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Abstract—Cloud computing has emerged as a very flexible service paradigm by allowing users to require virtual machine (VM) 

resources on-demand and allowing cloud service providers (CSPs) to provide VM resources via a pay-as-you-go model. This 

paper considers the CSP’s problem of efficiently allocating VM resources to physical machines (PMs) with the aim of minimizing 

the energy consumption. Traditional energy-aware VM allocations either allocate VMs to PMs in a centralized manner or 

implement VM migrations for energy reduction without considering the migration cost in cloud computing systems. We address 

these two issues by introducing a decentralized multiagent(MA)-based VM allocation approach. The proposed MA works by first 

dispatching a cooperative agent to each PM to assist the PM in managing VM resources. Then, an auction-based VM allocation 

mechanism is designed for these agents to decide the allocations of VMs to PMs. The theoretical analyses suggest that this 

auction-based mechanism has a high performance on reducing energy cost. Moreover, to tackle system dynamics and avoid 

incurring prohibitive VM migration overhead, a local negotiation-based VM consolidation mechanism is devised for the agents to 

exchange their assigned VMs for energy savings. We evaluate the efficiency of the MA by using both static and dynamic 

simulations. The static experimental results demonstrate that the MA can incur acceptable computation time to reduce system 

energy cost compared with traditional bin packing-based and genetic algorithm-based centralized approaches. In the dynamic 

setting, the energy cost of the MA is similar to that of benchmark centralized resource consolidation approaches, but the MA 

largely reduces the migration cost.  

Index Terms—Cloud computing systems, resource allocation, energy cost, migration cost, multiagent, negotiation. 

——————————      —————————— 

1 INTRODUCTION

loud computing provides flexible and cost-effective 
services for enterprises, organizations and individu-
als running computational and data-intensive appli-

cations [1]. Through cloud computing platforms (e.g., 
Amazon EC2, Google AppEngine, and Microsoft Azure), 
users can submit their resource (e.g., CPU, memory, stor-
age and network, etc.) request to cloud service providers 
(CSPs). The CSPs then provide the users the required re-
source in the form of a virtual machine (VM, acting like a 
real computer) in exchange for financial remuneration [2]. 
Generally, an effective VM resource allocation should not 
only deliver scalable services to satisfy various user re-
quirements with the aim of increasing the CSP’s profit 
[3][4], but also conserve the energy consumption of the 
physical machines (PMs) used for running users’ applica-
tions with the aim of decreasing the CSP’s cost [5-7]. In 
this paper, we are mainly concerned with developing en-
ergy-aware resource allocation approach of allocating 
VMs to PMs with the aim of minimizing system energy 
cost, which is a fundamental problem in cloud computing 
systems [8-27]. 

A straightforward idea to make a cloud system energy 
efficient is to develop energy-proportional PMs, i.e., each 
PM consumes energy only in proportion to the VM loads 
it undertakes [8]. For this purpose, many technologies 
such as using high-quality power supplies and voltage 

regulation modules, have been introduced to achieve PM 
energy proportionality [9][10]. However, even though 
equipped with energy-proportional PMs, the cloud sys-
tem’s energy consumption is far from optimal due to inef-
ficient allocation of VMs to PMs [11-15]. In cloud compu-
ting systems, PMs are heterogeneous with various re-
sources and operation costs and VMs are heterogeneous 
with different resource requirements [16]. An undesirable 
allocation of allocating the large-size VMs to costly PMs 
might consume tremendous energy [17-20]. 

Due to its significance to build green cloud systems, 
the energy-aware VM resource allocation problem has 
been studied widely, and a number of approaches have 
been proposed [11-27]. However, from these approaches, 
we find there are two aspects that need to improve. First, 
most of existing approaches assume that there is a central 
resource manager that can monitor and maintain infor-
mation about all PMs and VMs and thus can allocate VMs 
to PMs in a centralized manner [11-14][16-26]. Although 
centralization can guarantee high system performance, its 
low robustness with a single point of failure creates a 
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vulnerable cloud system [28][29]. Second, because cloud 
systems are dynamic with dynamic VMs arrival and de-
parture, VM live migration is necessary for resource con-
solidation. The migration cost (e.g., network traffic cost), 
occurs when a VM is migrated from one PM to another 
PM, which is also crucial to the performance of cloud 
computing systems [30][31]. However, many approaches 
[15][19][23][24] transfer VMs among PMs without consid-
ering the VM migration cost.  

To address the above two issues, in this paper we in-
troduce a decentralized multiagent(MA)-based resource 
allocation approach by dispatching a cooperative agent to 
each PM to assist the PM in managing resources. For a set 
of VM requests newly submitted to the cloud systems, the 
proposed MA approach allocates these VMs to suitable 
PMs by the following two sequential stages (Fig. 1 depicts 
the framework of the MA resource allocation approach): 
 Auction-Based VM Allocation. In the first stage, an 

auction-based VM allocation mechanism is devised for 
agents to decide which PM hosts which newly submit-
ted VMs. Theoretical analyses suggest that the auction-
based VM allocation mechanism has a high perfor-
mance guarantee on reducing energy cost compared 
with the optimal solution. 

 Negotiation-Based VM Consolidation. To tackle sys-
tem dynamics and avoid incurring prohibitive VM mi-
gration overhead, a local negotiation-based VM consol-
idation mechanism is devised for agents to exchange 
their assigned VMs for energy cost savings. 
We conduct both static and dynamic simulations to 

evaluate the effectiveness of the MA resource allocation 
approach. In the static setting with hundreds of VMs, 
within several seconds, the MA approach can reduce sys-
tem energy cost significantly compared with benchmark 
bin packing-based and genetic algorithm-based central-
ized approaches [13][23][24]. The dynamic experimental 
results demonstrate that the MA approach can adapt to 
system dynamics well by consuming as little energy as 
the centralized and distributed resource consolidation 
approaches [11][13][15][23][24], but largely reducing the 
migration cost, showing its great potential for real-world 
applications.  

The remainder of this paper is organized as follows. In 
Section 2, we provide a thorough review of related work 
on resource allocation in cloud computing and multiagent 
systems. In Section 3, we formulate the VM allocation 
problem with the objective of energy cost minimization. 
In Section 4, we propose MA-based resource allocation 
and consolidation mechanisms. In Section 5 we conduct 
two series of experiments to validate the MA approach’s 
effectiveness in reducing system energy cost. Finally, we 
conclude our paper and discuss future work in Section 6.  

2 RELATED WORK 

Generally, from the CSP’s perspective, effective 
(VM)resource allocation should satisfy the following two 
properties: i) allocating the VMs to the users optimally 
such that the social welfare achieved from the user maxi-
mal; and ii) allocating the VMs to PMs optimally such 
that the energy cost produced by the PMs minimal. 
Therefore, in this section, we first discuss the social-aware 
and energy-aware resource allocation researches in Sec-
tion 2.1 and Section 2.2, respectively. Since the main con-
tribution of this paper is to utilize multiagent technology 
to address the resource allocation problem in cloud com-

puting systems, then finally we briefly review multiagent-
based resource allocation in traditional applications in 
Section 2.3. Fig. 2 depicts the classifications of resource 
allocation researches in cloud computing systems. 

2.1 Social Welfare-Aware Resource Allocation in 
Cloud Computing Systems 

Auction-based resource allocation model has been used as 
an economic paradigm for the CSPs providing the VM 
resources to the valuable users [32-38]. In the auction 
model, the users first submit their request on how many 
VM resources they require and how much they value the 
required VMs and then the CSP determines to allocate 
which VM resources to which users such that social wel-
fare maximal. To maximize social welfare while inducing 
the users to declare their true private information, Nejad 
et al. [32] propose a VCG-based truthful mechanism to 
achieve the optimal social welfare. However, since the 
social-welfare maximization problem is a NP-hard com-
binatorial optimization problem [33], VCG mechanism is 
computation intractable in the large-scale cloud systems. 
Therefore, the approximation truthful mechanisms with 
tolerable computation time are more desirable for CSP 
[34]. Moreover, to deal with the real world dynamic envi-
ronment, an online truthful mechanism is introduced by 
[35], which is invoked as soon as a user summits a request 
or some of the allocated VMs are released and become 
available. Zhang et al. [36] improve the online truthful 
mechanism by designing a randomized mechanism that 
can provide a constant approximation ratio on social wel-
fare and Zhang et al. [37] improve the online mechanism 
by considering the more flexible bidding language such 
that a user can also be satisfied if his required resources 
are accessible during a time period. Although these 
mechanisms are efficient in achieving desirable social 
welfare, all of them do not consider the operation cost 
such as energy cost for running the users’ application. 
Reducing the energy cost not only increases the CSP’s net 
revenue, but also helps build green cloud systems [38]. 

Huu and Tham [38] first integrate the energy cost fac-
tor into the auction model, where they propose a truthful 
and competitive truthful mechanism to optimize the 
CSP’s net revenue (i.e., social welfare minus energy cost). 
On the other hand, Xu and Li [6] propose a pricing mech-
anism to adjust the price optimally to make a tradeoff 
between the revenue achieved from the users and the en-
ergy cost produced by the PMs. All these market-driven 
mechanisms only focus on allocating how many resources 
to users and which VMs to which users to maximize 
CSP’s revenue, they do not focus on how to allocate the 
VM applications to the PMs in the back-end cloud data 
centers to minimize energy cost. Our study mainly focus-
es on developing an effective resource allocation ap-
proach to minimize system energy cost, which is also a 
fundamental problem in cloud computing systems [8-27]. 

2.2 Energy-Aware Resource Allocation in Cloud 
Computing Systems 

The energy-aware resource allocation researches can be 
further classified into three groups: bin-packing based 
static resource allocation (i.e., given a set of VMs and 
PMs, how to allocate the VMs to PMs to minimize PMs’ 
energy cost), energy-aware dynamic resource consolida-
tion (i.e., systems are dynamic with new VM request 
submitted and old VMs released, how to consolidate sys-
tem VMs for energy cost savings) and energy and Service 
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Level Agreement(SLA)-aware dynamic resource consoli-
dation (i.e., how to consolidate system VMs with the bi-
objectives of reducing energy cost and SLA violation). 

2.2.1 Bin Packing-Based Static Resource Allocation 

Recent studies have shown that PMs, which are used to 
run VMs, consume a high percentage of the power in 
cloud computing systems [10]. One natural objective of 
efficiently allocation of VMs to PMs is to reduce the num-
ber of active PMs, which can be called static resource allo-
cation. Intuitively, the static energy-aware resource allo-
cation problem can be modeled as the bin-packing prob-
lem, where VMs and PMs are the items and bins, respec-
tively in the bin packing problem. For this transformed 
bin packing problem with liner usage costs, Cambazard et 
al. [21] first compute the lower bound of the optimal solu-
tion and then design a polynomial cost-based propaga-
tion allocation algorithm. By considering the multi-
dimensional resource types of PMs, Li et al. [17] present a 
multi-dimensional space partition model for the multi-
dimensional bin packing problem. Based on this model, 
they then propose a balance VM allocation approach to 
alleviate the imbalanced utilization of the multi-
dimensional resources and thus lower the energy con-
sumption. These static resource allocation approaches are 
all restricted to the one-shot or offline setting, not target-
ing on an online setting where VMs arrive and depart the 
cloud system dynamically. In this kind of dynamic cloud 
systems, VM consolidation is very necessary to reduce 
system energy cost [11][15][27][39]. 

2.2.2 Energy-Aware Dynamic Resource Consolidation 

Live migration technology [40], allowing a VM to be mi-
grated from one PM to another PM, has proved to be ef-
fective in addressing resource consolidation [13][27]. Mo-
tived by the classical online bin packing approach, Song 
et al. [19] propose an adaptive resource consolidation ap-
proach to minimize the number of active PMs. During 
VM migration, on the one hand, the system should move 
VMs on source PM with a low resource utilization to an-
other target PM, thus allowing the source PM to switch off 
without consuming any power. On the other hand, the 
system should also avoid the target PM over-utilized. To 
achieve these goals, a threshold-based resource consolida-
tion approach has been investigated [13][15][20][39]. This 
approach works by first predetermining two thresholds, 
the high threshold th and the low threshold tl. When the re-
source utilization of a PM pi, exceeds th, the system will 
transfer some VMs on pi to another PM for hotspot avoid-
ance. When the resource utilization of pi falls below tl, the 
system will migrate all of the VMs on pi to another target 

PM for energy saving. In dynamic cloud systems, to pre-
dict the two thresholds th and tl precisely, these researches 
all assume that there exists a central manager that moni-
tors and maintains information about all PMs and VMs. 
Our approach does not need such a central manager, in-
stead allowing the PMs to manage resources in a distrib-
uted manner, thereby improving system robustness. 
Moreover, another deficiency of these dynamic energy-
aware resource consolidation approaches is that they only 
focus on the advantage of live migration on reducing en-
ergy cost, do not consider its negative effect on violating 
Service Level Agreement (SLA), such as reducing system 
throughput and increasing system response time [41][42].  

2.2.3 Energy and SLA-Aware Dynamic Resource 
Consolidation 

To reduce system energy consuming while reducing SLA 
violation, Verma et al. [11] and Ardagna et al. [12] first 
transform this bi-objective (i.e., energy cost minimization 
and SLA violation minimization) problem to a single ob-
jective problem by setting a tradeoff weight between 
these two objectives. And then they model this single ob-
jective problem as a mixed integer nonlinear program-
ming problem, which can be solved by the competitive 
approximate algorithms [11][12]. One challenge of trans-
forming the bi-objective problem to a single objective 
problem is how to set the tradeoff weight between the 
two objectives. Kord and Haghighi [22] exploit the fuzzy-
based Analytic Hierarchy Process (AHP) method to de-
termine the tradeoff weight between the multiple objec-
tives. The main idea behind the fuzzy-AHP model is that 
the system first determines the relative importance of 
each objective by pairwise comparison. And then deter-
mine the related intermediate priorities of these candidate 
destination PMs with respect to each objective. Finally, 
the global priority of each candidate PM is determined by 
summing all priorities with respect to each objective [43].  

Another efficient way to tackle the bi-objective re-
source allocation problem is to utilize the evolutionary 
computation (EC) algorithms, including the Genetic Algo-
rithm (GA) [23][24], swarm intelligence algorithms such 
as Particle Swam Optimization (PSO)[25][26] 1  and Ant 
Colony Optimization (ACO) [27]. For example, in the GA 
algorithm [23], a “chromosome” represents an allocation 
solution of VMs to PMs. To begin, GA randomly gener-
ates a population of potential chromosomes and evaluates 
the fitness values (i.e., objective value) of these candidate 
solutions. And in the second step, the desirable chromo-
 

1 For more details on evolutionary computation-based resource alloca-
tion approaches in cloud systems, we refer interested readers to the re-
cent survey paper [44] and the references therein. 
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somes with higher fitness values (e.g., produce little ener-
gy cost and violate SLA little) are selected as the parent 
chromosomes and to crossover the next generation chro-
mosomes. The PSO has a similar optimization process 
with GA, where in the first step, a set of particles that rep-
resent VM allocation solution are randomly initialized. In 
the second step, based on the local best position and the 
global best position, each particle improves its fitness val-
ue by updating its current position in the population [25]. 
In the ACO algorithm, a VM migration plan s=(ps,v,pd), 
which means the VM v is migrated from the source PM ps 
to the destination PM pd, is modeled as the edge connect-
ed the cities in traveling salesman problem. Then the ants 
will deposit some pheromone on the migration plan s if s 
not only reduces energy cost but also guarantees SLA. 
Iteratively, the migration plan associated with higher 
pheromone concentration will constitute the global VM 
migration solution [27]. Although these nature-inspired 
EC algorithms and fuzzy control-based heuristics are effi-
cient in improving cloud system performance such as 
reducing energy cost and guaranteeing SLA performance, 
their efficiency depends much on system parameters such 
as the mutation probability in GA, the acceleration coeffi-
cients of the local and global best position in PSO, the 
pheromone evaporation rate in ACO, the evolution ter-
mination condition in GA, ACO, and PSO, and the im-
portance intensity between any pair of objectives in 
fuzzy-based AHP approach. In contrast, our multiagent 
approach depends less on system parameters, making it 
more practical for the real-world applications. 

2.3 Multiagent-Based Resource Allocation 

Multiagent technology, which is derived from distributed 
artificial intelligence (DAI), has shown its effectiveness in 
addressing distributed system problems [45]. Example 
applications include coalition formation in the business-
to-business (B2B) domain [46], routing in robotics [47], 
mobile agent-based load balancing in grids [48], negotia-
tion-based task allocation in grids and social networks 
[49][50], and agent-based modeling for social networks 
[51]. Recently multiagent technology to tackle cloud re-
source allocation has received increasing attention. For 
example, An et al. [52] introduce a bilateral bargaining-
based resource negotiation mechanism for users accessing 
necessary resources. Zhao et al. [53] propose a multia-
gent-based resource trading protocol to trade efficient 
and fair resource among selfish users in community cloud 
systems. Sim [54] presents a systematic agent-based cloud 
computing model, where agents are developed to support 
service discovery, service negotiation and service compo-
sition. The work of Sim [54] is further investigated by 
Chen et al. [55] by extending contract net technology to 
maximize a cloud system’s throughput.  

Although these approaches are efficient in addressing 
traditional resource allocation problems, they are inade-
quate for VM resource allocation in network cloud sys-
tems. In network cloud systems, PMs are always inter-
connected by a communication network. Because of arbi-
trary negotiation and task migration among PMs, the 
above approaches [45-55] will consume prohibitive net-
work bandwidths, thereby violating SLA largely. This 
paper proposes an efficient local resource negotiation 
mechanism that limits agents’ coordination domain local-
ly. Under this local coordination domain constraint, an 
efficient negotiation-based VM consolidation mechanism 
is proposed to reduce system energy cost while incurring 

tolerable migration overhead. 

3 PROBLEM DESCRIPTION 

We consider a cloud system CS=<P, E> consisting of a set 
of PMs P={p1,p2,…,pm} interconnected by a communication 
network and ∀(pi,pj)∈E indicates that pi and pj can com-
municate with each other through only one switch. De-
noted by d(pi,pj) the communication distance between 
PMs pi and pj and d(pi,pj) is computed as the number of 
switches along the shortest path between pi and pj. Let 
Θ={θ1,θ2,…,θn} be the set of VM resource (e.g., CPU, 
memory, storage, bandwidth, etc.) required by users. For 
simplicity, in this study we consider only one type of re-
source requirement (e.g., CPU) and denoted by ri the 
amount of resources required by VM θi∈Θ. Each PM 
owns a number of resources that are capable of running 
multiple VMs and denoted by ci the amount of resources 
at PM pi. To satisfy the submitted VMs’ resource require-
ments, some suitable PMs should be selected to host 
them, which can be called the VM allocation problem. A 
feasible VM allocation {Θ(p1),Θ(p2),…,Θ(pm)} is defined as 
a mapping of PM ∀pi∈P to a set of VMs Θ(pi), which must 
satisfy the following two conditions: 
1) Each VM is allocated to at least one PM and no VM is 

allocated to more than one PM, i.e., 

( ) , ( ) ( ) , 1 , ,
ip P i i jp p p i j m i j            (1) 

2) For each PM, the total resource requirements of its 
hosted VMs do not exceed its available resources, i.e., 

( )
, 1

j i
j ip

r c i m
 

                          (2) 

In addition to satisfying the above two conditions, the 
ultimate objective of VM allocation is to minimize the 
total system PMs’ energy cost. Although many technolo-
gies have been used to develop energy-proportional PMs 
[9][10], each PM is far from energy-proportional [5][13]. 
Therefore, to simulate a more practical application, we 
can model the energy cost function of each PM pi as  

(1 ) , 0;
( )

0, 0.

i i i i i i

i i

i

u u
e u

u

        
 



          (3) 

where λi is the maximum energy consumed when pi is 
fully utilized, αi is the fraction of the maximum energy 
consumed when pi is idle and ui is the resource utilization 
of pi, which is computed as ui=Σθj∈Θ(pi)rj/ci. When pi is active 
for running VMs (i.e., ui>0), its energy cost ei(∙) then is an 
affine function of its resource utilization ui. Otherwise, 
when pi is idle (i.e., ui=0), pi should be turned off, avoiding 
consuming any energy cost. Now, we will give the formal 
definition of the VM allocation problem. 

Definition 1. VM Allocation Problem. Given a set of 
VMs Θ={θ1,θ2,…,θn} and a set of PMs P={p1,p2,…,pm}, the 
VM allocation problem is to determine the optimal alloca-
tion of VMs Θ to PMs P with the minimum energy cost E, 
i.e., 

1

1

1

1
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Subject to :
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The variable xij∈{0,1} is the decision variable, where xij=1 
indicates VM θj is allocated to PM pi; otherwise xij =0.  

It is not hard to determine that solve this VM alloca-
tion problem is NP-hard because the traditional NP-
hard Bin-Packing problem [56] is a special case of this 
problem by setting α1=α2=…=αm=α, λ1=λ2=…=λm=λ and 
c1=c2=…=cm=c. Therefore, it is very essential to devise effi-
cient polynomial approximation algorithms.  

4 MULTIAGENT-BASED RESOURCE ALLOCATION 

We formulate the distributed multiagent-based resource 
allocation approach as follows. First, we dispatch a co-
operative agent ai to each PM pi. These agents A={a1, 
a2,…,am} are deployed to assist the PMs in managing re-
sources (hereafter, the terms “agent” and “PM” are used 
interchangeably). And then we devise the coordination 
mechanism for these agents to make decisions on which 
PMs should host which VMs in pursuit of the energy 
cost minimization. For a set of newly submitted VMs, 
this multiagent-based VM allocation approach of allo-
cating these VMs to PMs mainly consists of the follow-
ing two complementary stages: 
 Auction-Based VM Allocation. An auction-based 

mechanism is devised for the agents to decide the allo-
cation of the submitted VMs to PMs (Section 4.1). 

 Negotiation-Based VM Consolidation. A local negoti-
ation-based VM consolidation mechanism is devised 
for the agents to exchange their assigned VMs for en-
ergy cost saving (Section 4.2). 

4.1 Auction-Based VM Allocation 

In the market-oriented auction architecture [46], the bid-
ders represent the commodity demanders that have a 
pressing need for the commodities. They express their 
needs by submitting bids on the price they would like to 
spend on the commodities. The proposed auction-based 
VM allocation mechanism works as described in Algo-
rithm 1, where agents are modeled as bidders and VMs 
are modeled as commodities. In Algorithm 1, initially, all 
newly submitted VMs Θ are unallocated. At each bidding 
round (Steps 2~8), each agent ai only bids for a single VM 
and it always bids for the largest unallocated VM that it is 
capable of hosting (Step 3). After bidding for the target 
VM θai*, each agent ai broadcasts its bid Bi to all other 
agents for winner determination. A bid Bi=<pi,λi/ci> con-
sists of the PM identity pi and its cost-capacity ratio λi/ci 

(Step 5). After all bids are broadcasted, all of the agents 
send a winner acknowledgment message <Ack> to the 
winner agent that has the minimum cost-capacity ratio 
(Step 7). In the event of a tie, the agent that has the small-
est index is selected as the winner. In step 8, the agent ai 
that receives acknowledgment from all other agents wins 
the current round bidding. The winner agent ai then is 
responsible for running its target VM θai*, informing all 
other agents that θai* has been allocated. The above bid-
ding process (Steps 2~8) proceeds round by round until 
all VMs are allocated (Step 1). 

Besides simplification, another important property of 
Algorithm 1 is its efficiency on reducing energy cost, 
which can be measured by the approximation ratio [57]. 

Definition 2. Approximation Ratio. For a cloud system 
with a list of VMs Θ to and a set of PMs P, let A(Θ,P) and 
OPT(Θ,P) be the system energy cost generated by the ap-
proximation algorithm A and the optimal solution OPT, 

respectively. The approximation ratio S(A) of algorithm A 
then can be defined as: 

( ) sup{ ( , ) ( , )}S A A P OPT P                       (4)  

Before presenting the approximation ratio of Algo-
rithm 1 in Theorem 1, we first present a simple proposi-
tion that is helpful to prove Theorem 1. 

Proposition 1. Assume two positive integer sets 
X={x1,x2,…,xm} and Y={y1, y2,…,yn} satisfy xi<yj, ∀1≤i≤m and 
1≤j≤n. If we randomly pick k1 elements Xk1={x1, x2,…,xk1} 
from X, k2 elements Yk2={y1,y2,…,yk2} from Y, and Xk1 and 

Yk2 satisfy 
1 2i k i k

i ix X y Y
x y

 
  , then we have k1>k2. 

Theorem 1. The approximation ratio of Algorithm 1 
S(A1)=1+λmax/λmin, where λmax=max{λi, 1≤i≤m} and λmin=min{λi, 
1≤i≤m}. 

Proof. We first summarize Algorithm 1 in a centralized 
manner: first, the PMs P={p1,p2,…,pm} are ranked in in-
creasing order of their cost-capacity ratio λi/ci, i.e., 
λ1/c1≤λ2/c2≤…≤λm/cm and the VMs Θ={θ1,θ2,…,θn} are 
ranked in decreasing order of their size, i.e., r1≥r2≥…≥rn. 
Then, we allocate the VMs to PMs by a greedy method. 
This centralized greedy method works as follows: select 
the first PM p1 that has the minimum cost-capacity ratio 
and fill p1 with VMs one by one in order of these VMs’ 
rank. If at a certain step, a VM θx cannot be allocated to p1 
due to its capacity constraint, the successive VM θy (y>x) 
that has a smaller size is considered. This process of fill-
ing p1 with VMs continues until either p1 has been fully 
utilized or no unallocated VMs that can be allocated to p1. 
After the allocation of VMs to p1 finishes, a similar process 
of allocating VMs to p2 repeats. This greedy procedure 
proceeds until all VMs have been allocated.  

Now, we will present the approximation ratio of Algo-
rithm 1. On the one hand, from the perspective of the op-
timal solution, in the best case, the optimal solution will 
only use the first k1 PMs with the minimal cost-capacity 
ratios, i.e., 

k1=min{j∈{1,…,m}:Σ1≤i≤jci≥R}                    (5) 
where R is the sum of resources required by all VMs, i.e., 
R=Σθj∈Θrj.  

On the other hand, from the perspective of Algorithm 
1, assume that Algorithm 1 uses the first k2 PMs to host 

Algorithm 1. Auction-Based VM Allocation 

/*Θ={θ1,θ2,…,θn} the set of VMs that need to be allocated.*/ 
1. while (Θ≠∅) do 
2.      for ai∈A do 

3.         Bid the VM *

( )
arg max{ | 0}

i k i
j

a j i k jp
r c r r









   
. 

4.         if(θai*≠∅), then 
5.            Broadcast the bid Bi=<pi,λi/ci> to all other agents. 
6.      end for 
7. Each agent receives and stores all bids, and then 

sends an acknowledge message <Ack> to the agent 
a* that has the minimal cost-capacity ratio, i.e., 
λ*/c*=min{λk/ck, 1≤k≤m}. 

8. The agent ai that receives acknowledgement from 
all other agents becomes the winner agent and is 
responsible for running its target VM θai*. After θai* 

has been allocated, the winner ai informs all other 
agents that θai* has been allocated and removes θai* 
from the VM list Θ. 

9. end while  



6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 

 

system VMs. For these k2 PMs, denoted by li the VM loads 
on pi (i.e., li=Σθj∈Θ(pi)rj, 1≤i≤k2) and wi the residual capacity 
of pi (i.e., wi=ci-li, 1≤i≤k2). In Algorithm 1, the next PM is 
selected to host VMs if and only if the previous PM can-
not host any VM. Then, we have 

wi<lj, ∀1≤i≤k1, k1+1≤j≤k2                             (6) 

Next, we divide the proof into two cases according to 
whether the k1th PM in the optimal solution is fully uti-
lized or not. 
Case 1: the k1th PM is fully utilized. In this case, for Algo-
rithm 1, the VMs that have not been allocated to the first 
k1 PMs should be allocated to the successive (k2-k1) PMs 

(i.e., {pk1+1,…,pk2}), indicating that 

1 1 21 1i ji k k j k
w l

    
                          (7) 

Case 2: the k1th PM is not fully utilized. In this case, Let 
lk1(Opt) and lk1(A1) denote the VM loads on the k1th PM in 
the optimal solution and Algorithm 1, respectively. Then, 
we can derive that  

1 1 1 2
1 11 1 1 1
(Opt) ( 1)i i k k ji k i k k j k

w w l l A l
       

          (8) 

Combing inequalities (7) and (8), we can derive that 

1 1 21 1i ji k k j k
w l

    
                    (9) 

Combing inequalities (6) and (9) and Proposition 1, we 
can determine that the additional number of used PMs in 
Algorithm 1 (i.e., k2-k1) is less than the number of PMs 
used in the optimal solution (i.e., k1), that is k2-k1<k1.  

Up to this point, we can determine that the approxima-
tion ratio of Algorithm 1 is  

1 2

1 2 1 2 max

min 1 min 1 min

( , ) ( )1( , )
( 1) sup

( , ) ( , )

(1 )
1 1 1

i ik i k

i i i i i ik i k k i k

OPT P e uA P
S A

OPT P OPT P

u

k k

     

  

 

   

 
 

 

 
     



 

Therefore, we have Theorem 1.               

In addition to analyzing the approximation ratio of Al-
gorithm 1, in cloud computing systems, the efficiency of 
the distributed algorithm should also be evaluated in terms 
of computation and communication complexities. 

Computation and communication complexities of the 
distributed auction-based VM allocation algorithm (i.e., 
Algorithm 1). Recall that in Algorithm 1, exactly one VM 
is allocated at each auction round. Therefore, n auction 
rounds are needed to allocate all n VMs, where n is the 
number of VMs. At each round, each agent takes O(n) 
operations to compute the best bid (Step 3). In step 5, for 
each agent, m-1 bid messages need to be sent to all other 
agents, where m is the number of PMs. Next, in step 7, 
each agent takes O(n) computations to select the optimal 
bid with the minimal cost-capacity ratio. For each of the m 
agents, it needs to send a winner acknowledgement to the 
winner agent. Finally, in Step 8, the winner agent needs to 
send m-1 messages to all other agents to inform them that 
the target VM it bids for has been allocated. Therefore, the 
total computation of Algorithm 1 is O(n(n+n))=O(n2) and 
the total communication messages are O(n(m(m-1)+m-
1+m-1))=O(nm2). Notice that both of the bid and acknowl-
edgement messages contain at most two real numbers, 
which can be coded by several bytes. Hence, Algorithm 1 
consumes little network bandwidth.  

4.2 Negotiation-Based VM Consolidation 

4.2.1 The Reason for Negotiation-Based VM 

Consolidation 

Although the auction-based VM allocation mechanism 
has several desirable properties, there are two deficiencies 
that can be further improved. In the following, we use 
two illustrative examples to highlight the advantages of 
the negotiation-based VM consolidation mechanism in 
addressing these two deficiencies.  

The first deficiency is that the auction-based VM allo-
cation does not always achieve the optimal solution. Con-
sider, for example (Example 1), the simple VM allocation 
problem presented in Fig. 3. In Fig. 3(a), there is a cloud 
system consisting of three interconnected PMs p1, p2 and 
p3, where p1 and p2 can communicate directly and p2 and p3 
can communicate directly. These PMs are denoted by 
p1=<14,42u1>, p2=<12,48u2> and p3=<8,16u3>, where the first 
value denotes the capacity and the second function de-
notes the energy cost model (for convenience, here we 
assume αi=0, ∀1≤i≤3) and ui is pi’s resource utilization. 
Now assume that there are four newly submitted VMs 
{θ1,θ2,θ3,θ4} and their required resources are r1=6, r2=6, r3=9 
and r4=5, respectively (Fig. 3(b)). By the auction-based VM 
allocation mechanism, VM θ3 is allocated to PM p2, θ1 is 
allocated to p3 and θ2 and θ4 are allocated to p1. This alloca-
tion {{θ2,θ4},{θ3},{θ1}} produces 42×(11/14)+6×(9/12) 
+16×(6/8)=49.5 units energy cost (Fig. 3(c)). The optimal 
allocation {{θ3},{θ1,θ2},{θ4}} can be achieved from the auc-
tion-based allocation {{θ2,θ4},{θ3},{θ1}} by migrating θ3 from 
p2 to p1, θ2 from p1 to p2, θ4 from p1 to p3 and θ1 from p3 to p2 
simultaneously, which only produces 42×(9/14)+6×(12/12) 
+16×(5/8)=43 units energy cost (Fig. 3(d)). This migration 
process can be achieved easily by two sequential VM ex-
change: the exchange of θ3 and {θ2, θ4} between PMs p1 to 
p2 and the exchange of θ4 and θ1 between p2 and p3. 

The second deficiency is that this static auction-based 
VM allocation cannot adapt to system dynamics where 
VMs arrive and depart the system dynamically. For ex-
ample (Example 1 continued), at a certain time-slot of the 
optimal allocation in Example 1, the application of VM θ1 
at PM p2 has been satisfied and departs the system, where 
the system energy cost becomes 
42×(9/14)+6×(6/12)+16×(5/8)=40 (Fig. 3(e)). In this case, to 
re-optimize the allocation of VMs for energy reduction, it 
is natural to invoke Algorithm 1 again by reallocating all 
system VMs. This method, however, might generate a 
tremendous VM migration cost because it does not con-
sider the current VM allocation. Now, consider three 
simple VM transfers among PMs p1, p2 and p3 by migrat-
ing θ3 from p1 to p2, θ2 from p2 to p3 and θ4 from p3 to p1. 
These VM consolidations reduce the energy cost to 

p1=<14,42u1> p2=<12,6u2> P3=<8,16u3> θ 1=6 θ 2=6 θ 3=9 θ4=5

 
(a) PMs                                             (b) VMs 

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2 θ1θ3

E=42*(11/14)+6*(9/12)+16*(6/8)=49.5

θ4

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2 θ1θ3

E=42*(9/14)+6*(12/12)+16*(5/8)=43

θ4

 
(c) Auction-Based VM allocation        (d) Optimal VM allocation 

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2

θ1θ3

E=42*(9/14)+6*(6/12)+16*(5/8)=40

θ4

P1=<14,42u1> P2=<12,6u2> P3=<8,16u3>

θ2θ3

E=42*(5/14)+6*(9/12)+16*(6/8)=31.5

θ4

 
(e) VM θ1 is finished                   (f) Optimal VM allocation 

Fig. 3. Advantages of the negotiation-based VM consolidation. 
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42×(5/14)+6×(9/12)+16×(6/8)=31.5 (Fig. 3(f)). 
Therefore, it is very necessary to devise a negotiation-

based VM consolidation mechanism by allowing agents 
to exchange their assigned VMs to save energy cost and 
address system dynamics. 

4.2.2 A Local Negotiation-Based VM Consolidation 
Mechanism 

With the increasing development of virtualization tech-
nology, on one hand, VM live migration has been verified 
as effective in reducing energy consumption in cloud sys-
tems [20]. On the other hand, VM live migration might 
have a negative effect on system performance such as 
increasing network delay [41]. To reduce system energy 
cost and avoid incurring prohibitive migration overhead, 
we propose a local VM consolidation mechanism by al-
lowing a VM to migrate from one agent to another agent 
that within the same negation domain. 

Definition 3. Negotiation Domain. The negotiation do-
main of each agent ai is defined as Di={aj|d(ai,aj)≤ρ}, where 
ρ∈ℕ is the predetermined negotiation radius parameter, 
meaning that ai can only negotiate with agents within the 
limited communication distance ρ. 

Throughout this paper, we refer to any pair of agents 
are negotiable if these two agents are within the same ne-
gotiation domain. Now we are ready to formalize the local 
negotiation-based VM consolidation mechanism. With 
respect to negotiation, we mean that the agents make con-
tracts on exchanging their assigned VMs. According to 
the number of agents involved in the contract, we can 
classify the contracts into two main families [58]: 
 Swap Contract, where only two agents are involved by 

allowing the first agent to transfer a set of VMs to the 
second agent and the second agent to transfer another 
set of VMs to the first agent in return (Section 4.2.2.1). 

 Cluster Contract, where a cluster of agents (more than 
two) are involved by allowing the VMs to be trans-
ferred among multiple agents within the negotiation 
domain (Section 4.2.2.2). 

4.2.2.1 Swap Contract  

By referring to the related definitions presented in [47], 
we first define single VM out and in contract. 

Definition 4. Out and In Contract. Given an agent ai∈A, 
an out contract out(ai,θx,aj) is defined as a single VM mi-
gration that migrates VM θx∈Θ(ai) from ai to another 
agent aj and an in contract in(ai,θx,aj) is defined as a single 
VM migration that migrates θx∈Θ(aj) from aj to ai. 

Definition 5. Swap Contract. A swap contract 
sc(ai,Θi,j,aj,Θj,i) is defined as a union of multiple out and in 
contracts between ai and aj, i.e.,  

, ,, ,( , , , ) ( , , ) ( , , )
k i j k j ii i j j j i i k j i k jsc a a out a a in a a          (10) 

where Θi,j (resp. Θj,i) represents the set of VMs that agent 
ai (resp. aj) migrates to agent aj (resp. ai).  

A swap contract is feasible if and only if it satisfies the 
capacity constraint, i.e., after executing the VM swap con-
tract sc(ai,Θi,j,aj,Θj,i), the VM loads of agents ai and aj do not 
exceed their own capacities. Throughout the paper, all 
contracts are assumed feasible unless noted specifically. 

Definition 6. Swap Path. A swap path SP is a set of feasi-
ble swap contracts that changes a VM allocation 
{Θ(ai)}1≤i≤m to another VM allocation {Θ’(ai)}1≤i≤m. 

Fig. 4 shows the VM swap graph of Example 1, where 

each agent’s negotiation domain is constrained within its 
direct neighbors, i.e., ρ=1. In Example 1, we can observe 
that for any allocation, a swap path exists that can lead 
this allocation to the optimal allocation {{3},{1,2},{4}}. 
Therefore, we conjecture that the local swap contract has 
a very inspiring advantage in reducing energy cost, 
shown in Theorem 2. Before presenting Theorem 2, we 
first show an interesting property of the local swap con-
tract, which is helpful in proving Theorem 2. 

Proposition 2. Assume that there are m PMs {pi|1≤i≤m} 
and m VMs {θi|1≤i≤m}. Initially, the VM θi is allocated to 
PM pi, i.e., the initial allocation ψ={{θ1},{θ2},…,{θm}} is fea-
sible. If there exists a feasible cyclic swap path 
SP={sc(a1,θ1,a2,∅), sc(a2,θ2,a3,∅),…, sc(am,θm,a1,∅)} (i.e., agent 
ai migrates its assigned VM θi to its logically next agent 
a(i+1)%m, 1≤i≤m, X%Y denotes the remainder of X/Y) that 
changes this initial allocation ψ to another allocation 
ψ’={θm,θ1,…,θm-1}, then we can derive that at allocation ψ, 
there exists at least one swap contract sc(ai,θi,a(i+1)%m,θ(i+1)%m) 
between ai and a(i+1)%m (1≤i≤m) for exchanging their as-
signed VMs θi and θ(i+1)%m. 

Proof. Because the initial allocation ψ is feasible, we have 
that each PM pi’s capacity ci is greater than their assigned 
VM θi, i.e., ci≥ri, 1≤i≤m. Furthermore, because the cyclic 
swap path SP is feasible, we also have that c(i+1)%m≥ri, 
1≤i≤m. Using reductio ad absurdum, we assume that for 
any pair of agents ai and a(i+1)%m, it is not feasible for them 
to change their assigned VMs, i.e., 

1 2 2 1

2 3 3 2

1 1

( )( ) 0

( )( ) 0

( )( ) 0m m

c r c r

c r c r

c r c r

  


  


   

                                (11) 

On one hand, from (ci-ri+1)(ci+1-ri)<0 and ci+1≥ri, ∀1≤i≤m-1, 
we can derive that ci<ri+1, ∀1≤i≤m-1. Consider the fact that 
ci+1≥ri+1, 1≤i≤m-1, we have that c1<c2…<cm. On the other 
hand, from (c1-rm)(cm-r1)<0, c1≥rm and c1≥r1, we can derive 
that c1>cm, which is contradictory to the conclusion of 
c1<cm. Therefore, assumption (11) does not hold and we 
have this proposition.        

Proposition 3. Assume a VM allocation problem where 
global communication is permitted (i.e., any pair of PMs 
can communicate with each other). Given a non-optimal 
allocation ψ={Θ(ai)}1≤i≤m that does not have any feasible 
swap contract among any pair of agents, then there does 
not exist a swap path SP that can change ψ to another fea-
sible allocation. 

Proof. According to the proposition suppose, we have 
that at this allocation ψ, for any pair of agents ai and aj and 
for any VM set Si⊆Θ(ai) on ai and VM set Sj⊆Θ(aj) on aj, the 
exchange of Si and Sj is not feasible, i.e., ∀Si⊆Θ(ai), 
Sj⊆Θ(aj):  

( )\ ( )\
( ) ( ) 0

k i i k j k j j k i
i k k j k ka S S a S S

c r r c r r
      

           (12) 

{3},{2,4},{1}

{2,4},{3},{1} {3},{1,4},{2}

{1,2},{3},{4}

{3},{1,2},{4}

{1,,4},{3},{2}

Feasible Swap Contract

Optimal Allocation

 
Fig. 4. Feasible swap graph, where negotiation radius ρ=1. A feasible 

swap path from {{2,4},{3},{1}} to the optimal allocation {{3},{1,2},{4}} is 

{{2,4},{3},{1}}→{{3},{2,4},{1}}→{{3},{1,2},{4}}. 
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Using reductio ad absurdum, suppose that there exists a 
swap path SP={{ai,θk,aj,∅},…{az,θz,ay,∅}} that can change ψ 
to another feasible allocation ψ’. For the swap contracts 
along the swap path SP, we conjecture that any agent 
ai∈Asp (Asp indicates the agents involved in the swap path 
SP), involves at least a pair of out and in swaps (Conclu-
sion 1). We prove this conclusion as follows: on the one 
hand, for the agent ai∈Asp that only has out swaps, we can 
delete ai as well as its out swaps from the swap path SP. 
The remaining swap path SP\{ai} is still feasible because 
deleting ai’s out swaps can alleviate other agents’ VM 
loads. On the other hand, for the agent ai∈Asp that only has 
in swaps, which indicates that there is a feasible in swap 
that other involved agent aj∈Asp can transfer some VMs to 
ai. However, assumption (12) indicates this kind of in 
swap does not exist. Based on Conclusion 1, we can fur-
ther derive that there exists at least one cyclic swap path 
CSP within SP, i.e., CSP⊆SP (Conclusion 2). We can con-
struct such CSP as follows: start from any involved agent 
ai∈Asp and add its out swap out(ai,θx,aj) to CSP. Then, we 
proceed to the out swap’s (i.e., out(ai,θx,aj)) destination 
agent aj and add aj’s out swap out*(aj,θx,ak) to CSP. If the 
destination agent ak of the swap out* has emerged in CSP, 
then this cyclic swap path CSP is identified. Otherwise, 
proceed to deal with the destination agent ak of the swap 
out* with the same procedure. Combing Conclusion 2 and 
Proposition 2, we can finally determine that there exist at 
least one swap contract between any involved agents 
ai∈Asp and ai∈Asp, which contradicts assumption (12).      

Theorem 2. Given a VM allocation problem where global 
communication is permitted, then for any non-optimal 
allocation {Θ(ai)}1≤i≤m, there always exists a swap path that 
changes {Θ(ai)}1≤i≤m to the optimal allocation {Θ*(ai)}1≤i≤m 

with the minimum energy cost.  

Proof. To derive this theorem, we only need to prove that 
the case that for any non-optimal allocation {Θ(ai)}1≤i≤m, 
there exists a swap contract that can change {Θ(ai)}1≤i≤m to 
another feasible allocation {Θ’(ai)}1≤i≤m. By contradiction, 
Assume that there exists a non-optimal allocation 
ψ={Θ(a1),…,Θ(an)} that does not have any feasible swap 
contract among any pair of agents. For this allocation ψ, 
Proposition 3 indicates that there does exist a swap path 
SP that can change ψ to another feasible allocation, which 
means that {Θ(ai)}1≤i≤m is the only feasible allocation as 
well as the optimal allocation. Thus, for any non-optimal 
allocation {Θ(ai)}1≤i≤m, there exists at least one swap con-
tract that can change {Θ(ai)}1≤i≤m to another feasible alloca-
tion {Θ’(ai)}1≤i≤m and, thus it can achieve the optimal alloca-
tion along certain swap path.                             

Theorem 2 suggests that theoretically, if global com-
munication is allowed, the local swap contract is suffi-
ciently effective to optimize system performance in reduc-
ing energy cost. However, in addition to feasibility satis-
faction, the swap contract should also have the mono-
tonicity property, that is, each VM swap contract should 
reduce energy cost. Why is monotonicity important? The 
cloud system might be halted arbitrarily due to system 
maintenance and non-monotonic VM consolidation 
mechanisms risk being terminated at highly inefficient 
allocation that consumes a large amount of energy.  

Definition 7. Benefit of Swap Contract. Let Θ(ai), Θ(aj) be 
the VMs assigned on agents ai and aj and Θ’(ai), Θ’(aj) be 
their VM loads after executing the VM swap contract 
sc=<ai,Θi,j,aj,Θj,i>, where Θ’(ai)=Θ(ai)∪Θj,i\Θi,j and 
Θ’(aj)=Θ(aj)∪Θi,j\Θj,i. The benefit gained by the swap con-

tract sc(∙) is defined as the difference of energy costs be-
tween Θ and Θ’, i.e.,  

B(ai,Θi,j,aj,Θj,i)=ei(ui)+ej(uj)-ei(ui’)-ej(uj’)              (13) 

where ui (resp. uj) and ui’ (resp. uj’) are the resource utili-
zations of ai (resp. aj) before and after the swap contract sc.  

A swap contract sc is profitable if and only if it yields a 
positive benefit (i.e., B(sc)>0). The system energy cost of 
the allocation after executing a profitable swap sc is equal 
to the system energy cost of the allocation before execut-
ing swap sc minus the benefit of sc. Similarly, a swap path 
is profitable if and only if all of the swaps along the path 
are profitable.  

Next, we will present the profitable swap contract be-
tween any pair of negotiable agents. For any pair of nego-
tiable agents ai and aj, with VM loads Θ(ai) and Θ(aj), to 
find the optimal swap with the maximum benefit, one 
needs to consider 2|Θ(ai)|+|Θ(aj)| VM exchange combinations 
(|X| indicates the number of elements in set X). To address 
this computationally costly optimal problem, we propose a 
polynomial algorithm for ai to make a profitable swap con-
tract with aj, shown in Algorithm 2. In Algorithm 2, ai first 
sorts its own VMs Θ(ai) in decreasing order by their size 
and ranks aj’s VMs Θ(aj) in increasing order by their size 
(Steps 1~2). Then, in Steps 3~11, ai attempts to exchange 
its VMs in order of these VMs’ ranking with aj’s VMs in 
order of aj’s VMs’ ranking. The motivation of this idea is 
that each agent prefers to migrate out its resource-
consuming VMs to other agents in exchange for resource-
saving VMs to reduce its own energy consumption. For 
each out VM set Θi,j∪θx (1≤x≤|Θ(ai)| and initially Θi,j=∅), ai 
identifies the profitable in VM set Θj,i from aj as follows: ai 
first constructs a set S including all VM combinations on 
aj from θ1 to θy (y≤|Θ(aj)|), i.e., S={{θ1},{θ1,θ2},…,{∪1≤z≤|Θ(aj)|θz}}. 
Agent ai then selects the most profitable in VM set ∪1≤z≤y*θz 
from S that yields the maximum benefit B(ai, 
Θi,j∪θx,aj,∪1≤z≤y*θz). If this VM swap contract sc(ai, 
Θi,j∪θx,aj,∪1≤z≤y*θz) has a greater benefit than the previous 
swap contract with benefit b, ai then updates the out VMs 
Θi,j=Θi,j∪θx and updates the in VMs, Θj,i=∪1≤z≤y*θz (Steps 
7~8).  

After presenting the swap contract between any pair of 
agents, another question arises: given the agent ai, which 
negotiable agent aj∈Di should ai negotiate with that can 
make a profitable swap contract? And if there are multi-
ple profitable swap contracts, which one should ai choose 
to execute? To answer these questions, we propose Algo-
rithm 3 for each agent ai to make the most profitable 
swap contracts with its negotiable agents Di. In Algorithm 
3, before negotiation, ai first initializes its state: the sets out 
and in store the VMs that are migrated out from ai and the 
VMs that are migrated in to ai, respectively. The variable 
target indicates the target agent that ai would migrate 
VMs to (Step 1). In Step 2, ai only negotiates with the 
agent aj∈Di that has a smaller cost-capacity ratio than that 
of ai. The motivation of this idea is that, compared with the 
agent that has the smaller cost-capacity ratio, the agent that 
has the greater cost-capacity ratio has more urgency to 
move its VMs out to reduce its own energy cost. For each 
negotiable agent aj∈Di, ai computes the profitable VM swap 
<ai,Θi,j,aj,Θj,i> (i.e., ai migrates VMs Θi,j to aj and aj migrates 
VMs Θj,i to ai) with aj (Step 4). The profitable swap compu-
tation adopted by the agents to identify the profitable 
VMs exchange is described in Algorithm 2. If the current 
swap contract sc=<ai,Θi,j,aj,Θj,i> committed with agent aj 
yields a greater benefit than the benefit b of the previous 
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contract with other negotiable agent, ai prefers to make a 
new swap contract with aj (Steps 5~7).  

Computation and communication complexities of 
swap contract algorithm (i.e., Algorithm 3). In Algorithm 
3, the agent ai needs to negotiate with all of its local do-
main agents Di to find the most profitable swap contract. 
Given a local domain agent aj∈Di, ai utilizes Algorithm 2 
to compute the profitable VM swaps between ai and aj. In 
Algorithm 2, ai first takes O(2nlogn) time to sort the VMs 
on ai in decreasing order of their size and the VMs on aj in 
increasing order of their size (Step 1~2 of Algorithm 2). 
Then, ai takes O(n2) time to consider the n2 combinations 
of VM swap to find the most profitable swaps between ai 
and aj (Step 4~11 of Algorithm 2). Therefore, Algorithm 3 
takes total O(kρ(2nlogn+n2))=O(kρn2) computations to re-
turn the final VM swaps with its certain domain agent, 
where k is the average degree of each PM and ρ is agent 
ai’s negotiation radius, i.e., |Di|=kρ≤m (m is the number of 
PMs). Moreover, agent ai needs to communicate with Di 
for one time to acquire their VM load information, gener-
ating O(kρ) communication cost. 

Next, we will illustrate how the swap contract-based 
negotiation mechanism addresses the inefficient alloca-
tion problems emerged in Example 1 and Example 1 con-
tinued. In Example 1, the optimal allocation {{3},{1,2},{4}} 
can be achieved by two sequential profitable swaps, i.e., 
(a1, {θ2,θ4},a2,{θ3}) and (a2,{θ4},a3,{θ1}). In Example 1 contin-
ued, we can achieve the optimal allocation {{4},{3},{2}} by 
executing two sequential profitable swaps, (a1,{θ3},a2,{θ2}) 
and (a1,{θ2},a3,{θ4}), here we assume the negotiation radius 
ρ=2. Although this swap contract mechanism is necessary 
to reduce energy cost, it is not sufficient to lead the sys-
tem optimal with the minimum energy cost even though 
global communication is permitted. 

Proposition 4. Given a VM allocation problem, even 

though global communication is permitted, there does 
not always exist a profitable swap path that can lead cer-
tain allocation {Θ(ai)}1≤i≤m to the optimal allocation 
{Θ*(ai)}1≤i≤m. 

Proof. We achieve this conclusion by a concrete example. 
Fig. 5 shows a VM allocation example with four VMs 
{θ5=7, θ6=7, θ7=8, θ8=5} running in a cloud system (this 
cloud system is just the one described in Example 1). As-
sume that the initial VM allocation is {{5,6},{7},{8}}, i.e., θ5 

and θ6 are placed on p1, θ7 is placed on p2, and θ8 is placed 
on p3 (Fig. 5(a)). Fig. 5(b) depicts the profitable swap 
graph of this problem instance, where global communica-
tion is permitted. From Fig. 5(b), we observe that for the 
allocation {{5,6},{7},{8}}, no profitable swap path can lead 
{{5,6},{7},{8}} to the optimal allocation {{5},{6,8},{7}}. How-
ever, this optimal allocation can be achieved by multiple 
VM migrations among a cluster of agents a1, a2 and a3, i.e., 
a1 migrates θ6 to a2, a2 migrates θ7 to a3, and a3 migrates θ8 
to a1 (Fig. 5(c)).                      

4.2.2.2 Cluster Contract 

As discussed above, there are VM allocation problems 
where no profitable path of swap contract can lead certain 
allocation to the optimal allocation. In this section, we 
propose a complementary local cluster contract mecha-
nism to address the inefficiencies of the swap contract 
mechanism in reducing energy cost, where VMs can be 
transferred among a cluster of agents.  

Definition 8. k-Cluster Contract. Given an agent ai∈A, a 
k-cluster contract ccaik (k≥2) is a combination of k out and in 
contracts between ai and its negotiable agents Di, i.e.,  

, ( ) , ( )( , , ) ( , , )
i j i x i j i x j

k

a a D a i x j a D a i x jcc out a a in a a          (14) 

Denoted by A(ccaik) the set of agents involved in the k-
cluster contract ccaik. Similar to the swap contract benefit 
definition, the benefit of a k-cluster contract ccaik, B(ccaik) is 
also defined as the difference of energy costs of all con-
tracted agents A(ccaik) before and after executing the k-
cluster contract ccaik, i.e.,  

'

( )
( ) ( ( ) ( ))k

i j ai

k

a j j j ja A cc
B cc e u e u


               (15) 

Algorithm 3. Swap Contract (SC) (ai)  

% ai: the agent where SC is implemented% 
1. Set out=∅, in=∅, target=∅, and b=0.  
2. for ∀aj∈Di && λj/cj<λi/ci do 

3.    Set Θi,j=∅ and Θj,i=∅. 

4.    Compute profitable swap <ai,Θi,j,aj,Θj,i> with aj. 

5.    if B(ai,Θi,j,aj,Θj,i)>b, do 
6.        out=Θi,j, in=Θj,i, target=aj, b=B(ai,out,aj,in). 
7.    end if 
8. end for 

Algorithm 2. Compute Profitable Swap (ai,Θi,j,aj,Θj,i) 

% ai is the agent where swap contract is implemented; aj is the 
agent that ai is negotiating with; Θi,j is the VMs that ai mi-
grates to aj; Θj,i is the VMs that aj migrates to ai.% 
1. Sort the VMs Θ(ai) in decreasing order by the amount 

of their required resources. 
2. Sort the VMs Θ(aj) in increasing order by the amount 

of their required resources. 

3. Set b=0. 

4.   for 1≤x≤|Θ(ai)|, do 
5.        b=B(ai, Θi,j∪θx,aj,∅). 
6.        for 1≤y≤|Θ(aj)|, do 
7.               if B(ai, Θi,j∪θx, aj, ∪1≤z≤yθz)>b, do 
8.                   Θi,j=Θi,j∪θx, Θj,i=∪1≤z≤yθz, b=B(ai, Θi,j,aj,Θj,i).  
9.               end if 
10.      end for 
11.  end for 

 

P1=<14,42u1>

θ5=7
θ6=7

P2=<12,6u2>

θ7=8

P3=<8,16u3>

θ8=5

E=42*(14/14)+6*(8/12)+16*(5/8)=56

 

{5,6},{7},{8}

{5,8},{7},{6} {6,8},{7},{5}

{5},{6,8},{7}

Profitable Swap Contract

Optimal Allocation

 

P1=<14,42u1>

θ5=7
θ6=7

P2=<12,6u2>

θ7=8

P3=<8,16u3>

θ8=5

E=42*(7/14)+6*(12/12)+16*(8/8)=43
 

(a)                                                                     (b)                                                                           (c) 

Fig. 5. A VM allocation example shows the reason for the cluster contract. (a) Initial allocation {{5,6},{7},{8}}. (b) Profitable swap graph, where 

negotiation radius ρ=2. For allocation {{5,6},{7},{8}}, there does not exist a profitable swap path leading this allocation to the optimal allocation 

{{5},{6,8},{7}}. (c) The optimal allocation can be achieved by multiple VM exchanges among a cluster of agents {ai|1≤i≤3}. 
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where ej(uj) and ej(uj’) represent the energy costs of the 
contracted agents aj∈A(ccaik) before and after the k-cluster 
contract ccaik, respectively.  

Next, we will present the cluster contract formally, 

shown in Algorithm 4. In Algorithm 4, before computing 

the cluster contract, the agent ai first predetermines the 

scale K of cluster contract, indicating that there are at least 

K VMs involved in the cluster contract. Then in Step 1, ai 

initializes k-cluster contract (k≤K) set M. In Step 2, ai con-

structs all of its out contracts to its negotiable agents Di, 

, ( )( , ) ( , , )
j i x ii i a D a i x jOut a D out a a    and all of its in contracts 

from Di, 
, ( )( , ) ( , , )

j i x ji i a D a i x jIn a D in a a   . After construct-

ing all single out and in contracts Out(ai,Di)∪In(ai,Di), ai 

identifies and adds all k-cluster (k≤K) contracts (which can 

be implemented by the brute-force search approach) to M 

(Steps 3~5). Finally, ai selects the optimal k* cluster con-

tract ccaik* from M that has the maximal benefit.  

Computation and communication complexities of 

cluster contract algorithm (i.e., Algorithm 4). In algo-

rithm 4, each agent needs to find all k-cluster (k≤K) con-

tracts among the union of all single out and in contracts 

Out(ai,Di)∪In(ai,Di). The number of feasible single out and 

in contracts |Out(ai,Di)∪In(ai,Di)|≤n, because each VM can 

only be involved in only one out or in contracts, where n 

is the number of VMs. Therefore, the computation of Al-

gorithm 4 is 
2

( )K

k K

n
O n

k 

 
 

 


, where K is the maximum 

number of transferred VMs. On the other hand, in the 

cluster contract, each agent ai only needs to communicate 

with its negotiable agents Di to acquire their VM load in-

formation. This type of information has been collected in 

the swap contract process. Therefore, the cluster contract 

does not incur extra communication cost. 

4.2.3 Algorithm of Negotiation-Based Consolidation 

In this section, we formally present the negotiation-based 

VM consolidation(NC) algorithm by integrating the swap 
and cluster contracts, shown as follows. 
1) Each agent ai∈A invokes Algorithm 3 and Algorithm 4 

to compute the swap contract SC(ai) and cluster con-
tract CC(ai,K), respectively. If the swap contract has a 
greater benefit than the cluster contract, i.e., 
B(SC(ai))≥B(CC(ai)), then ai sends the swap contract re-
quest <ai, Θi,j, aj, Θj,i, B(SC(ai), SC> to the target contract-
ed agent aj, where SC indicates the contract type (i.e., 
swap contract). Otherwise, i.e., B(SC(ai))<B(CC(ai)), ai 
sends the cluster contract request <ai,ccaik*,B(ccaik*), CC> 
to all involved agents A(ccaik*) in cluster contract ccaik*, 
and CC indicates the cluster contract type.  

2) Each agent ai stores all contract requests and sends an 
acknowledge message <Ack> to the winner agent 
whose contract request has the maximum benefit.  

3) The agent ai that receives acknowledgments from all of 
the contracted agents, executes the contract by ex-
changing VMs with its contracted agents.  
The NC repeats the above Steps 1~3 until there is no 

agent that can benefit by negotiating with other agents for 
VM migration. In NC, each VM migration operation is 
profitable to reduce energy cost, therefore NC has mono-
tonicity. Furthermore, let E(ini) and E(opt) be the energy 
costs of the initial and optimal VM allocation, respective-
ly, then NC can reach the optimal allocation in at most 
(E(ini)-E(opt))/ B steps ( B is the average benefit of all of 
the VM migration operations), indicating that NC is also 
convergent. 

5 SIMULATION VALIDATION AND ANALYSES 

We validate the advantages of the proposed multiagent 
(MA)-based resource allocation approach in two series of 
experimental settings: 1) a static setting, where we are 
only concerned with allocating a set of VMs to PMs (Sec-
tion 5.1) and 2) a dynamic setting, where VMs arrive and 
depart the cloud systems dynamically (Section 5.2). 

5.1 Validate the Advantage of the MA approach in a 
Static Setting 

A. Experiment Setup 
In the static experiment setting, each cloud system con-
sists of 128 PMs. Three typical network architectures are 
used to simulate the underlying topology of these PMs, 
shown as follows:  
 Tree Network [59]. The 128 PMs first are randomly 

classified into 16 clusters, each with 8 PMs. PMs that 
belong to the same cluster of 8 (i.e., 1~8, 9~16, etc.) can 
communicate with each other by a single switch, i.e., 
with one-hop communication distance. PMs that be-
long to the same cluster of 16 (1~16, 17~32, etc.) but that 
are not in the same cluster of 8, can communicate by 3 
switches. Analogously, PMs that belong to the same 
cluster of 32, but not the cluster of 16 have 5-hop com-
munication distances. The PMs that belong to the same 
cluster of 64 (but that are not in the cluster of 32) must 
communicate through 7 switches. Finally, PMs that be-
long to the cluster of 128 (but that are not in the cluster 
of 64) have 9-hop communication distances. 

 BCube Network [60][61]. BCube is a 7-level network 
structure that can be constructed recursively. At level 0, 
BCube0 consists of 2 PMs that can communicate via on-
ly one switch. Recursively, a BCubeh (1≤h≤6) level is 
constructed from 2 BCubeh-1 levels interconnected by 2h 
2-port switches connecting each PM in the former 

Algorithm 4. Cluster Contract (CC) (ai,K)  

/*ai: the agent where CC is implemented; K is the predeter-
mined value constraining the scale of the cluster contract*/ 

1. Initialize M=∅. 

2. Build ai’s out contracts to its negotiable agents Di 

( ),( , ) ( , , )
x i j ii i a a D i x jOut a D out a a   , 

and ai’s in contracts from its negotiable agents Di 

, ( )( , ) ( , , )
j i x ji i a D a i x jIn a D in a a   . 

3. for 2≤k≤K 

4. Identify and add all k-cluster contracts ccaik from 

Out(ai,Di)∪In(ai,Di) to M.  

5. end for 

6. Select the most profitable k*-cluster contracts ccaik* 

from M, i.e., 

*

( , ) ( , )

arg max ( )
i i

k
a i i i ii

k k

a a
cc Out a D In a D

cc B cc



. 
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BCubeh-1 to another PM in the latter BCubeh-1. Each PM 
in a BCube can be denoted by its address array a6a5…a0 

(ai∈{0,1},0≤i≤6). For example, if a PM connects the left 
port of the switch in the BCube0 level and connects the 
right port of the switches in the BCubeh (1≤h≤6) level, 
then its address array is 0000001. To compute the 
communication distance among PMs, we first assign 
each of the 128 PMs a 7-bit binary address, for exam-
ple, PM p0 and p127 can be addressed as 0000000 and 
1111111, respectively. Then, the communication cost 
between any two PMs pi and pj can be defined as: 

d(pi,pj)=hamdist(addrees(i),address(j))            (16) 
where the function hamdist(addrees(i),address(j)) is the 
hamming distance between the two strings address(i) 
and address(j), which is computed as the number of po-
sitions at which the corresponding symbols are differ-
ent between address(i) and address(j), e.g., 
hamdist(1110001,1100110)=4.  

 Lattice-Like Network [48]. Each PM pi connects with 
its local l PMs {(m-l/2)%m,…, (m+i-1)%m, (m+i+1)%m,…, 
(m+l/2)%m}, where m is the number of PMs, l is the de-
gree of each PM (here we set l=8), and a%b returns the 
remainder of a/b.  
After constructing the network of the cloud systems, 

we next set the configurations of the PMs. For each PM pi, 
its capacity ci distributes in the range [10, 30] randomly, 
its maximum energy consuming λi is selected in (0,10] 
randomly, and the idle energy consuming ratio αi is se-
lected from [0,1] uniformly. In this static setting, each 
experiment has 200 VMs to be satisfied, and each VM’s 
resource requirement distributes in the interval [1,10] 
randomly. 
B. Approaches  
In the static setting, we compare our MA-based distribut-
ed approach2 with three typical centralized static resource 
allocation approaches: 
 Multiagent-Based Approach (MA). This approach is 

proposed by us. We denote MA-1 and MA-2 as the MA 
approaches with negotiation radius ρ=1 and ρ=2, re-
spectively.  

 Lower Bound of the Optimal Solution LB-OPT [21]. 
The lower bound of the integer programming resource 
allocation problem defined in Definition 1 is the opti-
mal value of the relaxed liner programing problem 
where the VM can be allocated on PM fractionally. In 
this relaxed formulation, we first sort all the PMs in in-
creasing order of their cost-capacity ratio, i.e., 
c1/λ1≤c2/λ2≤…≤cm/λm and denote k as the minimal num-
ber of PMs that can be used to host all system VMs, i.e., 

 

2 In the simulation, we implement MA in a centralized manner: at each 
running round, we first sort the agents in arbitrary order and then the 
agents run the centralized algorithm sequentially in this order. 

k=min{j∈{1,…,m}:Σ1≤i≤jci≥R}, where R represents the sum 
of resources required by all VMs, i.e., R=Σθj∈Θrj, then 
the lower bound of the integer programming resource 
allocation problem is: 

1

1 1

1

( )
k

k i ki
LB ii

k

R c
OPT

c






 




 


           (17) 

 Bin Packing-Based Best Fit Decreasing Approach 
(BFD) [13]. For a set of VM requests submitted to the 
system, the system manager first sorts the VMs in de-
creasing order by their size and then places these sort-
ed VM on the optimal PM that increases the least ener-
gy cost. After this greedy VM allocation, the manager 
then checks each PM pi: if there exists any simple prof-
itable migration by migrating the VM θk∈Θ(pi) from pi 
to another PM pj reduces system energy cost, the man-
ger will transfer θk from pi to pj. 

 Static Genetic Approach (GA) [23]. In this static set-
ting, we set the number of the potential solution and 
the number of iterations both equal to 1000. The candi-
date solution’s fitness value is defined as the energy 
cost, i.e., fitness(S)=Σie(ui), S is an allocation solution. 

C. Performance Metrics.  
In the static setting, we compare these approaches on two 
performance metrics: 1) Energy cost and 2) Running time. 
The energy cost is the sum of system PMs’ energy cost for 
running VMs and the running time is measured as the 
computation time used for allocating VMs to PMs.  

D. Experiment Results  
Fig. 6 shows the energy cost (Fig. 6(a)) and running time 
(Fig. 6(b)) of these approaches in different cloud systems. 
From Fig. 6, we have the following observations. 

With respect to energy cost (Fig. 6(a)), we can conclude 
that: 1) In all systems, MA-2, MA-1 and GA approaches 
produce as little energy cost as the optimal solution LB-
OPT, indicating that these three approaches MA-2, MA-1 
and GA perform well in the static setting on reducing 
energy cost. 2) MA-2 produces less energy cost than MA-
1. This is because in MA-2, each PM can negotiate with 
much more PMs than each PM in MA-1, leading MA-2 to 
identify much more beneficial VM migrations for energy 
cost reduction. 3) BFD generates much energy cost than 
MA-2, MA-1 and GA. The potential reason is that in the 
static setting, once the VMs are allocated to PMs by BFD, 
there are few beneficial simple VM migrations (i.e., the 
migration of one VM from one PM to another PM that can 
reduce system energy cost) that can be identified by BFD. 
Therefore, BFD performs worse than MA-2, MA-1 and 
GA in the static setting. 

With respect to running time (Fig. 6(b)), on a computer 
On a computer with 2.67 GHz CPU and 2 GB memory, for 
this scale application with 128 PMs and 200 VMs, BFD 

       
(a) Energy cost                                                                                       (b) Running time 

Fig. 6. The experiment results on (a) energy cost and (b) running time of the approaches in different static cloud systems. 
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and MA-1 can return the allocation solution within sever-
al seconds (<4s). However, MA-2 and GA approaches take 
almost 20 seconds to return the final allocation solution. 
This is because in MA-2, each PM has to negotiate with 
much more PMs (about 8 times more than that of MA-1), 
then each PM needs to search much more potential bene-
ficial migrations (about 8 times more than that of MA-1), 
thereby consuming much more running time. For GA, 
because the number of iteration has to set large enough 
(e.g., 1000 rounds) to return the desirable solution, there-
fore, GA also needs to take much more running time.  

In conclusion, in the static setting, compared with tradition-
al VM allocation approaches (i.e., BFD and GA), our proposed 
MA approach with negotiation radius ρ=1 can reduce system 
energy cost significantly within tolerable running time.  

5.2 Validate the Advantage of the MA approach in a 
Dynamic Setting 

A. Experiment Setup  
To imitate the dynamics of VMs’ arrival and departure, 
we redefine each VM θi=<ri,ati,wti>, where ri represents 
θi‘s resource requirement, ati represents the arrive time-
slot and wti represents the workloads such that θi must 
use ri unit resources for wti time-slots. In this dynamic 
setting, each VM θi‘s work load wti distributes in the 
range [1,4] uniformly. At each time-slot t, we assume that 
there are X(t) VM requests newly submitted to the sys-
tem, where X(t) follows a Poisson distribution, i.e., 
X~π(μ). Here, we set the mean value μ=100. In this dy-
namic setting, VM migration is used to consolidate the 
VM resources to reduce system energy cost. Therefore, 
besides comparing with the static VM allocation ap-
proaches described in 5.1 (i.e., BFD), we also compare MA 
with other dynamic VM consolidation approaches. 
 Energy- and Migration-Cost-Aware Approach 

(pMapper) [11]. This is an extension of the BFD ap-
proach that considers both energy and migration costs. 
In pMapper, a VM migration is implemented if and on-
ly if this VM migration reduces system energy cost 
while incurring tolerable migration cost. For example, 
if PM pi wishes to migrate its VM θk∈Θ(pi) to another 
PM pj, this migration should satisfy  

[ei(ui)+ej(uj)-ei(ui’)- ej(uj’)]∙β-d(pi,pj)>0             (18) 
where ui (resp. uj) and ui’ (resp. uj’) are the resource uti-
lization of pi (resp. pj) before and after the migration of 
θj from pi to pj. Parameter β determines the importance 
of energy cost reduction. Here, we set β=10. 

 Probability-Based Approach (PRO) [15]. This is a dis-
tributed approach. Before implementing this approach, 
the system manager first needs to predetermine the 
high threshold th and lower threshold tl of the resource 
utilization. For a set of unallocated VMs, each PM pi 
determines whether to host these VMs with probability 
f(ui,th), which is based on th and the resource utilization 
ui. After this VM allocation, each PM pi employs a 
probabilistic VM migration procedure to avoid re-
source overutilization and under-utilization. To avoid 
PM pi being overloaded, pi can migrate its exceeded 
VMs out with probability fhmigrate(ui,th). To avoid pi being 
under-loaded, pi can migrate all of its host VMs out to 
other PMs with probability flmigrate(ui,tl). Here, we set 
th=0.9 and tl=0.2.  

 Dynamic Genetic Approach (GA) [23][27]. In the dy-
namic setting, the candidate solution’s fitness is a 
tradeoff between the energy cost and migration cost, 

i.e., 

( ) ( ( , ) ( , )) ( , )i i i ii i
fitness S e u I e u S MC I S        (19) 

where I is the current VM allocation and S is the final 
allocation returned by GA, ei(ui,I) (resp. ei(ui,S)) is the 
energy cost of the PM pi in solution I (resp. S) and 
MC(I,S) is the overall migration cost incurred by mi-
grating VMs from solution I to S, i.e.,  

( , ) ( ( , ), ( , ))
i

i iMC I S d p I p S


            (20) 

where p(θi, I) (resp. p(θi, S)) denotes the host PM of VM 
θi in solution I (resp. S). 
In this dynamic setting, we are mainly concerned with 

energy cost and migration cost metrics3. Migrating a VM 
from PM pi to another PM pj will incur d(pi,pj) migration 
cost. More specifically, we record two types of energy 
cost. The first one is the system energy cost E(t) of each 
time slot t: 

( ) ( , )
i

i ip P
E t e u t


                           (21) 

which is generated by all of the PMs at time slot t. The 
second type is the system cumulative energy cost CE(t), 
which is generated by all of system PMs before time slot t: 

0
( ) ( , )

i
i it p P

CE t e u t
  

                  (22) 

B. Experiment Results 

Table І shows the properties of network diameter (L) and 
average path length (Apl) of the BCube, Tree and Lattice 
cloud systems. Network diameter L is defined as the 
longest communication distance among any two PMs, 
and average path length Apl is computed as the average 
communication distance within all pairs of PMs.  

Fig. 7 and Fig. 8 show the energy cost of each time slot 
and the cumulative energy cost of the resource allocation 
approaches within different cloud systems, respectively. 
From Fig. 7 and Fig. 8, we have the following conclusions: 
1) In BCube and Lattice systems (i.e., Fig. 7(a) and Fig. 
7(c)), MA-1 generates nearly as little energy cost as MA-2, 
GA, BFD and pMapper. However, in the Tree system (i.e., 
Fig. 7(b)), MA-1 approach generates slight more energy 
cost than the energy costs of MA-2, GA, BFD and pMap-
per. This phenomenon can be explained by the special 
odd communication distance among PMs in the Tree sys-
tem. In the Tree system, the communication distance 
among agents is odd value, i.e., 1, 3, 5, 7, and 9. With the 
local negotiation constraint in MA-1 (in MA-1, the negoti-
ation radius ρ=1, where each PM can only negotiate with 
its direct connected PMs), one VM migration can only 
affect the VM allocation of a specific domain. For exam-
ple, a1 migrates VM θj to its domain agents {ak|2≤k≤8}) and 
this VM migration of ai can only affect the surrounding of 
its local domain agents {ak|1≤k≤8}), which does not affect 
other domains (e.g., {ak|9≤k≤16}}) because other domains 
do not belong to the negotiation domain of {ak|1≤k≤8}. 

 

3 As discussed in Section 5.1, all of the approaches can return the final 
VM allocation within limited seconds (<30s) and hence, it makes no sense 
to compare the metric of running time in this dynamic setting where each 
time slot (e.g., half an hour) is much larger than the running time. 

Table І 
The properties of networks 

 

 BCube Tree Lattice 

Diameter (L) 7.00 9.00 16.00 

Average Path length (Apl) 3.47 7.06 8.31 

Network 
Property 
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Therefore, in the Tree system, MA-1 approach will miss a 
number of potential beneficial VM migrations. However, 
in MA-2 with the negotiation radius ρ=2, each VM migra-
tion not only affects the VM allocation of the local domain 
but also other connected domains (e.g., {ak|9≤k≤16}}), 
thereby much more beneficial migrations will be identi-
fied. 2) In all systems, PRO generates much more energy 
cost than other approaches MA-1, MA-2, GA, BFD and 
pMapper, indicating that PRO performs worse on reduc-
ing system energy cost in the dynamic applications. 

Fig. 9 and Fig. 10 show the migration cost of each time 
slot and the cumulative migration cost of these approach-
es in different cloud systems, respectively. From Fig. 9 
and Fig. 10, we have the following conclusions: 1) In all 
systems, MA-1 produces much less migration cost than 
the migration costs produced by MA-2, GA, BFD and 
pMapper. This observation can be explained as follows: 
GA, BFD and pMapper all permit global VM migration 
and MA-2 also permits the VM migration to happen 
among remotely connected PMs with two hop communi-
cation distance, while MA only transfers VMs among lo-
cally connected PMs. Thus, MA-2, GA, BFD and pMapper 

will produce much more migration overhead than MA-1 
does. 2) For BCube and Lattice systems, the shorter the 
average path length Apl (or network diameter), the more 
migration cost MA-1 incurs. A possible reason is that in 
the cohesive systems (e.g., the BCube system with 
Apl=3.47), a change of one PM’s VM load easily influences 
the loads of its surrounding PMs. Thus, many chain VM 
migrations will be trigged, resulting in an increase in mi-
gration cost. However, although the Tree system has a 
shorter Apl than that of the Lattice systems, MA-1 ap-
proach incurs less migration cost in Tree than it does in 
Lattice. This phenomenon can be explained by the special 
odd communication distance among PMs in the Tree sys-
tem (the detailed explanation can be seen in the above 
paragraph). 3) In all systems, the larger the network Apl 
(or network diameter), the more migration costs BFD and 
PRO generate. This is because BFD and PRO mainly focus 
on minimizing energy cost, does not consider migration 
cost when transferring VMs. Therefore, the migration 
costs of BFD and PRO are proportional to Apl. 4) In all 
systems, the migration costs of GA and pMapper do not 
increase proportionally to network diameter or Apl. The 

  
                              (a) BCube                                                            (b) Tree                                                           (c) Lattice  

Fig. 7. Energy cost of each time slot of the resource allocation approaches in different cloud systems. 

  
(a) BCube                                                              (b) Tree                                                            (c) Lattice           

Fig. 8. Cumulative energy cost of the resource allocation approaches in different cloud systems. 

  
(a) BCube                                                             (b)Tree                                                            (c) Lattice 

Fig. 9. Migration cost of each time slot of the resource allocation approaches in different cloud systems. 

  
         (a) BCube                                                              (b) Tree                                                           (c) Lattice 

Fig. 10. Cumulative migration cost of the resource allocation approaches in different cloud systems. 
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reason is that when Apl becomes large, GA and pMapper 
will not execute some migrations because of their costly 
migration overhead. 5) In all systems, PRO generates the 
minimal migration cost compared with the MA-2, MA-1, 
GA, BFD and pMapper. A possible reason is that there are 
only a small number of VM migrations executed in PRO. 

In summary, in the dynamic setting, on the one hand, the 
MA approach generates as little energy cost as GA, BFD and 
pMapper approaches. On the other hand, the MA approach 
incurs much less migration overhead than these approaches do. 
Considering the dramatic advantage in reducing energy cost 
within acceptable migration overhead, MA is a more desirable 
approach that can balance energy cost reduction and SLA per-
formance guarantee. 

6 CONCLUSIONS AND FUTURE WORK 

This paper presents a distributed multiagent(MA)-based 
resource allocation approach to minimize system energy 
cost. The proposed MA approach consists of two com-
plementary mechanisms: 1) an auction-based VM alloca-
tion mechanism, which is devised for agents to decide 
which PM should host which VM. Through the theoreti-
cal analyses, we can determine that the auction-based VM 
allocation mechanism has a low approximation ratio on 
energy cost compared with the optimal solution. 2) A ne-
gotiation-based VM consolidation mechanism, which is 
designed for agents to exchange their assigned VMs to 
save energy costs and address system dynamics. Experi-
mental results show that in the static setting, the MA ap-
proach generates the least energy cost within tolerable 
running time compared with traditional centralized ap-
proaches. Moreover, in the dynamic setting, the MA ap-
proach can generate as little energy cost as the centralized 
benchmark approaches, but significantly reduces the mi-
gration overhead. These advantages make MA approach 
a preferable choice for resource management to reduce 
system energy cost in near real time, while consuming 
tolerable amounts of network traffic. 

In this paper, we only focus on allocating VMs to PMs 
with the aim of minimizing system energy cost, ignore 
the objective of maximizing CSP’s revenue of delivering 
scalable VM resources to users. In the future work, it 
would be very interesting and necessary to integrate the 
two objectives (often conflicting) together: in the front-
end level, that is allocating VM resources to users, the 
CSP would like to take full advantage of VM resources to 
satisfy as many users’ requests as possible, thereby in-
creasing CSP’s revenue. In the back-end level, however, 
the CSP would like to allocate the VMs to PMs efficiently 
to generate as little energy cost as possible, thereby de-
creasing CSP’s operations cost of running user’s applica-
tions. 
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