This alloca-
tion {{θ2,θ4},{θ3},{θ1}} produces 42×(11/14)+6×(9/12)
+16×(6/8)=49.5 units energy cost (Fig. 3(c)). The optimal
allocation {{θ3},{θ1,θ2},{θ4}} can be achieved from the auc-
tion-based allocation {{θ2,θ4},{θ3},{θ1}} by migrating θ3 from
p2 to p1, θ2 from p1 to p2, θ4 from p1 to p3 and θ1 from p3 to p2
simultaneously, which only produces 42×(9/14)+6×(12/12)
+16×(5/8)=43 units energy cost (Fig. 3(d)). This migration
process can be achieved easily by two sequential VM ex-
change: the exchange of θ3 and {θ2, θ4} between PMs p1 to
p2 and the exchange of θ4 and θ1 between p2 and p3.

The second deficiency is that this static auction-based
VM allocation cannot adapt to system dynamics where
VMs arrive and depart the system dynamically. For ex-
ample (Example 1 continued), at a certain time-slot of the
optimal allocation in Example 1, the application of VM θ1
at PM p2 has been satisfied and departs the system, where
the system energy cost becomes
42×(9/14)+6×(6/12)+16×(5/8)=40 (Fig. 3(e)). In this case, to
re-optimize the allocation of VMs for energy reduction, it
is natural to invoke Algorithm 1 again by reallocating all
system VMs. This method, however, might generate a
tremendous VM migration cost because it does not con-
sider the current VM allocation. Now, consider three
simple VM transfers among PMs p1, p2 and p3 by migrat-
ing θ3 from p1 to p2, θ2 from p2 to p3 and θ4 from p3 to p1.
These VM consolidations reduce the energy cost to

p1=<14,42u1> p2=<12,6u2> P3=<8,16u3> θ 1=6 θ 2=6 θ 3=9 θ4=5

(a) PMs (b) VMs

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2 θ1θ3

E=42*(11/14)+6*(9/12)+16*(6/8)=49.5

θ4

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2 θ1θ3

E=42*(9/14)+6*(12/12)+16*(5/8)=43

θ4

(c) Auction-Based VM allocation (d) Optimal VM allocation

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2

θ1θ3

E=42*(9/14)+6*(6/12)+16*(5/8)=40

θ4

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2θ3

E=42*(5/14)+6*(9/12)+16*(6/8)=31.5

θ4

(e) VM θ1 is finished (f) Optimal VM allocation

Fig. 3. Advantages of the negotiation-based VM consolidation.

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 7

42×(5/14)+6×(9/12)+16×(6/8)=31.5 (Fig. 3(f)).
Therefore, it is very necessary to devise a negotiation-

based VM consolidation mechanism by allowing agents
to exchange their assigned VMs to save energy cost and
address system dynamics.

4.2.2 A Local Negotiation-Based VM Consolidation
Mechanism

With the increasing development of virtualization tech-
nology, on one hand, VM live migration has been verified
as effective in reducing energy consumption in cloud sys-
tems [20]. On the other hand, VM live migration might
have a negative effect on system performance such as
increasing network delay [41]. To reduce system energy
cost and avoid incurring prohibitive migration overhead,
we propose a local VM consolidation mechanism by al-
lowing a VM to migrate from one agent to another agent
that within the same negation domain.

Definition 3. Negotiation Domain. The negotiation do-
main of each agent ai is defined as Di={aj|d(ai,aj)≤ρ}, where
ρ∈ℕ is the predetermined negotiation radius parameter,
meaning that ai can only negotiate with agents within the
limited communication distance ρ.

Throughout this paper, we refer to any pair of agents
are negotiable if these two agents are within the same ne-
gotiation domain. Now we are ready to formalize the local
negotiation-based VM consolidation mechanism. With
respect to negotiation, we mean that the agents make con-
tracts on exchanging their assigned VMs. According to
the number of agents involved in the contract, we can
classify the contracts into two main families [58]:
 Swap Contract, where only two agents are involved by

allowing the first agent to transfer a set of VMs to the
second agent and the second agent to transfer another
set of VMs to the first agent in return (Section 4.2.2.1).

 Cluster Contract, where a cluster of agents (more than
two) are involved by allowing the VMs to be trans-
ferred among multiple agents within the negotiation
domain (Section 4.2.2.2).

4.2.2.1 Swap Contract

By referring to the related definitions presented in [47],
we first define single VM out and in contract.

Definition 4. Out and In Contract. Given an agent ai∈A,
an out contract out(ai,θx,aj) is defined as a single VM mi-
gration that migrates VM θx∈Θ(ai) from ai to another
agent aj and an in contract in(ai,θx,aj) is defined as a single
VM migration that migrates θx∈Θ(aj) from aj to ai.

Definition 5. Swap Contract. A swap contract
sc(ai,Θi,j,aj,Θj,i) is defined as a union of multiple out and in
contracts between ai and aj, i.e.,

, ,, ,(, , ,) (, ,) (, ,)
k i j k j ii i j j j i i k j i k jsc a a out a a in a a      (10)

where Θi,j (resp. Θj,i) represents the set of VMs that agent
ai (resp. aj) migrates to agent aj (resp. ai).

A swap contract is feasible if and only if it satisfies the
capacity constraint, i.e., after executing the VM swap con-
tract sc(ai,Θi,j,aj,Θj,i), the VM loads of agents ai and aj do not
exceed their own capacities. Throughout the paper, all
contracts are assumed feasible unless noted specifically.

Definition 6. Swap Path. A swap path SP is a set of feasi-
ble swap contracts that changes a VM allocation
{Θ(ai)}1≤i≤m to another VM allocation {Θ’(ai)}1≤i≤m.

Fig. 4 shows the VM swap graph of Example 1, where

each agent’s negotiation domain is constrained within its
direct neighbors, i.e., ρ=1. In Example 1, we can observe
that for any allocation, a swap path exists that can lead
this allocation to the optimal allocation {{3},{1,2},{4}}.
Therefore, we conjecture that the local swap contract has
a very inspiring advantage in reducing energy cost,
shown in Theorem 2. Before presenting Theorem 2, we
first show an interesting property of the local swap con-
tract, which is helpful in proving Theorem 2.

Proposition 2. Assume that there are m PMs {pi|1≤i≤m}
and m VMs {θi|1≤i≤m}. Initially, the VM θi is allocated to
PM pi, i.e., the initial allocation ψ={{θ1},{θ2},…,{θm}} is fea-
sible. If there exists a feasible cyclic swap path
SP={sc(a1,θ1,a2,∅), sc(a2,θ2,a3,∅),…, sc(am,θm,a1,∅)} (i.e., agent
ai migrates its assigned VM θi to its logically next agent
a(i+1)%m, 1≤i≤m, X%Y denotes the remainder of X/Y) that
changes this initial allocation ψ to another allocation
ψ’={θm,θ1,…,θm-1}, then we can derive that at allocation ψ,
there exists at least one swap contract sc(ai,θi,a(i+1)%m,θ(i+1)%m)
between ai and a(i+1)%m (1≤i≤m) for exchanging their as-
signed VMs θi and θ(i+1)%m.

Proof. Because the initial allocation ψ is feasible, we have
that each PM pi’s capacity ci is greater than their assigned
VM θi, i.e., ci≥ri, 1≤i≤m. Furthermore, because the cyclic
swap path SP is feasible, we also have that c(i+1)%m≥ri,
1≤i≤m. Using reductio ad absurdum, we assume that for
any pair of agents ai and a(i+1)%m, it is not feasible for them
to change their assigned VMs, i.e.,

1 2 2 1

2 3 3 2

1 1

()() 0

()() 0

()() 0m m

c r c r

c r c r

c r c r

  


  


   

 (11)

On one hand, from (ci-ri+1)(ci+1-ri)<0 and ci+1≥ri, ∀1≤i≤m-1,
we can derive that ci<ri+1, ∀1≤i≤m-1. Consider the fact that
ci+1≥ri+1, 1≤i≤m-1, we have that c1<c2…<cm. On the other
hand, from (c1-rm)(cm-r1)<0, c1≥rm and c1≥r1, we can derive
that c1>cm, which is contradictory to the conclusion of
c1<cm. Therefore, assumption (11) does not hold and we
have this proposition. 

Proposition 3. Assume a VM allocation problem where
global communication is permitted (i.e., any pair of PMs
can communicate with each other). Given a non-optimal
allocation ψ={Θ(ai)}1≤i≤m that does not have any feasible
swap contract among any pair of agents, then there does
not exist a swap path SP that can change ψ to another fea-
sible allocation.

Proof. According to the proposition suppose, we have
that at this allocation ψ, for any pair of agents ai and aj and
for any VM set Si⊆Θ(ai) on ai and VM set Sj⊆Θ(aj) on aj, the
exchange of Si and Sj is not feasible, i.e., ∀Si⊆Θ(ai),
Sj⊆Θ(aj):

()\ ()\
() () 0

k i i k j k j j k i
i k k j k ka S S a S S

c r r c r r
      

         (12)

{3},{2,4},{1}

{2,4},{3},{1} {3},{1,4},{2}

{1,2},{3},{4}

{3},{1,2},{4}

{1,,4},{3},{2}

Feasible Swap Contract

Optimal Allocation

Fig. 4. Feasible swap graph, where negotiation radius ρ=1. A feasible

swap path from {{2,4},{3},{1}} to the optimal allocation {{3},{1,2},{4}} is

{{2,4},{3},{1}}→{{3},{2,4},{1}}→{{3},{1,2},{4}}.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Using reductio ad absurdum, suppose that there exists a
swap path SP={{ai,θk,aj,∅},…{az,θz,ay,∅}} that can change ψ
to another feasible allocation ψ’. For the swap contracts
along the swap path SP, we conjecture that any agent
ai∈Asp (Asp indicates the agents involved in the swap path
SP), involves at least a pair of out and in swaps (Conclu-
sion 1). We prove this conclusion as follows: on the one
hand, for the agent ai∈Asp that only has out swaps, we can
delete ai as well as its out swaps from the swap path SP.
The remaining swap path SP\{ai} is still feasible because
deleting ai’s out swaps can alleviate other agents’ VM
loads. On the other hand, for the agent ai∈Asp that only has
in swaps, which indicates that there is a feasible in swap
that other involved agent aj∈Asp can transfer some VMs to
ai. However, assumption (12) indicates this kind of in
swap does not exist. Based on Conclusion 1, we can fur-
ther derive that there exists at least one cyclic swap path
CSP within SP, i.e., CSP⊆SP (Conclusion 2). We can con-
struct such CSP as follows: start from any involved agent
ai∈Asp and add its out swap out(ai,θx,aj) to CSP. Then, we
proceed to the out swap’s (i.e., out(ai,θx,aj)) destination
agent aj and add aj’s out swap out*(aj,θx,ak) to CSP. If the
destination agent ak of the swap out* has emerged in CSP,
then this cyclic swap path CSP is identified. Otherwise,
proceed to deal with the destination agent ak of the swap
out* with the same procedure. Combing Conclusion 2 and
Proposition 2, we can finally determine that there exist at
least one swap contract between any involved agents
ai∈Asp and ai∈Asp, which contradicts assumption (12). 

Theorem 2. Given a VM allocation problem where global
communication is permitted, then for any non-optimal
allocation {Θ(ai)}1≤i≤m, there always exists a swap path that
changes {Θ(ai)}1≤i≤m to the optimal allocation {Θ*(ai)}1≤i≤m

with the minimum energy cost.

Proof. To derive this theorem, we only need to prove that
the case that for any non-optimal allocation {Θ(ai)}1≤i≤m,
there exists a swap contract that can change {Θ(ai)}1≤i≤m to
another feasible allocation {Θ’(ai)}1≤i≤m. By contradiction,
Assume that there exists a non-optimal allocation
ψ={Θ(a1),…,Θ(an)} that does not have any feasible swap
contract among any pair of agents. For this allocation ψ,
Proposition 3 indicates that there does exist a swap path
SP that can change ψ to another feasible allocation, which
means that {Θ(ai)}1≤i≤m is the only feasible allocation as
well as the optimal allocation. Thus, for any non-optimal
allocation {Θ(ai)}1≤i≤m, there exists at least one swap con-
tract that can change {Θ(ai)}1≤i≤m to another feasible alloca-
tion {Θ’(ai)}1≤i≤m and, thus it can achieve the optimal alloca-
tion along certain swap path. 

Theorem 2 suggests that theoretically, if global com-
munication is allowed, the local swap contract is suffi-
ciently effective to optimize system performance in reduc-
ing energy cost. However, in addition to feasibility satis-
faction, the swap contract should also have the mono-
tonicity property, that is, each VM swap contract should
reduce energy cost. Why is monotonicity important? The
cloud system might be halted arbitrarily due to system
maintenance and non-monotonic VM consolidation
mechanisms risk being terminated at highly inefficient
allocation that consumes a large amount of energy.

Definition 7. Benefit of Swap Contract. Let Θ(ai), Θ(aj) be
the VMs assigned on agents ai and aj and Θ’(ai), Θ’(aj) be
their VM loads after executing the VM swap contract
sc=<ai,Θi,j,aj,Θj,i>, where Θ’(ai)=Θ(ai)∪Θj,i\Θi,j and
Θ’(aj)=Θ(aj)∪Θi,j\Θj,i. The benefit gained by the swap con-

tract sc(∙) is defined as the difference of energy costs be-
tween Θ and Θ’, i.e.,

B(ai,Θi,j,aj,Θj,i)=ei(ui)+ej(uj)-ei(ui’)-ej(uj’) (13)

where ui (resp. uj) and ui’ (resp. uj’) are the resource utili-
zations of ai (resp. aj) before and after the swap contract sc.

A swap contract sc is profitable if and only if it yields a
positive benefit (i.e., B(sc)>0). The system energy cost of
the allocation after executing a profitable swap sc is equal
to the system energy cost of the allocation before execut-
ing swap sc minus the benefit of sc. Similarly, a swap path
is profitable if and only if all of the swaps along the path
are profitable.

Next, we will present the profitable swap contract be-
tween any pair of negotiable agents. For any pair of nego-
tiable agents ai and aj, with VM loads Θ(ai) and Θ(aj), to
find the optimal swap with the maximum benefit, one
needs to consider 2|Θ(ai)|+|Θ(aj)| VM exchange combinations
(|X| indicates the number of elements in set X). To address
this computationally costly optimal problem, we propose a
polynomial algorithm for ai to make a profitable swap con-
tract with aj, shown in Algorithm 2. In Algorithm 2, ai first
sorts its own VMs Θ(ai) in decreasing order by their size
and ranks aj’s VMs Θ(aj) in increasing order by their size
(Steps 1~2). Then, in Steps 3~11, ai attempts to exchange
its VMs in order of these VMs’ ranking with aj’s VMs in
order of aj’s VMs’ ranking. The motivation of this idea is
that each agent prefers to migrate out its resource-
consuming VMs to other agents in exchange for resource-
saving VMs to reduce its own energy consumption. For
each out VM set Θi,j∪θx (1≤x≤|Θ(ai)| and initially Θi,j=∅), ai
identifies the profitable in VM set Θj,i from aj as follows: ai
first constructs a set S including all VM combinations on
aj from θ1 to θy (y≤|Θ(aj)|), i.e., S={{θ1},{θ1,θ2},…,{∪1≤z≤|Θ(aj)|θz}}.
Agent ai then selects the most profitable in VM set ∪1≤z≤y*θz
from S that yields the maximum benefit B(ai,
Θi,j∪θx,aj,∪1≤z≤y*θz). If this VM swap contract sc(ai,
Θi,j∪θx,aj,∪1≤z≤y*θz) has a greater benefit than the previous
swap contract with benefit b, ai then updates the out VMs
Θi,j=Θi,j∪θx and updates the in VMs, Θj,i=∪1≤z≤y*θz (Steps
7~8).

After presenting the swap contract between any pair of
agents, another question arises: given the agent ai, which
negotiable agent aj∈Di should ai negotiate with that can
make a profitable swap contract? And if there are multi-
ple profitable swap contracts, which one should ai choose
to execute? To answer these questions, we propose Algo-
rithm 3 for each agent ai to make the most profitable
swap contracts with its negotiable agents Di. In Algorithm
3, before negotiation, ai first initializes its state: the sets out
and in store the VMs that are migrated out from ai and the
VMs that are migrated in to ai, respectively. The variable
target indicates the target agent that ai would migrate
VMs to (Step 1). In Step 2, ai only negotiates with the
agent aj∈Di that has a smaller cost-capacity ratio than that
of ai. The motivation of this idea is that, compared with the
agent that has the smaller cost-capacity ratio, the agent that
has the greater cost-capacity ratio has more urgency to
move its VMs out to reduce its own energy cost. For each
negotiable agent aj∈Di, ai computes the profitable VM swap
<ai,Θi,j,aj,Θj,i> (i.e., ai migrates VMs Θi,j to aj and aj migrates
VMs Θj,i to ai) with aj (Step 4). The profitable swap compu-
tation adopted by the agents to identify the profitable
VMs exchange is described in Algorithm 2. If the current
swap contract sc=<ai,Θi,j,aj,Θj,i> committed with agent aj
yields a greater benefit than the benefit b of the previous

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 9

contract with other negotiable agent, ai prefers to make a
new swap contract with aj (Steps 5~7).

Computation and communication complexities of
swap contract algorithm (i.e., Algorithm 3). In Algorithm
3, the agent ai needs to negotiate with all of its local do-
main agents Di to find the most profitable swap contract.
Given a local domain agent aj∈Di, ai utilizes Algorithm 2
to compute the profitable VM swaps between ai and aj. In
Algorithm 2, ai first takes O(2nlogn) time to sort the VMs
on ai in decreasing order of their size and the VMs on aj in
increasing order of their size (Step 1~2 of Algorithm 2).
Then, ai takes O(n2) time to consider the n2 combinations
of VM swap to find the most profitable swaps between ai
and aj (Step 4~11 of Algorithm 2). Therefore, Algorithm 3
takes total O(kρ(2nlogn+n2))=O(kρn2) computations to re-
turn the final VM swaps with its certain domain agent,
where k is the average degree of each PM and ρ is agent
ai’s negotiation radius, i.e., |Di|=kρ≤m (m is the number of
PMs). Moreover, agent ai needs to communicate with Di
for one time to acquire their VM load information, gener-
ating O(kρ) communication cost.

Next, we will illustrate how the swap contract-based
negotiation mechanism addresses the inefficient alloca-
tion problems emerged in Example 1 and Example 1 con-
tinued. In Example 1, the optimal allocation {{3},{1,2},{4}}
can be achieved by two sequential profitable swaps, i.e.,
(a1, {θ2,θ4},a2,{θ3}) and (a2,{θ4},a3,{θ1}). In Example 1 contin-
ued, we can achieve the optimal allocation {{4},{3},{2}} by
executing two sequential profitable swaps, (a1,{θ3},a2,{θ2})
and (a1,{θ2},a3,{θ4}), here we assume the negotiation radius
ρ=2. Although this swap contract mechanism is necessary
to reduce energy cost, it is not sufficient to lead the sys-
tem optimal with the minimum energy cost even though
global communication is permitted.

Proposition 4. Given a VM allocation problem, even

though global communication is permitted, there does
not always exist a profitable swap path that can lead cer-
tain allocation {Θ(ai)}1≤i≤m to the optimal allocation
{Θ*(ai)}1≤i≤m.

Proof. We achieve this conclusion by a concrete example.
Fig. 5 shows a VM allocation example with four VMs
{θ5=7, θ6=7, θ7=8, θ8=5} running in a cloud system (this
cloud system is just the one described in Example 1). As-
sume that the initial VM allocation is {{5,6},{7},{8}}, i.e., θ5

and θ6 are placed on p1, θ7 is placed on p2, and θ8 is placed
on p3 (Fig. 5(a)). Fig. 5(b) depicts the profitable swap
graph of this problem instance, where global communica-
tion is permitted. From Fig. 5(b), we observe that for the
allocation {{5,6},{7},{8}}, no profitable swap path can lead
{{5,6},{7},{8}} to the optimal allocation {{5},{6,8},{7}}. How-
ever, this optimal allocation can be achieved by multiple
VM migrations among a cluster of agents a1, a2 and a3, i.e.,
a1 migrates θ6 to a2, a2 migrates θ7 to a3, and a3 migrates θ8
to a1 (Fig. 5(c)). 

4.2.2.2 Cluster Contract

As discussed above, there are VM allocation problems
where no profitable path of swap contract can lead certain
allocation to the optimal allocation. In this section, we
propose a complementary local cluster contract mecha-
nism to address the inefficiencies of the swap contract
mechanism in reducing energy cost, where VMs can be
transferred among a cluster of agents.

Definition 8. k-Cluster Contract. Given an agent ai∈A, a
k-cluster contract ccaik (k≥2) is a combination of k out and in
contracts between ai and its negotiable agents Di, i.e.,

, () , ()(, ,) (, ,)
i j i x i j i x j

k

a a D a i x j a D a i x jcc out a a in a a      (14)

Denoted by A(ccaik) the set of agents involved in the k-
cluster contract ccaik. Similar to the swap contract benefit
definition, the benefit of a k-cluster contract ccaik, B(ccaik) is
also defined as the difference of energy costs of all con-
tracted agents A(ccaik) before and after executing the k-
cluster contract ccaik, i.e.,

'

()
() (() ())k

i j ai

k

a j j j ja A cc
B cc e u e u


  (15)

Algorithm 3. Swap Contract (SC) (ai)

% ai: the agent where SC is implemented%
1. Set out=∅, in=∅, target=∅, and b=0.
2. for ∀aj∈Di && λj/cj<λi/ci do

3. Set Θi,j=∅ and Θj,i=∅.

4. Compute profitable swap <ai,Θi,j,aj,Θj,i> with aj.

5. if B(ai,Θi,j,aj,Θj,i)>b, do
6. out=Θi,j, in=Θj,i, target=aj, b=B(ai,out,aj,in).
7. end if
8. end for

Algorithm 2. Compute Profitable Swap (ai,Θi,j,aj,Θj,i)

% ai is the agent where swap contract is implemented; aj is the
agent that ai is negotiating with; Θi,j is the VMs that ai mi-
grates to aj; Θj,i is the VMs that aj migrates to ai.%
1. Sort the VMs Θ(ai) in decreasing order by the amount

of their required resources.
2. Sort the VMs Θ(aj) in increasing order by the amount

of their required resources.

3. Set b=0.

4. for 1≤x≤|Θ(ai)|, do
5. b=B(ai, Θi,j∪θx,aj,∅).
6. for 1≤y≤|Θ(aj)|, do
7. if B(ai, Θi,j∪θx, aj, ∪1≤z≤yθz)>b, do
8. Θi,j=Θi,j∪θx, Θj,i=∪1≤z≤yθz, b=B(ai, Θi,j,aj,Θj,i).
9. end if
10. end for
11. end for

P1=<14,42u1>

θ5=7
θ6=7

P2=<12,6u2>

θ7=8

P3=<8,16u3>

θ8=5

E=42*(14/14)+6*(8/12)+16*(5/8)=56

{5,6},{7},{8}

{5,8},{7},{6} {6,8},{7},{5}

{5},{6,8},{7}

Profitable Swap Contract

Optimal Allocation

P1=<14,42u1>

θ5=7
θ6=7

P2=<12,6u2>

θ7=8

P3=<8,16u3>

θ8=5

E=42*(7/14)+6*(12/12)+16*(8/8)=43

(a) (b) (c)

Fig. 5. A VM allocation example shows the reason for the cluster contract. (a) Initial allocation {{5,6},{7},{8}}. (b) Profitable swap graph, where

negotiation radius ρ=2. For allocation {{5,6},{7},{8}}, there does not exist a profitable swap path leading this allocation to the optimal allocation

{{5},{6,8},{7}}. (c) The optimal allocation can be achieved by multiple VM exchanges among a cluster of agents {ai|1≤i≤3}.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

where ej(uj) and ej(uj’) represent the energy costs of the
contracted agents aj∈A(ccaik) before and after the k-cluster
contract ccaik, respectively.

Next, we will present the cluster contract formally,

shown in Algorithm 4. In Algorithm 4, before computing

the cluster contract, the agent ai first predetermines the

scale K of cluster contract, indicating that there are at least

K VMs involved in the cluster contract. Then in Step 1, ai

initializes k-cluster contract (k≤K) set M. In Step 2, ai con-

structs all of its out contracts to its negotiable agents Di,

, ()(,) (, ,)
j i x ii i a D a i x jOut a D out a a   and all of its in contracts

from Di,
, ()(,) (, ,)

j i x ji i a D a i x jIn a D in a a   . After construct-

ing all single out and in contracts Out(ai,Di)∪In(ai,Di), ai

identifies and adds all k-cluster (k≤K) contracts (which can

be implemented by the brute-force search approach) to M

(Steps 3~5). Finally, ai selects the optimal k* cluster con-

tract ccaik* from M that has the maximal benefit.

Computation and communication complexities of

cluster contract algorithm (i.e., Algorithm 4). In algo-

rithm 4, each agent needs to find all k-cluster (k≤K) con-

tracts among the union of all single out and in contracts

Out(ai,Di)∪In(ai,Di). The number of feasible single out and

in contracts |Out(ai,Di)∪In(ai,Di)|≤n, because each VM can

only be involved in only one out or in contracts, where n

is the number of VMs. Therefore, the computation of Al-

gorithm 4 is
2

()K

k K

n
O n

k 

 
 

 


, where K is the maximum

number of transferred VMs. On the other hand, in the

cluster contract, each agent ai only needs to communicate

with its negotiable agents Di to acquire their VM load in-

formation. This type of information has been collected in

the swap contract process. Therefore, the cluster contract

does not incur extra communication cost.

4.2.3 Algorithm of Negotiation-Based Consolidation

In this section, we formally present the negotiation-based

VM consolidation(NC) algorithm by integrating the swap
and cluster contracts, shown as follows.
1) Each agent ai∈A invokes Algorithm 3 and Algorithm 4

to compute the swap contract SC(ai) and cluster con-
tract CC(ai,K), respectively. If the swap contract has a
greater benefit than the cluster contract, i.e.,
B(SC(ai))≥B(CC(ai)), then ai sends the swap contract re-
quest <ai, Θi,j, aj, Θj,i, B(SC(ai), SC> to the target contract-
ed agent aj, where SC indicates the contract type (i.e.,
swap contract). Otherwise, i.e., B(SC(ai))<B(CC(ai)), ai
sends the cluster contract request <ai,ccaik*,B(ccaik*), CC>
to all involved agents A(ccaik*) in cluster contract ccaik*,
and CC indicates the cluster contract type.

2) Each agent ai stores all contract requests and sends an
acknowledge message <Ack> to the winner agent
whose contract request has the maximum benefit.

3) The agent ai that receives acknowledgments from all of
the contracted agents, executes the contract by ex-
changing VMs with its contracted agents.
The NC repeats the above Steps 1~3 until there is no

agent that can benefit by negotiating with other agents for
VM migration. In NC, each VM migration operation is
profitable to reduce energy cost, therefore NC has mono-
tonicity. Furthermore, let E(ini) and E(opt) be the energy
costs of the initial and optimal VM allocation, respective-
ly, then NC can reach the optimal allocation in at most
(E(ini)-E(opt))/ B steps (B is the average benefit of all of
the VM migration operations), indicating that NC is also
convergent.

5 SIMULATION VALIDATION AND ANALYSES

We validate the advantages of the proposed multiagent
(MA)-based resource allocation approach in two series of
experimental settings: 1) a static setting, where we are
only concerned with allocating a set of VMs to PMs (Sec-
tion 5.1) and 2) a dynamic setting, where VMs arrive and
depart the cloud systems dynamically (Section 5.2).

5.1 Validate the Advantage of the MA approach in a
Static Setting

A. Experiment Setup
In the static experiment setting, each cloud system con-
sists of 128 PMs. Three typical network architectures are
used to simulate the underlying topology of these PMs,
shown as follows:
 Tree Network [59]. The 128 PMs first are randomly

classified into 16 clusters, each with 8 PMs. PMs that
belong to the same cluster of 8 (i.e., 1~8, 9~16, etc.) can
communicate with each other by a single switch, i.e.,
with one-hop communication distance. PMs that be-
long to the same cluster of 16 (1~16, 17~32, etc.) but that
are not in the same cluster of 8, can communicate by 3
switches. Analogously, PMs that belong to the same
cluster of 32, but not the cluster of 16 have 5-hop com-
munication distances. The PMs that belong to the same
cluster of 64 (but that are not in the cluster of 32) must
communicate through 7 switches. Finally, PMs that be-
long to the cluster of 128 (but that are not in the cluster
of 64) have 9-hop communication distances.

 BCube Network [60][61]. BCube is a 7-level network
structure that can be constructed recursively. At level 0,
BCube0 consists of 2 PMs that can communicate via on-
ly one switch. Recursively, a BCubeh (1≤h≤6) level is
constructed from 2 BCubeh-1 levels interconnected by 2h
2-port switches connecting each PM in the former

Algorithm 4. Cluster Contract (CC) (ai,K)

/*ai: the agent where CC is implemented; K is the predeter-
mined value constraining the scale of the cluster contract*/

1. Initialize M=∅.

2. Build ai’s out contracts to its negotiable agents Di

(),(,) (, ,)
x i j ii i a a D i x jOut a D out a a   ,

and ai’s in contracts from its negotiable agents Di

, ()(,) (, ,)
j i x ji i a D a i x jIn a D in a a   .

3. for 2≤k≤K

4. Identify and add all k-cluster contracts ccaik from

Out(ai,Di)∪In(ai,Di) to M.

5. end for

6. Select the most profitable k*-cluster contracts ccaik*

from M, i.e.,

*

(,) (,)

arg max ()
i i

k
a i i i ii

k k

a a
cc Out a D In a D

cc B cc



.

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 11

BCubeh-1 to another PM in the latter BCubeh-1. Each PM
in a BCube can be denoted by its address array a6a5…a0

(ai∈{0,1},0≤i≤6). For example, if a PM connects the left
port of the switch in the BCube0 level and connects the
right port of the switches in the BCubeh (1≤h≤6) level,
then its address array is 0000001. To compute the
communication distance among PMs, we first assign
each of the 128 PMs a 7-bit binary address, for exam-
ple, PM p0 and p127 can be addressed as 0000000 and
1111111, respectively. Then, the communication cost
between any two PMs pi and pj can be defined as:

d(pi,pj)=hamdist(addrees(i),address(j)) (16)
where the function hamdist(addrees(i),address(j)) is the
hamming distance between the two strings address(i)
and address(j), which is computed as the number of po-
sitions at which the corresponding symbols are differ-
ent between address(i) and address(j), e.g.,
hamdist(1110001,1100110)=4.

 Lattice-Like Network [48]. Each PM pi connects with
its local l PMs {(m-l/2)%m,…, (m+i-1)%m, (m+i+1)%m,…,
(m+l/2)%m}, where m is the number of PMs, l is the de-
gree of each PM (here we set l=8), and a%b returns the
remainder of a/b.
After constructing the network of the cloud systems,

we next set the configurations of the PMs. For each PM pi,
its capacity ci distributes in the range [10, 30] randomly,
its maximum energy consuming λi is selected in (0,10]
randomly, and the idle energy consuming ratio αi is se-
lected from [0,1] uniformly. In this static setting, each
experiment has 200 VMs to be satisfied, and each VM’s
resource requirement distributes in the interval [1,10]
randomly.
B. Approaches
In the static setting, we compare our MA-based distribut-
ed approach2 with three typical centralized static resource
allocation approaches:
 Multiagent-Based Approach (MA). This approach is

proposed by us. We denote MA-1 and MA-2 as the MA
approaches with negotiation radius ρ=1 and ρ=2, re-
spectively.

 Lower Bound of the Optimal Solution LB-OPT [21].
The lower bound of the integer programming resource
allocation problem defined in Definition 1 is the opti-
mal value of the relaxed liner programing problem
where the VM can be allocated on PM fractionally. In
this relaxed formulation, we first sort all the PMs in in-
creasing order of their cost-capacity ratio, i.e.,
c1/λ1≤c2/λ2≤…≤cm/λm and denote k as the minimal num-
ber of PMs that can be used to host all system VMs, i.e.,

2 In the simulation, we implement MA in a centralized manner: at each
running round, we first sort the agents in arbitrary order and then the
agents run the centralized algorithm sequentially in this order.

k=min{j∈{1,…,m}:Σ1≤i≤jci≥R}, where R represents the sum
of resources required by all VMs, i.e., R=Σθj∈Θrj, then
the lower bound of the integer programming resource
allocation problem is:

1

1 1

1

()
k

k i ki
LB ii

k

R c
OPT

c






 




 


 (17)

 Bin Packing-Based Best Fit Decreasing Approach
(BFD) [13]. For a set of VM requests submitted to the
system, the system manager first sorts the VMs in de-
creasing order by their size and then places these sort-
ed VM on the optimal PM that increases the least ener-
gy cost. After this greedy VM allocation, the manager
then checks each PM pi: if there exists any simple prof-
itable migration by migrating the VM θk∈Θ(pi) from pi
to another PM pj reduces system energy cost, the man-
ger will transfer θk from pi to pj.

 Static Genetic Approach (GA) [23]. In this static set-
ting, we set the number of the potential solution and
the number of iterations both equal to 1000. The candi-
date solution’s fitness value is defined as the energy
cost, i.e., fitness(S)=Σie(ui), S is an allocation solution.

C. Performance Metrics.
In the static setting, we compare these approaches on two
performance metrics: 1) Energy cost and 2) Running time.
The energy cost is the sum of system PMs’ energy cost for
running VMs and the running time is measured as the
computation time used for allocating VMs to PMs.

D. Experiment Results
Fig. 6 shows the energy cost (Fig. 6(a)) and running time
(Fig. 6(b)) of these approaches in different cloud systems.
From Fig. 6, we have the following observations.

With respect to energy cost (Fig. 6(a)), we can conclude
that: 1) In all systems, MA-2, MA-1 and GA approaches
produce as little energy cost as the optimal solution LB-
OPT, indicating that these three approaches MA-2, MA-1
and GA perform well in the static setting on reducing
energy cost. 2) MA-2 produces less energy cost than MA-
1. This is because in MA-2, each PM can negotiate with
much more PMs than each PM in MA-1, leading MA-2 to
identify much more beneficial VM migrations for energy
cost reduction. 3) BFD generates much energy cost than
MA-2, MA-1 and GA. The potential reason is that in the
static setting, once the VMs are allocated to PMs by BFD,
there are few beneficial simple VM migrations (i.e., the
migration of one VM from one PM to another PM that can
reduce system energy cost) that can be identified by BFD.
Therefore, BFD performs worse than MA-2, MA-1 and
GA in the static setting.

With respect to running time (Fig. 6(b)), on a computer
On a computer with 2.67 GHz CPU and 2 GB memory, for
this scale application with 128 PMs and 200 VMs, BFD

(a) Energy cost (b) Running time

Fig. 6. The experiment results on (a) energy cost and (b) running time of the approaches in different static cloud systems.

12 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

and MA-1 can return the allocation solution within sever-
al seconds (<4s). However, MA-2 and GA approaches take
almost 20 seconds to return the final allocation solution.
This is because in MA-2, each PM has to negotiate with
much more PMs (about 8 times more than that of MA-1),
then each PM needs to search much more potential bene-
ficial migrations (about 8 times more than that of MA-1),
thereby consuming much more running time. For GA,
because the number of iteration has to set large enough
(e.g., 1000 rounds) to return the desirable solution, there-
fore, GA also needs to take much more running time.

In conclusion, in the static setting, compared with tradition-
al VM allocation approaches (i.e., BFD and GA), our proposed
MA approach with negotiation radius ρ=1 can reduce system
energy cost significantly within tolerable running time.

5.2 Validate the Advantage of the MA approach in a
Dynamic Setting

A. Experiment Setup
To imitate the dynamics of VMs’ arrival and departure,
we redefine each VM θi=<ri,ati,wti>, where ri represents
θi‘s resource requirement, ati represents the arrive time-
slot and wti represents the workloads such that θi must
use ri unit resources for wti time-slots. In this dynamic
setting, each VM θi‘s work load wti distributes in the
range [1,4] uniformly. At each time-slot t, we assume that
there are X(t) VM requests newly submitted to the sys-
tem, where X(t) follows a Poisson distribution, i.e.,
X~π(μ). Here, we set the mean value μ=100. In this dy-
namic setting, VM migration is used to consolidate the
VM resources to reduce system energy cost. Therefore,
besides comparing with the static VM allocation ap-
proaches described in 5.1 (i.e., BFD), we also compare MA
with other dynamic VM consolidation approaches.
 Energy- and Migration-Cost-Aware Approach

(pMapper) [11]. This is an extension of the BFD ap-
proach that considers both energy and migration costs.
In pMapper, a VM migration is implemented if and on-
ly if this VM migration reduces system energy cost
while incurring tolerable migration cost. For example,
if PM pi wishes to migrate its VM θk∈Θ(pi) to another
PM pj, this migration should satisfy

[ei(ui)+ej(uj)-ei(ui’)- ej(uj’)]∙β-d(pi,pj)>0 (18)
where ui (resp. uj) and ui’ (resp. uj’) are the resource uti-
lization of pi (resp. pj) before and after the migration of
θj from pi to pj. Parameter β determines the importance
of energy cost reduction. Here, we set β=10.

 Probability-Based Approach (PRO) [15]. This is a dis-
tributed approach. Before implementing this approach,
the system manager first needs to predetermine the
high threshold th and lower threshold tl of the resource
utilization. For a set of unallocated VMs, each PM pi
determines whether to host these VMs with probability
f(ui,th), which is based on th and the resource utilization
ui. After this VM allocation, each PM pi employs a
probabilistic VM migration procedure to avoid re-
source overutilization and under-utilization. To avoid
PM pi being overloaded, pi can migrate its exceeded
VMs out with probability fhmigrate(ui,th). To avoid pi being
under-loaded, pi can migrate all of its host VMs out to
other PMs with probability flmigrate(ui,tl). Here, we set
th=0.9 and tl=0.2.

 Dynamic Genetic Approach (GA) [23][27]. In the dy-
namic setting, the candidate solution’s fitness is a
tradeoff between the energy cost and migration cost,

i.e.,

() ((,) (,)) (,)i i i ii i
fitness S e u I e u S MC I S     (19)

where I is the current VM allocation and S is the final
allocation returned by GA, ei(ui,I) (resp. ei(ui,S)) is the
energy cost of the PM pi in solution I (resp. S) and
MC(I,S) is the overall migration cost incurred by mi-
grating VMs from solution I to S, i.e.,

(,) ((,), (,))
i

i iMC I S d p I p S


  (20)

where p(θi, I) (resp. p(θi, S)) denotes the host PM of VM
θi in solution I (resp. S).
In this dynamic setting, we are mainly concerned with

energy cost and migration cost metrics3. Migrating a VM
from PM pi to another PM pj will incur d(pi,pj) migration
cost. More specifically, we record two types of energy
cost. The first one is the system energy cost E(t) of each
time slot t:

() (,)
i

i ip P
E t e u t


 (21)

which is generated by all of the PMs at time slot t. The
second type is the system cumulative energy cost CE(t),
which is generated by all of system PMs before time slot t:

0
() (,)

i
i it p P

CE t e u t
  

  (22)

B. Experiment Results

Table І shows the properties of network diameter (L) and
average path length (Apl) of the BCube, Tree and Lattice
cloud systems. Network diameter L is defined as the
longest communication distance among any two PMs,
and average path length Apl is computed as the average
communication distance within all pairs of PMs.

Fig. 7 and Fig. 8 show the energy cost of each time slot
and the cumulative energy cost of the resource allocation
approaches within different cloud systems, respectively.
From Fig. 7 and Fig. 8, we have the following conclusions:
1) In BCube and Lattice systems (i.e., Fig. 7(a) and Fig.
7(c)), MA-1 generates nearly as little energy cost as MA-2,
GA, BFD and pMapper. However, in the Tree system (i.e.,
Fig. 7(b)), MA-1 approach generates slight more energy
cost than the energy costs of MA-2, GA, BFD and pMap-
per. This phenomenon can be explained by the special
odd communication distance among PMs in the Tree sys-
tem. In the Tree system, the communication distance
among agents is odd value, i.e., 1, 3, 5, 7, and 9. With the
local negotiation constraint in MA-1 (in MA-1, the negoti-
ation radius ρ=1, where each PM can only negotiate with
its direct connected PMs), one VM migration can only
affect the VM allocation of a specific domain. For exam-
ple, a1 migrates VM θj to its domain agents {ak|2≤k≤8}) and
this VM migration of ai can only affect the surrounding of
its local domain agents {ak|1≤k≤8}), which does not affect
other domains (e.g., {ak|9≤k≤16}}) because other domains
do not belong to the negotiation domain of {ak|1≤k≤8}.

3 As discussed in Section 5.1, all of the approaches can return the final
VM allocation within limited seconds (<30s) and hence, it makes no sense
to compare the metric of running time in this dynamic setting where each
time slot (e.g., half an hour) is much larger than the running time.

Table І
The properties of networks

 BCube Tree Lattice

Diameter (L) 7.00 9.00 16.00

Average Path length (Apl) 3.47 7.06 8.31

Network
Property

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 13

Therefore, in the Tree system, MA-1 approach will miss a
number of potential beneficial VM migrations. However,
in MA-2 with the negotiation radius ρ=2, each VM migra-
tion not only affects the VM allocation of the local domain
but also other connected domains (e.g., {ak|9≤k≤16}}),
thereby much more beneficial migrations will be identi-
fied. 2) In all systems, PRO generates much more energy
cost than other approaches MA-1, MA-2, GA, BFD and
pMapper, indicating that PRO performs worse on reduc-
ing system energy cost in the dynamic applications.

Fig. 9 and Fig. 10 show the migration cost of each time
slot and the cumulative migration cost of these approach-
es in different cloud systems, respectively. From Fig. 9
and Fig. 10, we have the following conclusions: 1) In all
systems, MA-1 produces much less migration cost than
the migration costs produced by MA-2, GA, BFD and
pMapper. This observation can be explained as follows:
GA, BFD and pMapper all permit global VM migration
and MA-2 also permits the VM migration to happen
among remotely connected PMs with two hop communi-
cation distance, while MA only transfers VMs among lo-
cally connected PMs. Thus, MA-2, GA, BFD and pMapper

will produce much more migration overhead than MA-1
does. 2) For BCube and Lattice systems, the shorter the
average path length Apl (or network diameter), the more
migration cost MA-1 incurs. A possible reason is that in
the cohesive systems (e.g., the BCube system with
Apl=3.47), a change of one PM’s VM load easily influences
the loads of its surrounding PMs. Thus, many chain VM
migrations will be trigged, resulting in an increase in mi-
gration cost. However, although the Tree system has a
shorter Apl than that of the Lattice systems, MA-1 ap-
proach incurs less migration cost in Tree than it does in
Lattice. This phenomenon can be explained by the special
odd communication distance among PMs in the Tree sys-
tem (the detailed explanation can be seen in the above
paragraph). 3) In all systems, the larger the network Apl
(or network diameter), the more migration costs BFD and
PRO generate. This is because BFD and PRO mainly focus
on minimizing energy cost, does not consider migration
cost when transferring VMs. Therefore, the migration
costs of BFD and PRO are proportional to Apl. 4) In all
systems, the migration costs of GA and pMapper do not
increase proportionally to network diameter or Apl. The

 (a) BCube (b) Tree (c) Lattice

Fig. 7. Energy cost of each time slot of the resource allocation approaches in different cloud systems.

(a) BCube (b) Tree (c) Lattice

Fig. 8. Cumulative energy cost of the resource allocation approaches in different cloud systems.

(a) BCube (b)Tree (c) Lattice

Fig. 9. Migration cost of each time slot of the resource allocation approaches in different cloud systems.

 (a) BCube (b) Tree (c) Lattice

Fig. 10. Cumulative migration cost of the resource allocation approaches in different cloud systems.

14 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

reason is that when Apl becomes large, GA and pMapper
will not execute some migrations because of their costly
migration overhead. 5) In all systems, PRO generates the
minimal migration cost compared with the MA-2, MA-1,
GA, BFD and pMapper. A possible reason is that there are
only a small number of VM migrations executed in PRO.

In summary, in the dynamic setting, on the one hand, the
MA approach generates as little energy cost as GA, BFD and
pMapper approaches. On the other hand, the MA approach
incurs much less migration overhead than these approaches do.
Considering the dramatic advantage in reducing energy cost
within acceptable migration overhead, MA is a more desirable
approach that can balance energy cost reduction and SLA per-
formance guarantee.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a distributed multiagent(MA)-based
resource allocation approach to minimize system energy
cost. The proposed MA approach consists of two com-
plementary mechanisms: 1) an auction-based VM alloca-
tion mechanism, which is devised for agents to decide
which PM should host which VM. Through the theoreti-
cal analyses, we can determine that the auction-based VM
allocation mechanism has a low approximation ratio on
energy cost compared with the optimal solution. 2) A ne-
gotiation-based VM consolidation mechanism, which is
designed for agents to exchange their assigned VMs to
save energy costs and address system dynamics. Experi-
mental results show that in the static setting, the MA ap-
proach generates the least energy cost within tolerable
running time compared with traditional centralized ap-
proaches. Moreover, in the dynamic setting, the MA ap-
proach can generate as little energy cost as the centralized
benchmark approaches, but significantly reduces the mi-
gration overhead. These advantages make MA approach
a preferable choice for resource management to reduce
system energy cost in near real time, while consuming
tolerable amounts of network traffic.

In this paper, we only focus on allocating VMs to PMs
with the aim of minimizing system energy cost, ignore
the objective of maximizing CSP’s revenue of delivering
scalable VM resources to users. In the future work, it
would be very interesting and necessary to integrate the
two objectives (often conflicting) together: in the front-
end level, that is allocating VM resources to users, the
CSP would like to take full advantage of VM resources to
satisfy as many users’ requests as possible, thereby in-
creasing CSP’s revenue. In the back-end level, however,
the CSP would like to allocate the VMs to PMs efficiently
to generate as little energy cost as possible, thereby de-
creasing CSP’s operations cost of running user’s applica-
tions.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science
Foundation of China (No.61170164, No. 61472079 and No.
71201077), the Funds for Distinguished Young Scholars of
the Natural Science Foundation of Jiangsu Province
(No.BK2012020), and the Program for Distinguished Tal-
ents of Six Domains in Jiangsu Province (No.2011-DZ023).

REFERENCES

[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James
Broberg and Ivona Brandic, “Cloud Computing and Emerging
IT platforms: Vision, Hype, and Reality for Delivering

Computing as the 5th Utility,” Future Generation Computer
Systems, 25(6):599-616, 2009.

[2] Michael Armbrust, Armando Fox, Ren Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica and Matei Zaharia, “A View
of Coud Computing,” Communnication of the ACM, 53(4):50-58,
2010.

[3] Junwei Cao, Kai Hwang, Keqin Li, and Albert Y. Zomaya,
“Optimal Multiserver Configuration for Profit Maximization in
Cloud Computing,” IEEE Transactions on Parallel and Distributed
Systems, 24(6):1087-1096, 2013.

[4] Hong Xu and Baochun Li, “Dynamic Cloud Pricing for Revenue
Maximization,” IEEE Transactions on Cloud Computing, 1(2):158-
171, 2013.

[5] Minghong Lin, Adam Wierman, Lachlan L.H. Andrew and Eno
Thereskaet, “Dynamic Right-Sizing for Power-Proportional
Data Centers,” Proceedings of the 30th IEEE International
Conference on Computer Communications (INFOCOM’11),
pp.1098-1106, Shanghai, China, April 10-15, 2011.

[6] Hong Xu and Baochun Li, “A Study of Pricing for Cloud Resources,”
ACM SIGMETRICS Performance Evaluation Review, 40(4):3-12, 2013.

[7] Sivaon Chaisiri, Bu-Sung Lee and Dusit Niyato, “Optimization
of Resource Provisioning Cost in Cloud Computing,” IEEE
Transactions on Services Computing, 5(2): 164-177, 2012.

[8] Massoud Pedram, “Energy-Efficient Datacenters,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 31(10):1465-1484, 2012.

[9] Luiz Audré Barroso and Urs Hölzle, “The Case for Energy-
Proportional Computing,” Computer, 40(12):33-37, 2007.

[10] Albert Greenberg, James Hamilton, David A. Maltz and
Parveen Patel, “The Cost of A Cloud: Research Problems in
Data Center Networks,” ACM SIGCOMM Computer
Communication Review, 39(1):68-73, 2009.

[11] Akshat Verma, Puneet Ahuja and Anindya Neogi, “pMapper:
Power and Migration Cost Aware Application Placement in
Virtualized Systems,” Middleware, Lecture Notes in Computer
Science, 5346:243-264, 2008.

[12] Dabilo Ardagna, Barbara Panicucci, Marco Trubian and Li
Zhang, “Energy-Aware Autonomic Resource Allocation in
Multitier Virtualized Environments,” IEEE Transactions on
Services Computing, 5(1):2-19, 2012.

[13] Anton Beloglazov, Jemal Abawajy and Rajkumar Buyya,
“Energy-Aware Resource Allocation Heuristics for Efficient
Management of Data Centers for Cloud Computing,” Future
Generation Computer Systems, 28(5):755-768, 2012.

[14] Anton Beloglazov and Rajkumar Buyya, “Optimal Online
Deterministic Algorithms and Adaptive Heuristics for Energy and
Performance Efficient Dynamic Consolidation of Virtual Machines in
Cloud Data Centers,” Concurrency and Computation: Practice and
Experience, 24(13):1397-1420, 2012.

[15] Carlo Mastroianni, Michela Meo and Giuseppe Papuzzo,
“Probabilistic Consolidation of Virtual Machines in Self-
Organizing Cloud Data Centers,” IEEE Transactions on Cloud
Computing, 1(2):215-228, 2013.

[16] Siva Theja Maguluri, R. Srikant and Lei Ying, “Stochastic
Models of Load Balancing and Scheduling in Cloud Computing
Clusters,” Proceedings of the 31st IEEE International Conference on
Computer Communications (INFOCOM’12), pp.702-710, Orlando,
Florida, USA, March 25-30, 2012.

[17] Xin Li, Zhuzhong Qian, Sanlu Lu and Jie Wu, “Energy Efficient
Virtual Machine Placement Algorithm with Balanced and
Improved Resource Utilization in A Data Center,” Mathematical
and Computer Modelling, 58(5–6): 1222-1235, 2013.

[18] Xin Li, Jie Wu, Shaojie Tang, and Sanlu Lu, “Let's Stay Together:
Towards Traffic Aware Virtual Machine Placement in Data Centers,”
Proceedings of the 33th IEEE International Conference on Computer
Communications (INFOCOM’14), pp.1842-1850, Toronto, Canada,
April 27- May 2, 2014.

[19] Weijia Song, Zhen Xiao, Qi Chen and Haipeng Luo, “Adaptive
Resource Provisioning for the Cloud Using Online Bin Packing,”
IEEE Transactions on Computers, 2014, in press.

[20] Timothy Wood, Prashant Shenoy, Arun Venkataramani and
Mazin Yousif, “Black-Box and Gray-box Strategies for Virtual
Machine Migration,” Proceedings of the 4th USENIX conference on
Networked systems design & implementation (NSDI'07), pp.17-30,
Cambridge, MA, USA, April 11-13, 2007.

MULTIAGETN-BASED SELF-ORGANIZED RESOURCE ALLOCATION IN CLOUD COMPUTING SYSTEMS 15

[21] Hadrien Cambazard, Deepak Mehta, Barry O’Sullivan and Helmut
Simonis, “Bin Packing with Linear Usage Costs–An Application to
Energy Management in Data Centres,” Proceedings of the 19th Conference
on Principles and Practice of Constraint Programming (CP-2013), 8124:47-62,
2013.

[22] Negin Kord and Hassan Haghighi, “An Energy-Efficient Approach for
Virtual Machine Placement in Cloud Based Data Centers,” Proceddings
of 5th Conference on Information and Knowledge Technology (IKT’13), pp.44-
49, Mollasadra st., Shiraz, Iran, May 28-30, 2013.

[23] Pardeep Kumar and Amandeep Verma, “Scheduling Using Improved
Genetic Algorithm in Cloud Computing for Independent Tasks,”
Proceedings of the International Conference on Advances in Computing,
Communications and Informatics(ICACCI’12), pp.137-142, Chennai, India,
August 3-5, 2012.

[24] Xiaoli Wang, Yuping Wang and Hai Zhu “Energy-Efficient Multi-Job
Scheduling Model for Cloud Computing and Its Genetic algorithm,”
Mathematical Problems in Engineering, Article ID 589243, 1–16, 2012.

[25] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru and Rajkumar
Buyya, “A Particle Swarm Optimization-based Heuristic for
Scheduling Workflow Applications in Cloud Computing
Environments,” Proceedings of the 24th IEEE International Conference on
Advanced Information Networks and Application (ANIA-10), pp.400–407,
Perth, Australia, April 20-23, 2010.

[26] Hai-Hao Li, Y. W. Fu, Zhi-Hui Zhan, and J. J. Li, “Renumber Strategy
Enhanced Particle Swarm Optimization for Cloud Computing
Resource Scheduling,” Proceedings of the IEEE Congress Evolution
Compututation(CEC’15), Sendai, Japan, May 25-28, 2015, in press.

[27] Fahimeh Farahnakian, Adnan Ashraf, Tapio Pahikkala, Pasi Liljeberg,
Juha Plosila, Ivan Porres, and Hannu Tenhunen, “Using Ant Colony
System to Consolidate VMs for Green Cloud Computing,” IEEE
Transactions on Services Computing, 8(2):187-198, 2015.

[28] Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman and
Jennifer Rexford, “Donar: Decentralized Server Selection for
Cloud Services,” Proceedings of the ACM SIGCOMM 2010
conference (SIGCOMM’10), pp.231-242, New Delhi, India,
August 30–September 3, 2010.

[29] Duong-Ba Thuan, Thinh Nguyen, Bella Bose and Duc A. Tran,
“Distributed Client-Server Assignment for Online Social
Networks Applications,” IEEE Transactions on Emerging Topics
in Computing, 2(4):422-435, 2014.

[30] William Voorsluys, James Broberg, Srikumar Venugopal and Rajkumar
Buyya, “Cost of Virtual Machine Live Migration in Clouds: A
Performance Evaluation,” Proceedings of the 1st International Conference on
Cloud Computing (CloudCom’09), pp.254-265, Beijing, China, December
1-4, 2009.

[31] Mansoor Alicherry and T. V. Lakshman, “Network Aware
Resource Allocation in Distributed Clouds,” Proceedings of the
31st IEEE International Conference on Computer Communications
(INFOCOM’12), pp.963-971, Orlando, Florida, USA, March 25-
30, 2012.

[32] Mahyar Movahed Nejad, Lena Mashayekhy and Daniel Grosu,
“A PTAS Mechanism for Provisioning and Allocation of
Heterogeneous Cloud Resources,” IEEE Transactions on Parallel
and Distributed Systems, 26(9):2386-2399, 2014.

[33] Sharrukh Zaman and Daniel Grosu, “Combinatorial Auction-
based Allocation of Virtual Machine Instances in Clouds,”
Journal of Parallel and Distributed Computing, 73(4): 495-508, 2013.

[34] Mahyar Movahed Nejad, Lena Mashayekhy and Daniel Grosu,
“Truthful Greedy Mechanisms for Dynamic Virtual Machine
Provisioning and Allocation in Clouds,” IEEE Transactions on
Parallel and Distributed Systems, 26(2):594-603, 2015.

[35] Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu,
Athanasios V. Vasilakos, “Incentive-Compatible Online
Mechanisms for Resource Provisioning and Allocation in
Clouds,” Proceedings of IEEE International Conference on Cloud
Engineering (CloudCom’14), pp.312-319, Boston, Massachusetts,
USA, March 10-14, 2014.

[36] Linquan Zhang, Zhongpeng Li and Chuan Wu, “Dynamic
Resource Provisioning in Cloud Computing: A Randomized
Auction Approach,"Proceedings of the 33th IEEE International
Conference on Computer Communications (INFOCOM’14), pp.433-
441, Toronto, Canada, April 27-May 2, 2014.

[37] Hong Zhang, Bo Li, Hongbo Jiang, Fangming Liu, Athanasios V.
Vasilakos and Jiangchuan Liu, “A Framework for Truthful
Online Auctions in Cloud Computing with Heterogeneous
User Demands,” Proceedings of the 32nd IEEE International

Conference on Computer Communications (INFOCOM’13),
pp.1510-1518, Turin, Italy, April 14-19, 2013.

[38] Tram Truong Huu and Chen-Khong Tham, “An Auction-Based
Resource Allocation Model for Green Cloud Computing,”
Proceedings of IEEE International Conference on Cloud Engineering
(CloudCom’13), pp.269-278, San Francisco, California, USA,
March 25-28, 2013.

[39] Zhen Xiao, Weijia Song and Qi Chen, “Dynamic Resource
Allocation Using Virtual Machines for Cloud Computing
Environment,” IEEE Transactions on Parallel and Distributed
Systems, 24(6):1107-1117, 2013.

[40] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen,Eric Jul, Christian Limpach, Ian Pratt and Andrew
Warfield, “Live migration of virtual machines,” Proceedings of
the 2nd USENIX conference on Networked systems design &
implementation (NSDI'05), pp. 273-286, Boston, Massachusetts,
USA, May 2-4, 2005.

[41] William Voorsluys, James Broberg, Srikumar Venugopal and Rajkumar
Buyya, “Cost of Virtual Machine Live Migration in Clouds: A
Performance Evaluation,” Proceedings of the 1st International Conference on
Cloud Computing (CloudCom’09), pp. 254-265, Beijing, China, December
1-4, 2009.

[42] Mansoor Alicherry and T. V. Lakshman, “Network Aware
Resource Allocation in Distributed Clouds,” Proceedings of the
31th IEEE International Conference on Computer Communications
(INFOCOM’12), pp.963-971, Orlando, Florida, USA, March 25-
30, 2012.

[43] Thomas L. Saaty, “Decision Making with the Analytic Hierarchy
Process,” International Journal of Services Sciences, 1(1):83-98, 2008.

[44] Zhihui Zhan, Xiaofang Liu, Yuejiao Gong and JunZhang, “Cloud
Computing Resource Scheduling and a Survey of Its Evolutionary
Approaches,” ACM Computing Survey, 47(4): 1-33, 2015.

[45] Yichuan Jiang, “A Survey of Task Allocation and Load
Balancing in Distributed Systems,” IEEE Transactions on Parallel
and Distributed Systems, DOI: 10.1109/TPDS.2015.2407900, in
press, 2015.

[46] Sarit Kraus, Onn Shehory and Gilad Taase, “Coalition Formation with
Uncertain Heterogeneous Information,” Proceedings of the 2nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-03), pp.1-8 , Melbourne, Australia, July 14-18, 2003.

[47] Xiaoming Zheng and Seven Koenig, “K-Swaps: Cooperative
Negotiation for Solving Task-Allocation Problems,” Proceedings
of 21st International Joint Conference on Artificial Intelligence
(IJCAI’09), pp.373-378, Pasadena, California, USA, July 11-17,
2009.

[48] Jiming Liu, Xiaolong Jin and Yuanshi Wang, “Agent-based Load
Balancing on Homogeneous Minigrids: Macroscopic Modeling and
Characterization,” IEEE Transactions on Parallel and Distributed Systems,
16(7): 586-598, 2005.

[49] Dayong Ye, Minjie Zhang and Danny Sutanto, "Self-Adaptation-Based
Dynamic Coalition Formation in a Distributed Agent Network: A
Mechanism and a Brief Survey." IEEE Transactions on Parallel and
Distributed Systems, 24(5):1042-1051, 2013.

[50] Yichuan Jiang, Yifeng Zhou and Wanyuan Wang, “Task
Allocation for Undependable Multiagent Systems in Social
Networks,” IEEE Transactions on Parallel and Distributed Systems,
24(8):1671-1681, 2013.

[51] Federico Bergenti, Enrico Franchi and Agostino Poggi, “Agent-
based Interpretations of Classic Network Models,”
Computational and Mathematical Organization Theory, 19(2):105-
127, 2013.

[52] Bo An, Victor Lesser, David Irwin and Michazel Zink, “Automated
Negotiation with Decommitment for Dynamic Resource Allocation in
Cloud Computing,” Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS’10), pp.981-988,
Toronto, Canada, May 10-14, 2010.

[53] Han Zhao, Xinxin Liu and Xiaolin Li, “Towards Efficient and
Fair Resource Trading in Community-Based Cloud Computing,”
Journal of Parallel and Distributed Computing, 74(11):3087-3097,
2014.

[54] Kwang Mong Sim, “Agent-Based Cloud Computing,” IEEE
Transactions on Services Computing, 5(4):564-577, 2012.

[55] Chao Chen, Xiaomin Zhu, Weidong Bao, Lidong Chen and Kwang
Mong Sim, “An Agent-Based Emergent Task Allocation Algorithm in
Clouds,” IEEE International Conference on High Performance Computing
and Communications & 2013 IEEE International Conference on Embedded

16 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

and Ubiquitous Computing, pp.1490-1497, Zhangjiajie, China, Nov 13-15,
2013.

[56] Mauro Naria Baldi, Teodor Gabriel Crainic, Guido Perboli and Roberto
Tadei, “The Generalized Bin Packing Problem,” Transportation Research
Part E: Logistics and Transportation Review, 48(6): 1205-1220, 2012.

[57] Chengbin Chu and Rémy La, “Variable-Sized Bin Packing:
Tight Absolute Worst-Case Performance Ratios for Four
Approximation Algorithms,” SIAM Journal on Computing, 30(6):
2069-2083, 2001.

[58] Tuomas W. Sandholm, “Contract Types for Satisficing Task
Allocation: I Theoretical Results,” In Proceedings of AAAI Spring
Symposium Series: Satisficing Models, pages 68–75, Madison,
Wisconsin, USA, July 26–30, 1998.

[59] Mansoor Alicherry and T.V. Lakshman, “Optimizing Data Access
Latencies in Cloud Systems by Intelligent Virtual Machine Placement,”
Proceedings of the 32th IEEE International Conference on Computer
Communications (INFOCOM’13), pp.647-655, Turin, Italy, April 14-19,
2013.

[60] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,
Yunfeng Shi, Chen Tian, Yongguang Zhang and Songwu Lu,
“BCube: A High Performance, Server-Centric Network
Architecture for Modular Data Centers,” Proceedings of the ACM
SIGCOMM 2009 conference (SIGCOMM’09), pp.63-74, Barcelona,
Spain, August 17-21,2009.

[61] Xiaoqiao Meng, Vasileios Pappas and Li Zhang, “Improving the
Scalability of Data Center Networks with Traffic-Aware Virtual
Machine Placement,” Proceedings of the 29th IEEE International
Conference on Computer Communications (INFOCOM’10),
pp.1154-1162, San Diego, USA, March 15-19,2010.

Wanyuan Wang received his BS degree in information and compu-
ting science from Nanjing University of Aeronautics and Astronautics,
Nanjing, China, 2011. He is currently pursuing a Ph.D. degree at the
Distributed Intelligence and Social Computing Laboratory, School of
Computer Science and Engineering, Southeast University. He has
published several articles in refereed journals and conference pro-
ceedings, such as the IEEE Transactions on Parallel and Distributed
Systems, the IEEE Transactions on Cybernetics, the IEEE Transac-
tions on Emerging Topics in Computing, and the IEEE International
Conference on Tools with Artificial Intelligence (ICTAI). He won the
best student paper award from ICTAI’14. His main research interests
include multiagent systems and distributed systems.

Yichuan Jiang received his PhD degree in computer science from
Fudan University, Shanghai, China, in 2005. He is currently a full
professor and the director of the Distributed Intelligence and Social
Computing Laboratory, School of Computer Science and Engineer-
ing, Southeast University, Nanjing, China. His main research inter-
ests include multiagent systems, social networks, and complex dis-
tributed systems. He has published more than 80 scientific articles in
refereed journals and conference proceedings, such as the IEEE
Transactions on Parallel and Distributed Systems, the IEEE Transac-
tions on Cybernetics, the IEEE Transactions on Systems, Man, and
Cybernetics: Systems, the IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, the IEEE Transactions on
Systems, Man, and Cybernetics-Part C: Applications and Reviews,
the IEEE Transactions on Emerging Topics in Computing, the Jour-
nal of Parallel and Distributed Computing, the ACM Transactions on
Autonomous and Adaptive Systems, the International Joint Confer-
ence on Artificial Intelligence (IJCAI), the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), and the
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI). He won the best paper award and best student paper award
from PRIMA and ICTAI, respectively. He is a senior member of IEEE,
a member of the editorial board of Advances in Internet of Things, an
editor of the International Journal of Networked Computing and Ad-
vanced Information Management, an editor of Operations Research
and Fuzziology, and a member of the editorial board of the Chinese
Journal of Computers.

Weiwei Wu received his PhD degree in computer science from both
City University of Hong Kong and University of Science and Tech-
nology of China in 2011. He was a postdoctoral researcher at Nan-
yang Technological University in Singapore from 2011 to 2012. He is
currently an associate professor at Southeast University, China. His
main research interests include optimizations for networks, game
theory, and mechanism design. He has published several articles in
refereed journals and conference proceedings such as the IEEE
Journal on Selected Areas in Communications, Theoretical Comput-
er Science, the Journal of Combinatorial Optimization, the IEEE
International Conference on Computer Communications (INFOCOM),
and the International Symposium on Algorithms and Computation
(ISAAC). He is a member of IEEE.

