Data Structures

Algorithms

Teacher: Wang Wei

1. Ellis Horowitz,etc., Fundamentals of Data Structures in C++

2. &3@F, HEg
3. http://inside.mines.edu/~dmehta/
4. BAR, HpRay

Eff, iHHL R R, Rk

Why need algorithms

» To computer science
— The concept of an algorithm is fundamental

* In developing large-scale computer systems
—Algorithms
« exist for many common problems

» designing efficient algorithms plays a crucial
role

Efh, iHSHLLRER, KR

Algorithm
Definition
- is astep-by-step procedure

- afinite set of instructions to be executed in a
certain order to get the desired output

if followed, accomplishes a particular task

Algorithms are generally created independent of
underlying languages

Eff, iHSHL LR R, Rak

*

*

.

-

.

-

-

.

Characteristics

Input

Zero or more quantities are externally supplied
Output

At least one quantity is produced
Definiteness

Each instructions is clear abs unambiguous
Finiteness

If we trace out the instructions of an algorithm, then for all cases, the
algorithm terminates after a finite number of steps

Effectiveness
Every instruction must be basic enough to be carried out

Effi, i bl 5

Algorithm Analysis and
Measurement

Performance Criteria
Posteriori testing

Priori estimates

- Asymptotic Analysis

Efh, iHSHLLRER, KR

Important Criteria

Correctness
Readability
Efficiency
Robustness
Usability
Simplicity

Eff, iHSHL LR R, Rak

Complexities

e Time Complexity of a program
—is the amount of computer time it needs to run
to completion

* Running time or the execution time of operations of data
structure must be as small as possible

e Space Complexity of a program
—is the amount of memory it needs to run to
completion

* Memory usage of a data structure operation should be as
little as possible

Eff, iFSHL LR R, Rl

Performance Measurement
for
Time Complexity

Posteriori testing

- is concerned with obtaining the actual space
and time requirements of a program

Efh, iHSHLLRER, KR

Example : Sequential Search

int segsearch (inta[], intn, int x)

l/#£a[0],..., a[n-1]pmkSEEME X MFHT
/1%, RBEEXTR, KKEE-1,
inti=0;
while (i<n &&a[i]!=x)
i++;
if (i==n) return-1;
return i;

Eff, iHSHL LR R, Rak

Measuring the computing time of a program
function time() or clock()

Example:
double runTime;
double start, stop;
time(&start);
int k = segsearch (a, n, x);
time(&stop);
runTime = stop — start;
cout << " RunTime : "' << runTime << endl;

Eff, iFSHL LR R, Rl 10

* These quantities are dependent on the particular
compiler and options used as well as on the specific
computer on which the program is run

Efh, iHSHLLRER, KR 11

Performance analysis
for
Time Complexity

Priori estimates :

- to predict the growth in run time as the
instance characteristics change

- asymptotic notation
- Big“oh”: O

Eff, iHSHL LR R, Rak

Asymptotic Notation
- f(n) =0O(g(m))

- iff (if and only if) there exist positive constants ¢ and
n, such that f(n)<cg(n) for all n, n>n,

- gm)
is an upper bound on the value
should be as small a function of n as one come up

Effi, iFFORL LR

Theorem 1.2

o if f(n) = a,nM+...+ a,n+a,, then f(n)=0(n™)
— Proof :
f@) < T laln' <™ EPlan'™ <™ Ef e, n=1

— So, f(n) =0(h™)

— When the complexity of an algorithm is actually, say, O(log n),

— but we can only show that it is O(n) due to the limitation of our
knowledge

— itis OK to say so.

— This is one benefit of O notation as upper bound.

Efh, iHSHLLRER, KR

How the various functions grow with n?

1E+60 Ultimate
1E+55 [Tl Laptop,
1E+50 I [_______ 1year
1E+45 [/ 1 second
—2'N | 1E+40 |
——1.2"N| 1E+35 4 1000 MIPS,
N5 | 1E+30 o since Big Bang
N3 | 1E+25 o
——5N 1E+20 A
€159 1000 MIPS,
1E+10 4 VA 7 1day
100000 4 P4
1 ,#

1 10 100 1000

Eff, iHSHL LR R, Rak

Time complexity

The time taken by a program P
t(P) = ¢ + tp(n)

e c: constant

e tp : function f,(n)

n : the number of the inputs and outputs

* T(n) =0O(f(n))

16
Eff, iFSHL LR R, Rl

Compile time

Run or execution time
+ program step

& a syntactically or semantically meaningful
segment of a program that has arun time

< Run time is independent of n

Efh, iHSHLLRER, KR

= Determine the number of steps : method 1

« Introduce a global variable count with initial value 0
int count=0;
float sum (float a[], int n)
{ floats=0.0; /lcount++

count++;

for (inti=0;i<n;i++) /lcount++ : <init>;<exprl>
{ count ++;

s += a[i]; /lcount++

count++;
}
count ++ /lcount++: <exprl>;<expr2>
count++;

returns; //count++ : return

Eff, iHSHL LR R, ik

= Determine the number of steps : method 2

« build a table
sle : steps per execution
program sle [frequency| steps
0 1 0
float s = 0.0; 1 1 1
for (inti=0; i<n; i++) 1|n+l 1n+1
s+=a[i]; 1 n n
returns; 1 1 1
} 0 1 0
total steps 2n+3
Eff, SRR, Rl ks o
sle : steps per execution
program sle |Frequency| Steps
n=0/n>0 n=0/n>0
{ 0 1 0/0
if (n<=0) 1 1 11
return 0; 1 1/0 1/0
else
return sum(a,n-1)+a[n-1]); 1+f(n-1) 0/1 0/1+f(n-1)
} 0 11 0/0
total steps 2/ 2+f(n-1)

Efh, iHSHLLRER, KR

< T(n,m) =T, (n) + T, (m)

= O(max (f (n), g (m)))

[x=0; y=0; | T1(n) = 0(1)
for (intk=0; k<n;k++) | T,(n)=0(n)
X ++;

for (inti=0;i<n;i++)
for (intj=0;j<n;j++)
y ++;

T4(n) = O(n?)

T(n) = Ty(N)+Ty(N)+T5(n) = O(max(1,n, n?)) =0O(n?)

Eff, iHSHL LR R, Rak

21

void bubbleSort (inta[], intn)
{533 a[| BALAR, N BB LATRIEL
for (inti=1;i<=n-1; i++)
{ [/In-1s
for (intj=n-1;j>=i; j—-) /In-i=rpix
if (ai-1] > a[j])
{ inttmp = a[j-1];
a[j-1] = afil;
afj] = tmp;
b /AR

Eff, iFSHL LR R, Rl 22

T (n,m) =T, (n) * T, (m)
= O(f (n)*g (m))

BubbleSort
SNRTESR -1 28
‘ ABTEIR -1 RECEE

O(f (n)*g (m)) = O(n?)

LS,y _Nn(n-1)
.;(n |)772

Efh, iHSHLLRER, KR 23

Execution Time Cases

three cases
¢ Worst Case

— This is the scenario where a particular data structure operation takes
maximum time it can take.

— If an operation's worst case time is f(n) then this operation will not take
more than f(n) time where f(n) represents function of n
¢ Average Case

— This is the scenario depicting the average execution time of an operation
of a data structure.

— If an operation takes f(n) time in execution, then m operations will take
mf(n) time
* Best Case
— This is the scenario depicting the least possible execution time of an
operation of a data structure.
— If an operation takes f(n) time in execution, then the actual operation
may take time as the random number which would be maximum as f(n)

Eff, iHSHL LR R, Rak 24

Space complexity

The space requirement of program P
S(P) = ¢ + Sp(n)

e c: constant

e Sp: function f,(n)

e n: the number of the inputs and outputs

* S(n) = O(f(n))

Eff, iFSHL LR R, Rl

25

Fixed part . is independent of the number of the inputs and outputs

- Space for the code
- Constant

- Simple variables

- Fixed-size component variables

. Variable part : is dependent on the particular instance
- component variables

- Referenced variables

- Recursion stack space

Efh, iHSHLLRER, KR

Example
/literative function
float Sum (float *a, const int n)
{ float s=0;
for(int i=0;i<n;i++)
s+=a[i];
return s;

}

[Irecursive function
float Rsum (float *a, const int n)
{ if (n<=0) returnO;
else return (Rsum(a,n-1)+a[n-1]);

