
Computer Networks 57 (2013) 869–886
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet
Protocol-level attacks against Tor

Zhen Ling a,1, Junzhou Luo a,2, Wei Yu b,⇑,3, Xinwen Fu c,4, Weijia Jia d,5, Wei Zhao e,6

a School of Computer Science and Engineering, Southeast University, Nanjing 211189, PR China
b Department of Computer and Information Sciences, Towson University, Towson, MD 21252, United States
c Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
d Department of Computer Science, City University of Hong Kong, Hong Kong Special Administrative Region, PR China
e Rector of University of Macau, Macau SAR, China
a r t i c l e i n f o

Article history:
Received 31 January 2012
Received in revised form 20 July 2012
Accepted 6 November 2012
Available online 16 November 2012

Keywords:
Protocol-level attacks
Anonymity
Mix networks
Tor
1389-1286/$ - see front matter � 2012 Elsevier B.V
http://dx.doi.org/10.1016/j.comnet.2012.11.005

⇑ Corresponding author. Tel.: +1 214 208 5951.
E-mail addresses: zhenling@seu.edu.cn (Z. Ling

Luo), wyu@towson.edu (W. Yu), xinwenfu@cs.uml.
cityu.edu.hk (W. Jia), WeiZhao@umac.mo (W. Zhao)

1 Tel.: +1 250 4725837; fax: +1 250 8132361.
2 Tel.: +025 52091010; fax: +025 52091010.
3 Tel.: +410 704 5528; fax: +410 704 3868.
4 Tel.: +978 934 3623; fax: +978 934 3551.
5 Tel.: +852 3442 9701; fax: +852 3442 0147.
6 Tel.: +853 8397 4301; fax: +853 2883 1694.
a b s t r a c t

Tor is a real-world, circuit-based low-latency anonymous communication network, sup-
porting TCP applications over the Internet. In this paper, we present an extensive study
of protocol-level attacks against Tor. Different from existing attacks, the attacks investigated
in this paper can confirm anonymous communication relationships quickly and accurately
by manipulating one single cell and pose a serious threat against Tor. In these attacks, a
malicious entry onion router may duplicate, modify, insert, or delete cells of a TCP stream
from a sender, which can cause cell recognition errors at the exit onion router. If an accom-
plice of the attacker at the entry onion router also controls the exit onion router and rec-
ognizes such cell recognition errors, the communication relationship between the sender
and receiver will be confirmed. These attacks can also be used for launching the denial-
of-service (DoS) attack to disrupt the operation of Tor. We systematically analyze the
impact of these attacks and our data indicate that these attacks may drastically degrade
the anonymity service that Tor provides, if the attacker is able to control a small number
of Tor routers. We have implemented these attacks on Tor and our experiments validate
their feasibility and effectiveness. We also present guidelines for defending against
protocol-level attacks.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Motivation

Concerns about privacy and security have received great-
er attention with the rapid growth and public acceptance of
the Internet and the pervasive deployment of various
. All rights reserved.

), jluo@seu.edu.cn (J.
edu (X. Fu), wei.jia@
.

wireless technologies. Anonymity has become a necessary
and legitimate aim in many applications, including
anonymous web browsing, location-based services (LBSs),
and E-voting. In these applications, encryption alone cannot
maintain the anonymity required by participants [1–3].

Since Chaum pioneered in 1981 the basic idea of anony-
mous communication systems, referred to as mixes [4],
researchers have developed various anonymity systems
for different applications. Mix techniques can be used
for either message-based (high-latency) or flow-based
(low-latency) anonymity applications. Email is a typical
message-based anonymity application, which has been
thoroughly investigated [5,6]. Research on flow-based
anonymity applications has recently escalated in response
to the need to preserve anonymity in low-latency applica-
tions, including web browsing and peer-to-peer file sharing
[7–9].

https://vpn2.seu.edu.cn/10.1016/,DanaInfo=dx.doi.org+j.comnet.2012.11.005
mailto:zhenling@seu.edu.cn
mailto:lingzhen1982@gmail.com
mailto:jluo@seu.edu.cn
mailto:wyu@towson.edu
mailto:xinwenfu@cs.uml.edu
mailto:xinwenfu@cs.uml.edu
mailto:wei.jia@cityu.edu.hk
https://vpn2.seu.edu.cn/10.1016/,DanaInfo=dx.doi.org+j.comnet.2012.11.005
https://vpn2.seu.edu.cn/science/journal/,DanaInfo=www.sciencedirect.com+13891286
https://vpn2.seu.edu.cn/locate/,DanaInfo=www.elsevier.com+comnet

870 Z. Ling et al. / Computer Networks 57 (2013) 869–886
Tor [8] is a popular low-latency anonymous communi-
cation network, supporting TCP applications on the Inter-
net. On October 18, 2008, there were 1164 active Tor
onion routers operating around the world, which form an
overlay-based mix network. In this paper, we use Tor rou-
ter, onion router and router interchangeably. To communi-
cate with an application server, a Tor client downloads
all the router information from dedicated directory servers,
and selects three routers as an entry onion router, a middle
onion router and an exit onion router in the case of default
path length of 3. A circuit (a special tunnel) is first built
through this chain of three onion routers and the client
negotiates a session key with each onion router. Then,
application data is packed into cells. Notice that cells are
transmission units of Tor, encrypted and decrypted in an
onion-like fashion and transmitted through the circuit to
the server [8]. Please refer to the basic components and
operation of Tor in Section 2.

Extensive research work has been conducted to investi-
gate attacks degrading the anonymous communication
over Tor. Most existing approaches are based on traffic
analysis [3,10–15]. Specifically, to determine whether Alice
is communicating with Bob through Tor, such attacks mea-
sure the similarity between the sender’s outbound traffic
and the receiver’s inbound traffic in order to confirm their
communication relationship. However, attacks based on
traffic analysis may suffer a high rate of false positives
due to various factors (e.g., Internet traffic dynamics) and
also the need for a number of packets for the statistical
analysis of traffic.

1.2. Our contribution

In this paper, we present an extensive study of protocol-
level attacks against the live Tor system for the first time. In
these attacks, an attacker needs to manipulate only one cell
(the transmission unit of Tor) to confirm the communica-
tion relationship between the sender and receiver and
poses a serious threat against Tor. In order to do so, the at-
tacker may control multiple onion routers, similar to
assumptions in existing attacks [3,12]. A malicious entry
onion router may duplicate, modify, insert, or delete cells
of a TCP stream from a sender. The manipulated cell tra-
verses the middle onion routers and arrives at the exit
onion router along circuits. Tor uses the counter mode of
Advanced Encryption Standard (AES-CTR) for encryption
and decryption of cells at onion routers. The manipulated
cell will disrupt the normal counter at the middle and exit
onion routers and the decryption at the exit onion router
will incur cell recognition errors. Our investigation shows
that such cell recognition errors are unique to these proto-
col-level attacks. If an accomplice of the attacker at the en-
try onion router controls the exit onion router and detects
such cell recognition errors, the communication relation-
ship between the sender and receiver will be confirmed.

We have implemented these protocol-level attacks on
Tor and our experiments validate the feasibility and effec-
tiveness of these attacks. These attacks may also threaten
the availability of the anonymity service by Tor since a
malicious onion entry may disrupt the circuits passing
through it anonymously. We also provide guidelines for
defending against these attacks. The attacks presented in
this paper are one of the first to exploit the implementa-
tion of known anonymous communication systems such
as Tor in practice.

Two salient features distinguish the protocol-level at-
tacks investigated in this paper from other existing attacks.
First, the protocol-level attacks are highly effective and re-
quire only one cell to be successful. No existing attack can
achieve this effect. Second, the protocol-level attacks do
not rely on the analysis of traffic timing, which is often
hard to control and predict on the Internet, but is critical
to the success of timing-based attacks. For example, Bauer
et al. in [13] presented an attack utilizing circuit setup tim-
ing. When a client uses a malicious entry, the attacker at
the entry node knows which middle node the client tries
to use. When the client tries to connect to the exit node
via this middle node, if the selected exit node is another
malicious node, the attackers may determine that the cli-
ent builds a circuit along this particular sequence of entry,
middle and exit nodes based on timing correlation. How-
ever, there may be other clients using the same middle
and exit Tor routers. Therefore, timing is critical for the
success of this attack. Differently, traffic dynamics will
not affect the success of a protocol-level attack since we
exploit the implementation of Tor protocol, rather than
traffic timing. Although Figs. 12–16 in Section 4 illustrate
the correlation of the time of decryption errors at an exit
with the time of cell manipulation at an entry, their pur-
pose is to demonstrate that decryption errors indeed occur
after the manipulation of cells. Hence, even if Tor would
deploy the mechanisms of traffic padding [10,16,17] to de-
feat many traffic timing-based attacks, it cannot defeat the
protocol-level attacks.

1.3. Related work

A good review of various mix systems can be found in
[8,5]. There has been much research on how to degrade
anonymous communication through mix networks. To
determine whether Alice is communicating with Bob
through a mix network, similarity between Alice’s out-
bound traffic and Bob’s inbound traffic may be measured.
For example, Zhu et al. [11] proposed the scheme of using
mutual information for the similarity measurement. Levine
et al. [10] investigated a cross correlation technique.
Murdoch and Danezis [12] investigated the timing-based
attacks on Tor by using compromised Tor routers. Fu
et al. [2] studied a flow marking scheme to actively embed
a specific pattern in the target flow and confirm the com-
munication relationship between the sender and receiver.
Overlier and Syverson [3] studied a scheme using one com-
promised mix node to identify the ‘‘hidden server’’ anony-
mized by Tor. Yu et al. [15] proposed an invisible traceback
approach based on the direct sequence spread spectrum
(DSSS) technique. This approach could be used by attackers
to secretly trace the communication relationship via the
anonymous communication networks.

The authors in [18,8] briefly discussed the possibility of
tagging attacks, which share some similarity with the cell
modification attack, one of the five attacks extensively
investigated in this paper. The goal of such a so-called

Alice
(OP) BobTor Network

Legend:

Client or Server

Onion Router

Directory Server

Entry
(OR1) Middle

(OR2)

Exit
(OR3)

Fig. 1. Tor network.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 871
tagging attack is to change the cell content at an entry rou-
ter and recognize the changed cell leaving the Tor network
by matching the changed content. The authors claimed
that integrity checking used by Tor can prevent this type
of malleability attack because it is hard for an attacker to
guess the SHA1 MAC (Message Authentication Code) and
tag the message. However, protocol-level attacks in this
paper exploit circuit decryption errors, other than content
‘‘tags’’. To the best our knowledge, there is no discussion of
attacks utilizing decryption errors in any related work,
including [18,8]. We are the first exploiting this Tor proto-
col defect.

Interval-based watermarks are proposed to trace
attackers through the stepping stones and anonymous
communication networks. For example, Wang et al. [19]
proposed a scheme that injected nondisplayable content
into packets. Wang and Reeves [20] proposed an active
watermarking scheme that was robust to random timing
perturbation. They analyzed the tradeoff between the true
positive rate, the maximum timing perturbation added by
attackers, and the number of packets needed to success-
fully decode the watermark. Wang et al. [21] also investi-
gated the feasibility of a timing-based watermarking
scheme in identifying the encrypted peer-to-peer VoIP
calls. By slightly changing the timing of packets, their ap-
proach can correlate encrypted network connections. Nev-
ertheless, these timing-based schemes are not effective at
tracing communication through a mix network with batch-
ing strategies that manipulate inter-packet delivery tim-
ing, as indicated in [15]. Peng et al. [22] analyzed the
secrecy of timing-based watermarking traceback proposed
in [20], based on the distribution of traffic timing. Kiyavash
et al. [23] proposed a multi-flow approach detecting the
interval-based watermarks [24,25] and DSSS-based water-
marks [15]. This multi-flow based approach intends to
average the rate of multiple synchronized watermarked
flows and expects to observe a unusually long silence per-
iod without packets or a unusually long period of low-rate
traffic.

There is little research conducted on the attacks based
on non-traffic analysis. To the best of our knowledge, Mur-
doch [26] investigated an attack to reveal hidden servers of
Tor by exploiting the fact that the clock deviations of a tar-
get server should be consistent with the server’s load. Dif-
ferently, the protocol-level attacks studied in this paper
exploit the fundamental protocol design in Tor. Our inves-
tigated attacks are simple, accurate, quick, and easy to
deploy.

1.4. Paper organization

The remainder of this paper is organized as follows: We
introduce the basic operation of Tor in Section 2. We pres-
ent the details of the protocol-level attacks, including the
basic principle and algorithms, in Section 3. We also dis-
cuss issues such as making attacks stealthy and controlling
onion routers in this section. In Section 4, we show exper-
imental results on Tor and validate our findings. We give
guidelines such as using bridge relays for defending
against protocol-level attacks in Section 5. We conclude
the paper in Section 6.
2. Basic components and operation of Tor

In this section, we first introduce the basic components
of the Tor network. We then present its operation, includ-
ing the circuit setup and its usage for anonymously trans-
mitting TCP streams.
2.1. Components of the Tor network

Tor is a popular overlay network for anonymous com-
munication over the Internet. It is an open source project
and provides anonymity service for TCP applications [27].
Fig. 1 illustrates the basic components of Tor [28]. As
shown in Fig. 1, there are four basic components:

(1) Alice (i.e. Client). The client runs a local software
called onion proxy (OP) to anonymize the client data
into Tor.

(2) Bob (i.e. Server). It runs TCP applications such as a
web service and anonymously communicates with
Alice over the Tor network.

(3) Onion routers (OR). Onion routers are special proxies
that relay the application data between Alice and
Bob. In Tor, Transport Layer Security (TLS) connec-
tions are used for the overlay link encryption
between two onion routers. The application data is
packed into equal-sized cells (512 bytes as shown
in Fig. 2) carried through TLS connections.

(4) Directory servers. Directory servers hold onion router
information such as router public keys. There are
directory authorities and directory caches. Directory
authorities hold authoritative information on onion
routers and directory caches download directory
information of onion routers from authorities. The
client downloads the onion router directory from
directory caches.

Functions of onion proxy, onion router, and directory
servers are integrated into the Tor software package. A user
can edit a configuration file and configure a computer to
have different combinations of those functions.

Fig. 2 illustrates the cell format used by Tor. All cells
have a three-byte header, which is not encrypted in the
onion-like fashion so that the intermediate Tor routers
can see this header. The other 509 bytes are encrypted in
the onion-like fashion. There are two types of cells: the
control cell shown in Fig. 2a and relay cell shown in
Fig. 2b. The command field (Command) of a control cell

Alice
(OP) Bob

Entry OR
(OR1)

Middle OR
(OR2)

Exit OR
(OR3)

Create C1,
E(g^x1)

Created C1,
g^y1, H(K1)

Relay C1,
{Extend, OR2, E(g^x2)}

Create C2,
E(g^x2)

Created C2
g^y2, H(K2)

Relay C1,
{Extended, g^y2, H(K2)}

t t t t t

Relay C1,
{{Extend, OR3, E(g^x3)}}

Relay C2,
{{Extend, OR3, E(g^x3)}}

Relay C2
{Extend, g^y3, H(K3)}

Relay C1,
{{Extend, g^y3, H(K3)}}

Create C3,
E(g^x3)

Created C3
Extend, g^y3, H(K3)

Legend:
E(x) --- RSA encryption
{X} --- AES encryption
CN --- a circuit ID numbered N

(link is TLS-encrypted) (link is TLS-encrypted) (link is TLS-encrypted) (unencrypted)

Fig. 3. Tor Circuit creation [8].

12

Circ_id Command Relay
Command Recognized Stream_id Intergrity Length Data

1 2 2 4 2 498

12

Circ_id Command Data

509

(a) Tor Cell Format

(b) Tor Relay Cell Format

Fig. 2. Cell format by Tor [8].

872 Z. Ling et al. / Computer Networks 57 (2013) 869–886
can be: CELL_PADDING, used for keepalive and optionally
usable for link padding, although not used currently;
CELL_CREATE or CELL_CREATED, used for setting up a new
circuit; and CELL_DESTROY, used for releasing a circuit.
The command field (Command) of a relay cell is CELL_
RELAY. Notice that relay cells are used to carry TCP stream
data from Alice to Bob. The relay cell has an additional
header, namely the relay header. There are numerous
types of relay commands (Relay Command), includ-
ing RELAY_COMMAND_BEGIN, RELAY_COMMAND_DATA,
RELAY_COMMAND_END , RELAY_COMMAND_SENDME,
RELAY_COMMAND_EXTEND, RELAY_COMMAND_DROP, and
RELAY_COMMAND_RESOLVE.1 The command field (Recog-
nized) is used to identify whether the cell is correctly recog-
nized by the client or exit router. Because multiple streams
are multiplexed into a single circuit, the command field
(Stream_id) is used to identify the specific stream for the cor-
responding applications at the client or exit router. The com-
mand field (integrity) is used to verify the integrity of the
data. Because the data can be padded into equal size, the
command field (length) is used to indicate the size of real
data packed into a cell. We will explain these commands fur-
ther in later sections when we discuss the Tor operations
from the perspective of protocol-level attacks.

2.2. Selecting a path and creating a circuit

In order to anonymously communicate with applica-
tions, i.e., browsing a web server, a client uses a way of
source routing and chooses a series of onion routers from
the locally cached directory, downloaded from the direc-
tory caches [29]. We denote the series of onion routers as
the path through Tor [30]. The number of onion routers is
referred to as the path length. We use the default path
length of 3 as an example in Fig. 1 to illustrate how the
path is selected. The client first chooses an appropriate exit
onion router OR3, which should have an exit policy sup-
porting the relay of the TCP stream from the sender. Then,
the client chooses an appropriate entry onion router OR1
(referred to as entry guard used to prevent certain profiling
attacks [31]) and a middle onion router OR2.

Once the path is chosen, the client initiates the proce-
dure of creating a circuit over the path incrementally,
one hop at a time. Fig. 3 illustrates the procedure of creat-
ing a circuit when the path has a default length of 3. Tor
uses TLS/SSLv3 for link authentication and encryption. In
Fig. 3, OP first sets up a TLS connection with OR1 using
1 All these can be found in or.h in released source code package by Tor.
the TLS protocol. Then, tunneling through this connection,
OP sends a CELL_CREATE cell and uses the Diffie–Hellman
(DH) handshake protocol to negotiate a base key K1 = gxy

with OR1 and derive the hash value of H(K1), which corre-
sponds to a CELL_CREATED cell. From this base key mate-
rial, a forward symmetric key kf1 and a backward
symmetric key kb1 are generated [28]. In this way, a one-
hop circuit C1 is created.

To extend the circuit one hop further, the OP sends to
OR1 a RELAY_COMMAND_EXTEND cell, specifying the ad-
dress of the next onion router, i.e., OR2 in Fig. 3. Notice that
RELAY_COMMAND_EXTEND is simplified as Extended in this
figure because of the limited space. This RELAY_COM-
MAND_EXTEND cell is encrypted by AES in the counter
mode (AES-CTR) with kf1. Once OR1 receives this cell, it de-
crypts the cell and negotiates secret keys with OR2 using
the DH handshake protocol. Therefore, a second segment
C2 of the 2-hop circuit is created. OR1 sends OP a
RELAY_COMMAND_EXTENDED cell, which holds informa-
tion for OP generating the shared secret keys: forward
key kf2 and backward key kb2, with OR2. This RELAY_COM-
MAND_EXTENDED cell is encrypted by AES-CTR with key
kb1. OP will decrypt the RELAY_COMMAND_EXTENDED cell
and use the information to create the corresponding keys.
Encryption of later cells by these secret keys uses AES-CTR
as well.

Consequently, to extend the circuit to a 3-hop circuit,
OP sends OR2 a RELAY_COMMAND_EXTEND cell, specifying
the address of the third onion router, e.g., the OR3 shown
in Fig. 3, through the 2-hop circuit. As we can see, the cell
is encrypted in an onion-like fashion [28]. The payload is
first encrypted by kf2 and then by kf1. The encrypted cell,
like an onion, becomes thinner when it traverses an onion
router, which removes one layer of onion skin by decrypt-
ing the encrypted cell. Therefore, when OR2 decrypts the
cell, it finds that the cell tends to create another segment
of the circuit to OR3. OR2 negotiates with OR3 and sends
a RELAY_COMMAND_EXTENDED cell back to OP. This cell
is first encrypted by kb2 at OR2 and then by kb1 at OR1.
OP decrypts the encrypted backward onion-like cell and
derives the shared secret keys with OR3, including the for-
ward key kf3 and backward key kb3.

Alice
(OP) Bob

Entry OR
(OR1)

Middle OR
(OR2)

Exit OR
(OR3)

Relay C1,
{{{Begin<IP, Port>}}}

Relay C2,
{{Begin<IP, Port>}}

Relay C3,
{Begin<IP, Port>}

TCP Handshake
<IP, Port>

Relay C3,
{Connected}

Relay C2,
{{Connected}}

Relay C1,
{{{Connected}}}

Relay C1,
{{{Data, “Hello”}}}

Relay C2,
{{Data, “Hello”}}

Relay C3,
{Data, “Hello”} “Hello”

Relay C1,
{{{End, Reason}}}

Relay C2,
{{End, Reason>}}

Relay C3,
{End, Reason} TCP Teardown

t t t t t

(link is TLS-encrypted) (link is TLS-encrypted) (link is TLS-encrypted) (unencrypted)

Fig. 4. TCP connection creation and data transmission on Tor.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 873
In summary, OP negotiates secret keys with the three
onion routers one by one and consequently creates a cir-
cuit along the path.2 With the exception that the connection
from the exit onion router to the server is not link encrypted,
other connections along the path are all protected by TLS
within Tor. That is, cells encrypted in the onion-like fashion
are protected by link encryption. In the description above,
we simply use a circuit of path length 3 as an example and
a circuit of path length greater than 3 can be set up in a sim-
ilar manner.

2.3. Transmitting TCP streams

Without loss of generality, we will use a short TCP
stream, transferring 5 bytes of data ‘‘Hello’’ from Alice
(OP) to Bob, as an example to illustrate how a TCP stream
is tunneled through the circuit that has already been cre-
ated by the procedures described in Section 2.2. Fig. 4 illus-
trates this simple example. Recall that at this stage, a
client’s OP has established secret keys with other onion
routers and can encrypt the application payload.

To transmit data to Bob, Alice’s application (such as web
browser) first contacts the OP, which is implemented as a
SOCKS proxy locally. The OP learns the destination IP ad-
dress and port. OP sends a RELAY_COMMAND_BEGIN cell
to the exit onion router OR3, and the cell is encrypted as
fffBegin < IP; Port > gkf3

gkf2
gkf1

, where the subscript refers
to the key used for encryption of one onion skin. The three
layers of onion skin are removed one by one each time the
cell traverses an onion router through the circuit as we de-
scribed in Section 2.2. When OR3 removes the last onion
skin by decryption, it recognizes that the request intends
to open a TCP stream to a port at the destination IP, which
belongs to Bob. Therefore, OR3 acts as a proxy, sets up a
TCP connection with Bob, and sends a RELAY_COM-
MAND_CONNECTED cell back to Alice’s OP. The OP then ac-
cepts data from Alice’s application, packs it into relay cells
with the Relay Command of RELAY_COMMAND_DATA and
transmits it to Bob through the circuit. The whole process
is transparent to Alice, who only needs to configure the
application to use the OP. When Alice’s application finishes
2 Each onion router checks the flag, ‘‘Recognized’’ field within the relay
cell shown in Fig. 2b to determine whether the cell reaches its end. In this
way, the encrypted cell has a fixed size and its length does not swell as in
the public key encryption case [4].
the data transmission, the connection from Alice’s applica-
tion to the OP will be released. As shown in Fig. 4, after
5 bytes of data ‘‘Hello’’ in a RELAY_COMMAND_DATA cell
is transmitted, Alice’s application releases the connection
to OP. OP then sends a RELAY_COMMAND_END cell to OR3
and OR3 finally releases the connection to Bob. In this
way, the circuit of path over Tor will be released
completely.
3. Protocol-level attacks

In this section, we first introduce the basic principle of
these protocol-level attacks. We then present the detailed
algorithms followed by discussion.

3.1. Basic principle

Recall that the purpose of these attacks is to confirm
that Alice is communicating with Bob over Tor. We assume
that an attacker can control the entry and exit onion rou-
ters (also called the malicious onion routers) used by a gi-
ven circuit for a TCP stream and launch protocol-level
attacks by manipulating the cells associated with the given
circuit. The malicious entry onion router logs the informa-
tion, including the source IP address and port used for a gi-
ven circuit, the circuit ID, and the time of the cell being
manipulated. The attacker may launch protocol-level at-
tacks in the following ways: (i) duplicating a target cell
along the given circuit and then sending the duplicated cell
at an appropriate time; (ii) modifying some bits of 509-
bytes data of a target cell and forwarding such a modified
cell to the next hop along the circuit over Tor; (iii) inserting
an artificial cell into the victim circuit at an appropriate
time; and (iv) deleting a target cell without forwarding it
to the next hop. The duplicated cell, modified cell, artifi-
cially inserted cell, or the cell after the deleted cell tra-
verses the circuit and arrives at the exit onion router. The
attacker at the malicious exit onion router can detect cell
recognition errors raised by those manipulated cells. The
attacker records the time of the cell recognition error, the
destination IP address and port associated with the circuit,
and the corresponding circuit ID. In this way, the attackers
can confirm that the target cell enters Tor via the malicious
entry onion router and the target cell exits Tor via the
malicious exit onion router. Since the entry onion router
knows the source IP address of the TCP stream and the exit
onion router knows the destination IP address of the TCP
stream, the communication relationship between the sen-
der and receiver will be confirmed. In the following, we
will explain the detailed algorithms of these protocol-level
attacks.

3.2. Algorithms of protocol-level attacks

We studied and implemented the aforementioned four
protocol-level attacks based on the Tor release version of
0.2.0.28.3 To validate those attacks, we need to modify the
3 Newer release versions of Tor have not changed the algorithms
investigated in this paper.

Fig. 5. Replay a cell on Tor.

874 Z. Ling et al. / Computer Networks 57 (2013) 869–886
source code of the malicious entry onion router and exit
onion router. From the description in Section 3.1, we know
that for a successful protocol-level attack, there are two
important issues. One is how to choose the time to launch
the attack and how to select the cell to manipulate at the en-
try onion router. The other is how to recognize the error at
the exit onion router.

At an entry onion router, the attacker needs to carefully
choose the time to launch the attack and identify the cell to
be manipulated. For example, if a cell is selected during the
circuit setup process, the duplicated cell traversing
through the victim circuit will cause numerous protocol
errors and immediately cause the circuit to fail upon its
creation. Therefore, the protocol-level attacks need to
manipulate cells carrying TCP stream data instead of cells
carrying control commands for circuit setup. Although
cells are encrypted, the attacker at the entry onion router
can determine the relay cells based on the relay command
in the cell header. We now present the detailed steps of
launching these protocol-level attacks. The formal algo-
rithm can be found in Appendix A.

Step 1: The attacker at entry onion routers receives
many requests from an OP or other onion routers. The
attacker needs to verify whether these requests origi-
nate from an OP, not from other onion routers that
use the malicious entry onion router as a middle onion
router or an exit onion router.

The rule of the verification is that, if the source IP ad-
dress of the request is not in the list of directory servers,
this request is from an OP. From the procedure of creating
a circuit shown in Fig. 3, we know that the attacker can
determine the time when the circuit is created. In terms
of a circuit with default path length of 3, the circuit is cre-
ated if one CELL_CREATE and two CELL_RELAY cells are
transmitted on the forward path, and one CELL_CREATED
cell and two CELL_RELAY cells on the backward path.
Therefore, at a malicious entry onion router, after one
CELL_CREATE and two CELL_RELAY cells are transmitted
on the forward path, the attacker knows that this circuit
is completely created.

Step 2: Now, the attacker needs to determine the time
to launch the attack and select appropriate target cells.

After the circuit is created, according to the procedure
of transmitting a TCP stream shown in Fig. 4, OP will send
a relay cell with the relay command RELAY_COM-
MAND_BEGIN in the relay header of the cell. This specific
cell is used to request the exit onion router to setup a
TCP connection to the server. After receiving the cell, the
exit onion router creates a TCP connection to the server di-
rectly. Then the next relay cell sent by an OP shall contain
TCP stream data and relay command of this cell is CELL_RE-
LAY_DATA. After an OP successfully sends all data to the
server, it will receive and forward the final relay cell with
relay command CELL_RELAY_END. When the exit router re-
ceives this cell, it releases the TCP connection to the server.

Therefore, according to the procedures of creating a
circuit and transmitting TCP streams over the circuit, the
attacker at the entry onion router can determine the CELL_
RELAY_BEGIN cell and the first CELL_RELAY_DATA cell. To
summarize, after the attacker at the entry onion router re-
cords one CELL_CREATE cell and three CELL_RELAY cells on
the forward path with the same circuit ID, the attacker de-
cides that the third CELL_RELAY cell on the forward path
will be a CELL_RELAY_BEGIN cell. Then the relay cell after
that will be CELL_RELAY_DATA cell, i.e., the first cell with
TCP stream data from an OP.

Step 3: Since the cells from an OP are identified in the
second step, the attacker can now launch the proto-
col-level attacks in the following ways:
1. Replay A Cell: Fig. 5 illustrates the basic principle of

this attack. At an entry onion router, the attacker iden-
tifies the first CELL_RELAY_DATA cell on a victim circuit
and duplicates it. Then, the duplicated cell will traverse
the circuit and arrive at the exit onion router. The
attacker at the malicious exit onion router will detect
a cell recognition error caused by this duplicated cell.
We now go through cases and explain details that cause
the cell recognition error. When a data cell is duplicated
at OR1, the decryption at OR2 and OR3 will fail. The rea-
son is that the cell’s onion layers are encrypted using
AES in the counter mode and the counter is disturbed
by the duplicated cell. Specifically, in the counter mode,
encryption and decryption operations need to keep a
synchronized value, a counter. The encryption of a cell
at an OP increases the AES counter by one. The three
routers along the path increase the counter for each cell
they receive and decrypt the original cell successfully.
When OR1 duplicates a cell, the duplicate cell causes
OR2 and OR3 to increase the counter and this makes
the decryption of this cell on OR2 and OR3 unsynchro-
nized and incurs a decryption error. In the current Tor
implementation, default actions to this error are: OR3
releases the circuit and an OP creates another circuit
for continuous communication. Notice that although
the decryption at OR2 is wrong, it does not raise any
action on the circuit. This is because the cell is onion-
like encrypted, the two fields, Recognized and Integrity

Fig. 7. Insert a faked cell on Tor.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 875
(in Fig. 2b) used for integrity checking can only be rec-
ognized after all layers of encryption are removed, and
OR2 cannot recognize the decryption error associated
with the duplicated cell. OR3 can use the fields of ‘‘Rec-
ognized’’ or ‘‘Integrity’’ of the relay header in Fig. 2b to
recognize the error since all the onion layers should
have been removed at OR3.
2. Modify A Cell: Fig. 6 illustrates the basic principle of
this attack. At an entry router, the attacker captures
the first CELL_RELAY_DATA cell on a circuit and modifies
certain data in the encrypted payload. For example, the
attacker can set the first byte of the encrypted payload
to zero. When this modified cell passes through the cir-
cuit and arrives at the exit onion router, the attacker at
the malicious exit onion router will also detect the cell
recognition error caused by this modified cell, since the
modified cell destroys the integrity of the cell and the
exit onion router will be unable to decrypt it correctly.
The attack of modifying a cell shares some similarity
with the ‘‘tagging’’ attack described in [18,8]. The work
in [18,8] claimed that Tor can prevent tagging attacks
by applying integrity checks. However, the attacks we
investigated in this paper utilize the error information
created by the integrity check at malicious routers.
The attack of modifying a cell can still confirm the com-
munication relationship and pose a serious threat
against Tor.
3. Insert a Faked Cell: Fig. 7 illustrates the basic principle
of this attack. When the attacker relays the first CELL_-
RELAY_DATA cell on a circuit, the attacker at an entry
onion router inserts a new faked relay cell constructed
by himself on the forward path. The circuit ID of the
faked cell will be the same as other cells on the target
circuit. However, the payload of this faked cell will be
randomly generated. Then, the faked cell will traverse
the circuit and arrive at the exit onion router. The
attacker at the malicious exit onion router will detect
a cell recognition error caused by this faked cell. The
principle of the cell recognition error caused at the exit
onion router is similar to the one which replays a cell on
the circuit. When OR1 inserts a new faked cell, the
inserted cell causes OR2 and OR3 to increase the
Fig. 6. Modify a cell on Tor.
counter. This will make the encryption and decryption
of the faked cell at OR2 and OR3 unsynchronized.
4. Delete A Cell: Fig. 8 illustrates the basic principle of
this attack. An attacker at the entry onion router identi-
fies the first CELL_RELAY_DATA cell on a circuit and
deletes it. The attacker then relays the second relay cell,
as usual. The second relay cell will traverse the circuit
and arrive at the exit onion router. The attacker at the
malicious exit onion router will detect a cell recognition
error caused by the deleted cell. The principle of the
recognition error caused at the exit onion router is also
similar to replaying a cell on the circuit. When OR1
deletes a cell, the deleted cell causes OR2 and OR3 fail
to increase the counter. This makes the encryption
and decryption of succeeding cells at OR2 and OR3
unsynchronized.
Step 4: At this step, the attackers will confirm the com-

munication relationship between Alice and Bob.

Recall that when cells of a given circuit are manipulated
at the malicious entry onion router, cell recognition errors
will appear at the exit onion router if the TCP stream is
Fig. 8. Delete a cell on Tor.

Fig. 9. Duplicate and hold a cell on Tor.

876 Z. Ling et al. / Computer Networks 57 (2013) 869–886
transmitted through that circuit. The exit onion router
records the circuit ID, the destination IP address, the port
number, and timestamp. The entry router records the
timestamp of manipulation, the circuit ID, and the source
IP address. We use Network Time Protocol (NTP) to
synchronize the malicious entry and onion routers. By cor-
relating the time of sending a manipulated cell with the
time of detecting a cell recognition error, we can confirm
that the recognition error is actually caused by the manip-
ulated cell. To the best of our knowledge, based on
extensive experiments on Tor over months, these cell rec-
ognition errors are unique to protocol-level attacks and the
probability of other facts causing such errors is very low.
Once there is a cell manipulation at the entry onion router
and a cell recognition error appears at the exit onion rou-
ter, the attackers know that the circuit segment IDs
recorded at the entry and exit routers belong to the same
circuit, which carries the target TCP stream data. Since
the entry onion router knows the source IP address of the
TCP stream and the exit onion router knows the destina-
tion IP address of the TCP stream, the attackers can link
the communication relationship between Alice and Bob.
In Section 4, we will use the time correlation as a measure
to demonstrate the correlation between the cell manipula-
tion and recognition error.

We can see that these protocol-level attacks are a very
powerful threat against Tor, since the attackers only need
to manipulate one cell and detect recognition errors. There-
fore, these attacks are simple, fast, and accurate, making
these attacks quite different from other existing attacks
based on traffic analysis, which require lengthy parameter
tuning for the trade-off between the false positive rate and
detection rate [32,11,3,12,14,15]. In addition, these proto-
col-level attacks are robust to the network size, traffic
dynamics, and other anti-traffic analysis strategies, includ-
ing batching, reordering, and dummy traffic schemes [2,33].

3.3. Discussion

3.3.1. Making attacks stealthy
In order to make the attack stealthy, the attacker can

choose an appropriate time to manipulate cells. Note that
once there is a cell recognition error, the corresponding cir-
cuit will be released by default because the AES counter is
disturbed along the circuit. If the attacker manipulates the
cells when a TCP connection is still running, the circuit will
be released and other circuits will have to be created to re-
lay the rest of the TCP stream data from Alice to Bob. This
may raise Alice and Bob’s attention. Therefore, the attacker
shall replay the cells at the moment when the circuit is not
occupied with the stream data from Alice and before the
circuit is released by Alice. In this way, the attack will
not degrade the TCP performance and can be stealthy.

The attacker may even use a loop-control method to de-
tect the status of the TCP stream data and send the dupli-
cated cell in a proper time. One possible way is that the
attacker at the exit onion router with the full information
of the target TCP stream notifies the attacker at the entry
onion router. The attacker at the entry onion router identi-
fies the first CELL_RELAY_DATA cell on a circuit and holds
the duplicated cell until the indication from the attacker
at the exit onion router is received. In particular, when a
CELL_RELAY_END cell is received at the exit onion router,
the attacker at the exit onion router will notify the attacker
at the entry onion router to send the duplicated cell. After
the duplicated cell arrives at the exit onion router, the at-
tacker at the exit onion router will detect an error caused
by the cell duplication. In this case, the TCP connection will
be disconnected by the OP as usual, and the attack will not
be detectable by Alice and Bob.

Fig. 9 illustrates one example of this type of stealthy at-
tack. In a stealthy attack of replaying a cell, the attacker can
duplicate a cell, hold it, and replay the cell when the cur-
rent TCP session from OP is complete.

3.3.2. Controlling onion routers
In the discussion of these protocol-level attacks, we as-

sume that the attacker controls some entry and exit onion
routers. This is a reasonable assumption due to the volun-
teer-based operation principle of Tor [8]. Anyone, includ-
ing governments conducting censorship over Tor, can set
up entry onion routers and exit onion routers and join
Tor. As long as a router has an exit policy enabling access
to external services, this onion router becomes an exit
onion router. To become an entry onion router, a Tor router
must meet some criteria. If an onion router has a mean
time between failure (MTBF) not less than the median for
active onion routers or at least 10 days, it becomes a stable
onion router. A stable onion router can be promoted to an
entry onion router if its bandwidth is either at least the
median among known active onion routers or at least
250 KB/s [29]. This set of criteria is not difficult to meet
by attackers in real-world practice. Experiments in Section
4.4 confirm this claim.

These protocol-level attacks can be more flexible. The
requirement of a malicious exit onion router is not neces-
sary in these protocol-level attacks if an attacker can mon-
itor outbound streams from an exit onion router. This kind
of traffic monitoring capability has been widely used by
other existing attacks [32,11,3,12,14,15]. To this end, using
network traffic monitoring tools, the attacker can record
the destination IP address and port number of outbound
TCP streams from an exit onion router. When the manipu-
lated cell arrives at the exit onion router and the monitored

Z. Ling et al. / Computer Networks 57 (2013) 869–886 877
TCP stream from this exit onion router aborts abruptly, this
gives a positive sign that the TCP stream from the sender
travels along that exit onion router, addressed to the corre-
sponding receiver.

3.3.3. Reducing noise
We now discuss the noise reduction related to these

protocol-level attacks. The false positive of these attacks
comes from unexpected cell recognition errors caused by
attacks. Based on our month-long experiments on exit
onion routers in Tor, we have not recorded such unex-
pected errors. This confirms that the false positive rate of
protocol-level attacks against Tor can be very low.

In order to further decrease the false positive rate, the
attacker may process multiple buffered cells from a single
TCP stream simultaneously. For each processed cell, we as-
sume that the detection rate and false positive rate of the
protocol-level attacks is pd and pf, respectively. We now de-
rive the detection rate PD and false positive rate PF for pro-
cessing n cells. When n cell recognition errors are detected
at the exit onion router, the probability that all errors are
not caused by the cell manipulation becomes (1 � pd)n

and the detection rate becomes PD = 1 � (1 � pd)n. The
corresponding false positive rate is PF ¼ pn

f . Therefore, by
choosing an appropriate n, the attacker can achieve a high
detection rate and a small false positive rate.

3.3.4. Launching protocol-level attacks in parallel
In an extreme case, many independent attackers may

try to launch the protocol-level attacks, sometimes simul-
taneously. False-positives would rise accordingly although
a single protocol-level attack does not introduce the false
positive. To address this problem, the attackers can use at-
tack timing information to stand them out. Note that a
single session of protocol-level attack does not require tim-
ing information. Synchronized adversaries can conduct
protocol-level attacks in a time division multiplexing fash-
ion to achieve a low false positive rate.

3.3.5. Launching DoS attack
These protocol-level attacks can also be used to launch

other attacks, including DoS attack. In order to do so, the
attacker only needs to control entry onion routers. If the
malicious entry onion router manipulates cells, it will
cause corresponding exit onion routers to disconnect the
circuit and release the TCP connection. This will slow the
operation of Tor network if the attacker controls multiple
malicious entry onion routers. In addition, Tor’s directory
authorities monitor the activities of onion routers and
may blacklist those innocent exit onion routers, which
unexpectedly drop circuits and TCP connections. Although
those malicious entry routers are the root-cause for this,
the innocent exit onion routers become scapegoats. Due
to the anonymity naturally maintained by Tor, it will be
non-trivial to identify those malicious entry onion routers.
Fig. 10. Experiment setup.
4. Evaluation

We have implemented the five protocol-level attacks
illustrated in Figs. 5–9 in Section 3 on Tor [34]. Note: the
attack in Fig. 9 is the enhanced strategy to replay cells in
a stealthy manner as we discussed in Section 3.3.1. In this
section, we use real-world experiments to demonstrate the
effectiveness and feasibility of these attacks on Tor. All
experiments were conducted in a controlled manner and
we experimented on TCP flows generated by ourselves in
order to avoid legal issues.
4.1. Experiment setup

Fig. 10 shows the experiment setup. We use two mali-
cious onion routers as the Tor entry onion router and exit
onion router. The entry onion router, client (Alice) and ser-
ver (Bob) are located in an office on campus. The exit onion
router is located in an off-campus location. Computers on
campus and off-campus are on different public IP segments
connecting to different Internet service providers (ISPs).

To minimize the side effects of the protocol-level at-
tacks on Tor’s normal operation, we conduct experiments
in a partially controlled environment. We modify the Tor
client code for attack verification purposes. The Tor client
would only build circuits through the designated malicious
exit onion router and entry onion router in Fig. 10. The
middle onion router is selected using the default routing
selection algorithm released by Tor. Recall that the goal
of the protocol-level attacks is to confirm whether the cli-
ent communicates with the server. For verification pur-
poses, we created a simple client/server application
which transmits data through TCP. The server in our exper-
iments binds to port 41, receives packets, and outputs rel-
evant connection information to the server’s screen for
debugging and measurement purpose. The Tor client uti-
lizes tsocks [35] to automatically transport its outbound
TCP stream through the OP using SOCKS. By using the Tor
configuration file and manipulatable parameters, such as
EntryNodes, ExitNodes, StrictEntryNodes, and StrictExitNodes
[30], we setup the client to select the malicious onion rou-
ters along the circuit. The exit onion router uses the default
exit policy from Tor and the entry onion router’s exit policy
only allows it to be used as either an entry or middle
router.
4.2. Experimental results of protocol-level attacks

The publicly available onion router bandwidth informa-
tion from the Tor directory servers confirms that becoming
an entry onion router is not difficult. According to the
bandwidth information collected from the directory server

0 200 400 600 800 1000
0

200

400

600

800

1000

Time of Duplicating Cells at the Entry

Ti
m

e
of

 D
ec

ry
pt

io
n

Er
ro

rs
 a

t t
he

 E
xi

t

(r=1)

Fig. 12. Correlation between time of duplicated cells and time of cell
recognition errors.

0 200 400 600 800 1000
0

200

400

600

800

1000

Time of Holding Duplicated Cells at the Entry

Ti
m

e
of

 D
ec

ry
tio

n
Er

ro
rs

 a
t t

he
 E

xi
t

(r=1)

Fig. 13. Correlation between time of holding duplicated cells and time of
cell recognition errors.

878 Z. Ling et al. / Computer Networks 57 (2013) 869–886
on October 18, 2008, there were 1164 active onion routers
on Tor, including 239 pure entry onion routers, 411 pure
exit onion routers, and 117 EE routers. Fig. 11 shows the
bandwidth distribution of onion routers on Tor, based on
the directory information collected on August 18, 2008.
The mean value of the bandwidth is only around 57 KB/s.
After running for only about 5 days, our onion router with
a bandwidth of 200 KB/s was promoted to be an entry
guard.

To validate the accuracy of these protocol-level attacks,
in our experiments we let the client send a message packed
in one cell to the server approximately every 10 s. The re-
vised code at the entry onion router records the time of
manipulating cells. The revised code at the exit onion rou-
ter records the time of recognition errors and carries out
the correlation test to confirm the communication rela-
tionship between the sender and receiver. We use the cor-
relation coefficient r to measure the strength of correlation
between the time of manipulating cells and the time of
detecting the cell recognition errors. Correlation coefficient
is defined as

r ¼
P

x;yðx� �xÞðy� �yÞffiP
xðx� �xÞ2

q ffiP
yðy� �yÞ2

q ; ð1Þ

where x is the time of manipulating cells at the entry onion
router, y is the time of cell recognition errors incurring at
the exit onion router, and �x and �y are the mean values of
x and y, respectively.

Figs. 12–16 show the relationship between the time of
duplicating, modifying, inserting, and deleting cells and
the time of incurring cell recognition errors. Note that
Fig. 13 shows the enhanced strategy to replay cells in a
stealthy manner as we discussed in Section 3.3.1. As we
can see from these figures, there is a perfect linear correla-
tion in all the cases, since the actual correlation coefficient
between them is one. This strongly confirms that these
0 1000 2000 3000 4000 5000

1

(a) Box−and−whisker diagram

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Bandwidth (KB/s)

F(
x)

median=57KB/s(b) Cummulative probability function

Fig. 11. Onion routers’ bandwidth distribution on Tor: bandwidth
median = 57 KB/s; (a) box and whisker plot of bandwidth; (b) cumulative
distribution function of bandwidth.

0 200 400 600 800 1000
0

200

400

600

800

1000

Time of Modifying Cells at the Entry

Ti
m

e
of

 D
ec

ry
pt

io
n

Er
ro

rs
 a

t t
he

 E
xi

t

(r=1)

Fig. 14. Correlation between time of modified cells and time of cell
recognition errors.
protocol-level attacks can accurately confirm the commu-
nication relationship if the sender and receiver use Tor to
anonymize their communication. In addition to high

0 200 400 600 800 1000
0

200

400

600

800

1000

Time of Inserting Cells at the Entry

Ti
m

e
of

 D
ec

ry
tio

n
Er

ro
rs

 a
t t

he
 E

xi
t

(r=1)

Fig. 15. Correlation between time of inserted cells and time of cell
recognition errors.

0 200 400 600 800 1000
0

200

400

600

800

1000

Time of Deleting Cells at the Entry

Ti
m

e
of

 D
ec

ry
tio

n
Er

ro
rs

 a
t t

he
 E

xi
t

(r=1)

Fig. 16. Correlation between time of deleted cells and time of cell
recognition errors.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 879
accuracy, these protocol-level attacks are very efficient,
since the attacker only needs to manipulate one cell and
recognize the error caused by the manipulated cell. Note
that the time correlation is not necessary for these
protocol-level attacks against Tor. The perfect time correla-
tion just validates the accuracy of these attacks.
4 The Tor project released a new version that changes the upper-bound
of high bandwidth to 10 MB/s on August 30, 2007.
4.3. Analysis of the impact of protocol-level attacks

We investigate the impact of these protocol-level at-
tacks on Tor. We can see from the attacks described in
Section 3, if a TCP stream traverses a pair of the mali-
cious entry and exit onion routers, the attacker can con-
firm the communication relationship quickly and
accurately by launching a protocol-level attack. In order
to fully understand the impact of such attacks on Tor,
we need to evaluate the probability that a TCP stream
traverses both the malicious entry onion router and exit
onion router, given that a number of routers in Tor are
malicious and controlled by attacker. Combined with
experimental evaluation in Section 4.4, our analysis
shows that the attacks investigated in this paper can
drastically degrade the anonymity service that Tor pro-
vides by confirming the communication relationships of
a large number of flows from senders to receivers within
Tor, even if the attacker can only control a relatively
small number of onion routers. Our analysis is general
and can be applied to other anonymous communication
systems. In the following, we will first present two
schemes that the attacker may use to increase the attack
impact on Tor and we then compare these two schemes
with a brute-force scheme.
4.3.1. Scheme 1: Injecting malicious onion routers
From the attacks described in Section 4.4, the attackers

need to control a number of onion routers and the commu-
nication relationship between the sender and receiver who
transmit their data anonymously via a pair of malicious en-
try and exit onion routers can be linked. In order to do so,
we first consider the scheme in which the attacker intends
to inject malicious onion routers into Tor. We assume that
the existing onion routers are secure and honest. Although
Tor recently amended its routing algorithm to require that
no two routers on a circuit may be from the same class B
address space, this type of attack can still be readily de-
ployed by a government that wants cyber censorship and
possesses ample resources such as IP addresses across dif-
ferent regions. In order to increase the probability P that a
circuit chooses malicious onion routers as entry and exit
routers, the attacker shall increase the probability that
such malicious routers are used for either an entry or exit
router. In order to do so, the attacker can choose the mali-
cious routers that can have a long uptime and high band-
width.4 This will increase the probability that malicious
onion routers are selected for either an entry or exit router
[28].

Assume that the attacker injects k malicious routers and
the bandwidths of all onion routers comprise a set {B1, . . . ,
Bk, Bk+1, . . . , Bk+N}, where B1 P . . . P Bk+N, that is, the
malicious onion routers {B1, . . . , Bk} have the maximum
bandwidth within the set. Then the onion router with
bandwidth Bi will be chosen with a probability ai ¼
Bi=
PkþN

i¼1 Bi, based on weighted bandwidth routing algo-
rithm used by Tor [28]. The probability P that a circuit
chooses the malicious routers as entry and exit routers
becomes,

PðkÞ ¼
Xk

i¼1

ai

Xk

j¼1;j–i

aj

1� ai

 !
: ð2Þ

From (2), we have two observations. First, P(k) is an
increasing function of ai that measures the bandwidth that
malicious routers are able to contribute. That is, the higher
bandwidth that malicious routers have, the higher P(k) be-
comes. Second, P(k) is an increasing function of the number
of malicious routers. That is, the larger number of mali-
cious routers that attackers can control, the higher P(k) be-
comes. Appendix B presents the proof of P(k)’s property.

880 Z. Ling et al. / Computer Networks 57 (2013) 869–886
Algorithm 1. Selection of malicious onion routers

Require:
(a) p (2[p1, p2]), the ratio of malicious onion routers
in Tor,
(b) N, the total number of onion routers in Tor,
(c) P(R1,i, R2,j), the probability that a circuit chooses
the malicious exit onion router R1,i and entry onion
router R2,j,
(d) P½1 � ðk� 1Þ�, an array storing the calculated
probability that a circuit chooses the malicious
entry and exit routers,
(e) M, an array storing the maximum probability in
array P.

Ensure: the result in array M is maximum value in
array P.

1: for p = p1 to p2 do
2: k = round(p � N)
3: for g = 1 to (k � 1) do
4: Select g best onion routers from R1 as exit onion

routers
5: if the onion routers selected from R1 are EE

routers then
6: Remove the EE routers from R2
7: Calculate the probability a2;j ¼ B2;j=

P
B2;j

8: end if
9: Select k � g best routers from R2 as entry onion

routers
10: if the onion routers selected from R2 are EE

routers then
11: Remove the EE routers from R1
12: Calculate the probability a1;i ¼ B1;i=

P
B1;i

13: end if

14: P½g� ¼
Pg

i¼1

Pk�g
j¼1 PðR1;iR2;jÞ

¼
Pg

i¼1

Pk�g
j¼1 ða1;ia2;jÞ

15: end for
16: M (maxðPÞ
17: end for
4.3.2. Scheme 2: Compromising existing Tor routers
We now study how the attacker may choose some of

the exit onion routers and compromise them5 in order to
maximize the probability P. Notice that there are four types
of routers in Tor, i.e., pure entry onion routers, pure exit
onion routers, onion routers that can be either an entry or
exit router (denoted as EE router) as well as routers that
can only be used as middle onion routers.

We assume that the set of pure exit onion routers and
EE routers is R1 = {R1,1, R1,2, . . . , R1,n}, and the set of pure
entry routers and EE routers is set R2 = {R2,1, R2,2, . . . ,
R2,m}, respectively. The bandwidth of onion routers in the
set R1 is a set B1 = {B1,1, B1,2, . . . , B1,n}, where B1,1 P
B1,2 P . . . P B1,n. The bandwidth of onion routers in the
set R2 is a set B2 = {B2,1, B2,2, . . . , B2,m}, where B2,1 P
5 Compromising a large number of Tor routers is quite a challenge for the
attacker. This case is included for work completeness.
B2,2 P . . . P B2,m. Obviously, the intersection of B1 and B2
belongs to EE routers.

In this scheme, the attackers compromise the existing
Tor routers. The attackers know the set of entry and exit
routers and can selectively choose to compromise some
of those routers. In order to maximize the attack impact,
the attackers can optimize the selection of victim routers.
Algorithm 1 describes the attack algorithm. Given a limited
percentage of Tor routers that attackers are able to com-
promise, Algorithm 1 iterates all possible combinations of
victim routers, calculates the corresponding probability
that a circuit is compromised, finds the optimal subset of
Tor routers, and calculates the corresponding maximum
probability that the circuit chooses a malicious entry and
exit routers. In Section 4.4, we will use real-world network
data collected from Tor to investigate these two schemes
for protocol-level attacks and evaluate their impact on Tor.

4.3.3. Comparison with a brute force attack
A brute force attack against Tor refers to an attack that

all the routers along a circuit need to be compromised in
order to further link the communication relationship be-
tween Alice and Bob via a hop-by-hop fashion. In the fol-
lowing, we will show that if the default path length used
by Tor increases, the probability that all routers along a cir-
cuit are malicious will decrease. Assume that the attacker
controls k malicious routers and the bandwidths of the
onion routers comprise a set {B1, . . . , Bk, Bk+1, . . . , BN},
where B1 P . . . P BN. Then the onion router with band-
width Bi is chosen with the probability ai ¼ Bi=

PkþN
i¼1 Bi,

based on the weighted bandwidth routing algorithm by
Tor. Let Pj be the probability that all routers along a circuit
of path length j are malicious. Specifically, if the default
path length is 2, the probability P2 that all routers along
a circuit are malicious becomes,

P2 ¼
Xk

i¼1

ai

Xk

j¼1;j–i

aj

1� ai

 !
: ð3Þ

When the default path length is 3, P3 can be calculated as
follows,

P3 ¼
Xk

i¼1

ai

Xk

j¼1;j–i

aj

1� ai

Xk

l¼1;l–i;l–j

al

1� ai � aj

 ! !
: ð4Þ

Obviously,
Pk

l¼1;l–i;l–j
al

1�ai�aj
< 1 with k < N. Therefore, we

have

ai

Xk

j¼1;j–i

aj

1� ai
> ai

Xk

j¼1;j–i

aj

1� ai

Xk

l¼1;l–i;l–j

al

1� ai � aj

 !
: ð5Þ

and

P2 > P3: ð6Þ

The above procedure can be generalized and we have

Pm > Pn if m < n: ð7Þ

The above analysis shows that the protocol-level attacks
are more efficient than the brute-force attack. If the default
path length adopted by Tor increases, the probability that
all routers along a circuit are malicious will decrease. In
comparison, the path length of circuit will not have an

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

Percentage of Malicious Routers

N
um

be
r o

f T
hr

ee
 T

yp
es

 o
f M

al
ic

io
us

 R
ou

te
rs EE Router

Exit Router
Entry Router

Fig. 18. Optimal number of three types of malicious routers.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 881
impact on our investigated protocol-level attacks because
these attacks only require malicious entry and exit routers
rather than all onion routers along the circuit.

4.4. Evaluation based on empirical data

Now we use the analytical results to evaluate the im-
pact of these protocol-level attacks based on empirical data
collected from Tor. Our results show that by compromising
a small number of onion routers, the attacker can confirm
the communication relationships of a large number of
flows associated with senders and receivers within Tor.
Our results are consistent with the observations from
Bauer et al. [36] based on small-scale experiments con-
ducted on PlanetLab [37], which shows that the attacker
can compromise approximately 46.46% circuits with 9%
malicious routers.

In the scheme of compromising existing Tor routers in
Section 4.3.2, by applying Algorithm 1, we can derive the
probability P that a circuit chooses the malicious onion
routers as entry and exit routers. Fig. 17 shows the proba-
bility P given p 2 [1%, 10%], the percentage of malicious
routers within Tor. Then we select the maximum P and find
the corresponding number of malicious exit onion routers,
EE routers, and entry onion routers as shown in Fig. 18. In
Fig. 18, all malicious EE routers are used as exit routers.

From Fig. 18, we can see that the number of entry rou-
ters is nearly equal to the number of exit routers in order to
maximize P. Here we give an intuitive explanation. Assume
that the number of onion routers in Tor is N, the number of
malicious onion routers is 2q(2q 6 N), and the probability
of selecting an onion router is 1/N. Let e be the number
of malicious entry onion routers. Note that a malicious rou-
ter can be used as either an entry or exit router. The prob-
ability that a circuit chooses the malicious routers as the
entry and exit routers can be calculated by,

PðeÞ ¼ e
N
� 2q� e

N � e
: ð8Þ

In order to derive the value of e to maximize P(e), we have

PðeÞ0 ¼ 0: ð9Þ
0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Malicious Exit Routers in the Exit Set

Pr
ob

ab
ilit

y
th

at
 a

 C
irc

ui
t C

ho
os

es
 M

al
ic

io
us

 R
ou

te
rs

p=6%

p=3%

p=2%
p=1%

p=4%

p=7%

p=5%

p=8%
p=9%

p=10%

Fig. 17. Percentage of malicious routers increasing to 10%.
Since

e
N
� 2q� e

N � e

� �0
¼ 2Nqðq� eÞðN � eÞ þ Nað2q� eÞ

ðN2 � NeÞ2
; ð10Þ

then

2Nqðq� eÞðN � eÞ þ Nað2q� eÞ ¼ 0; ð11Þ
e2 � 2Neþ 2Nq ¼ 0: ð12Þ

Therefore, e can be calculated from Eq. (12) as follows:

e ¼ N 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2q

N

r !
: ð13Þ

Note that we ignore the unreasonable value e ¼

N 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2q

N

q� �
> N. According to Taylor’s theorem,ffiffiffiffiffiffiffiffiffiffiffiffi

1� h
p

¼ 1� 1
2 hþ oðhÞ. Eq. (13) can be reformatted as,

e � N 1� 1� 1
2
� 2q

N

� �� �
¼ q: ð14Þ

Consequently, when the probability P that a circuit chooses
the malicious onion routers as entry and exit routers
reaches maximum, the number of entry routers is approx-
imately equal to the number of exit routers.

Fig. 19 shows the results of the probability that a circuit
chooses the malicious onion routers as entry and exit rou-
ters by two schemes: injecting malicious routers and com-
promising existing Tor routers, discussed in Section 4.3. In
the first scheme, P becomes around 60.58% by injecting
only 9%(115/(1164 + 115)) EE routers on Tor. In this
scheme, the attacker is requested to deploy 115 extra
onion routers, 9% of total Tor routers. In the second
scheme, by compromising only 6% (105/(1164 + 105))
onion routers, including 56 best entry routers, 39 best EE
routers as well as 10 best exit routers (56 + 39 +
10 = 105), P can reach to around 49.76%. From the data,
we can see that our investigated protocol-level attacks
can seriously degrade anonymity service provided by Tor.

We now compare these protocol-level attacks with the
brute-force attack that needs to compromise all onion rou-
ters on Tor as discussed in Section 4.3.3. Recall that our
investigated protocol-level attacks require the attacker to

2
3

4
5

6

0
0.02

0.04
0.06

0.08
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of Malicious Routers Number of Malicious Routers in a Circuit

Pr
ob

ab
ilit

y
th

at
 a

 C
irc

ui
t C

ho
os

es
 M

al
ic

io
us

 R
ou

te
rs

Fig. 20. Probability that a circuit chooses the malicious routers in Scheme
1 (Section 4.3.1) vs. path length and percentage of malicious routers.

2
3

4
5

6

0
0.02

0.04
0.06

0.08
0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage of Malicious Routers Number of Malicious Routers in a Circuit

Pr
ob

ab
ilit

y
th

at
 a

 C
irc

ui
t c

ho
os

es
 M

al
ic

io
us

 R
ou

te
rs

Fig. 21. Probability that a circuit chooses the malicious routers in Scheme
2 (Section 4.3.2) vs. path length and percentage of malicious routers.

3 3.5 4 4.5 5 5.5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Path Length

Pr
ob

ab
ilit

y
th

at
 a

 C
irc

ui
t C

ho
os

es
 M

al
ic

io
us

 R
ou

te
rs Compromise All Routers on a Path in Scheme 1

Compromise All Routers on a Path in Scheme 2
Scheme 2 of Protocol−level Attacks

Fig. 22. Probability that a circuit consists of malicious routers vs. path
length.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage of Malicious Routers

Pr
ob

ab
ilit

y
th

at
 a

 C
irc

ui
t C

ho
os

es
 M

al
ic

io
us

 R
ou

te
rs

Compromise Routers with Best Exit and Entry Routers

Inject Our Malicious Routers with 10MB/s Bandwidth

Fig. 19. Probability that a circuit chooses the malicious routers as entry
and exit routers vs. percentage of malicious Tor routers.

882 Z. Ling et al. / Computer Networks 57 (2013) 869–886
compromise only the exit onion routers and entry onion
routers. As the path length in Tor increases, the probability
of compromising two onion routers is much higher than
compromising all routers on a path. We use the analysis
in Section 4.3.3 to derive the probability that OP selects
malicious routers as all the routers in a circuit as the path
length increases. Figs. 20 and 21 show the probability of
compromising all routers on a path in terms of the path
length and the percentage of malicious Tor routers.
Fig. 22 compares the probability of compromising only en-
try and exit routers in the protocol-level attacks and the
probability of compromising all routers on a path as the
path length increases from 3 to 6, given 9% malicious
routes in Tor. The data show that the probability of com-
promising all routers on a path will decrease dramatically
with the increasing path length, while the probability of
compromising only entry and exit routers in terms of pro-
tocol-level attacks is constantly around 49.76% when the
path length increases.

5. Guideline of countermeasures

We have demonstrated the threat of several protocol-
level attacks against Tor. We now discuss possible counter-
measures to these attacks. We recognize that defending
against protocol-level attacks is a great challenge and Tor
already suffers from a variety of timing based attacks,
which are hard to defend against in light of tradeoff be-
tween system usefulness (performance) and the achieved
privacy-preserving. In the following, we take the effort of
discussing possible countermeasures against protocol-
level attacks for the reference of designing future anony-
mous communication systems.

5.1. Minimizing number of compromised entry routers

Recall that protocol-level attacks require an attacker to
fully control at least one entry router. To achieve this, the
attacker may advertise false bandwidth resource and pro-
mote compromised servers to be entry routers of Tor.

Z. Ling et al. / Computer Networks 57 (2013) 869–886 883
There are two possible ways to minimize the chance that
compromised servers become entry routers. First, the path
selection algorithm may be evolved and select only fully
trusted and dedicated ones through strict authentication
and authorization processes. Second, countermeasures
may be developed to detect false bandwidth advertise-
ments from a compromised router that intends to become
Tor entry router via the attack similar to Sybil attack [36].
For example, the path selection protocols used by Tor can
be augmented to allow onion routers to proactively moni-
tor each other and validate other onion routers’ bandwidth
[38]. A reputation-oriented defensive scheme can be devel-
oped to further facilitate the countermeasure to the at-
tacks. In this way, the attacker will have less chance to
control the entry onion router and the effectiveness of
these protocol-level attacks will be reduced. However, this
approach cannot completely eliminate these protocol-level
attacks, since the attackers may still contribute servers
with high bandwidth if enough bandwidth resources are
available.

5.2. Monitoring manipulated cells

Recall that these protocol-level attacks need to send the
manipulated cells. If manipulated cells can be detected and
dropped at a middle router before they reach to the exit
onion router, the effectiveness of such attacks will be lar-
gely reduced. To this end, one naive way is to allow the
middle onion router along the circuit to detect manipu-
lated cells by buffering historical cells. However, this will
incur more overhead to onion routers. A Tor relay requires
using a pair of memory buffers for reading and writing data
from each TCP stream and already uses much memory
[39]. The length of the extra buffer is also a challenging is-
sue given that a protocol-level attack may buffer cells and
replay them much later.

We may also re-design Tor to resist the protocol-level
attacks. Recall that these attacks work because it is cur-
rently impossible to detect the decryption error until the fi-
nal layer is removed at the exit router. Decryption errors are
found by examining the ‘‘recognized’’ and ‘‘integrity’’ fields
once the final layer of encryption is removed. However, if
the relay cell format were modified so that each layer of
encryption has its own ‘‘recognized’’ and ‘‘integrity’’ field
that can be verified upon removal of its respective layer
of encryption, it would be possible to detect the decryption
error at the middle node. This might prevent these attacks,
since the exit node does not detect the decryption error di-
rectly. Nevertheless, one issue with this approach is that
the cell size is now proportional to the hop count, which
may leak information about a router’s position in the cir-
cuit. Another issue with this approach is that the malicious
exit router still may derive indirect information about the
error, since the circuit gets destroyed.

Another way to detect these protocol-level attacks is to
have Tor’s clients and exit routers monitor connections
with anomaly behavior. Since these attacks break connec-
tions and force the client switch to a new circuit, a frequent
connection release and circuit switch may indicate the
possibility of these protocol-level attacks. The client can-
not solely rely on the reported reason codes for circuit re-
lease for detection purpose since the malicious exit router
may manipulate the reason code on purpose. When a
protocol-level attack is launched to confirm the communi-
cation relationship which does not exist, exit routers other
than the malicious ones will receive manipulated cells and
detect decryption errors. Such decryption errors may
indicate a high possibility of such attacks.

5.3. Using bridge relays

In order to identify clients, it is necessary for the entry
to tell that the previous hop is a client. This may not be
always easy. Tor introduced bridge relays in the 0.2.0.3-al-
pha release (07-29-2007) to provide censorship resistance
in case that directory servers and Tor routers are blocked
by an ISP or government [40]. Bridges would appear to
be indistinguishable from clients if attackers use the meth-
ods described in Section 3 for identifying clients. Therefore,
using bridges can resist the protocol-level attacks to some
extent. However, bridges introduce another hop to a circuit
and will degrade the circuit performance. They are recom-
mended for clients within censored regions. Moreover,
according to the design document of Tor bridges [41],
bridge relays are just like normal Tor relays except that
they do not publish their server descriptors to the main
directory authorities. If attackers inject malicious bridges
into the Tor network, Tor still suffers protocol-level
attacks.
6. Conclusion

In this paper, we deeply investigated several protocol-
level attacks on Tor, which allow the attacker to quickly
and accurately confirm the anonymous communication
over Tor. In these attacks, the attacker at the malicious en-
try onion router manipulates cells from the sender’s out-
bound TCP stream. The manipulated cell will be carried
along a circuit of Tor and causes the cell recognition errors
at the exit onion router. Since such cell recognition errors
are unique to these attacks, the attacker can confirm the
communication relationship between the sender and re-
ceiver accurately and quickly. Via extensive theoretical
analysis and real-world experiments, the effectiveness
and feasibility of these attacks are validated. Our data
show that these attacks may drastically degrade the ano-
nymity service that Tor provides, if the attacker is able to
control a small number of Tor routers. These attacks may
also be used to threaten the availability of the anonymity
service by Tor. Due to Tor’s fundamental design, defending
against these attacks remains a challenging task that we
will investigate in our future research.

Acknowledgments

We acknowledge anonymous reviewers of earlier
versions of this paper. This work is supported in part by
National Key Basic Research Program of China under
Grants Nos. 2011CB302801 and 2010CB328104, National
Natural Science Foundation of China under Grants Nos.
61272054, 61070161, 61003257, and 61070222, by US

884 Z. Ling et al. / Computer Networks 57 (2013) 869–886
National Science Foundation under Grants Nos. 1116644,
0942113, 0958477, 1117175 and 0943479, by China Na-
tional Key Technology R&D Program under Grants Nos.
2010BAI88B03 and 2011BAK21B02, China National Science
and Technology Major Project under grants No.
2010ZX01044-001-001, China Specialized Research Fund
for the Doctoral Program of Higher Education under Grants
No. 20110092130002, by the General Research Fund of the
Hong Kong SAR, China Nos. CityU 114609 and CityU
114012 and CityU Applied R & D Grants (ARD) No.
9681001, and by Shenzhen (China) Basic Research Project
No. JCYJ20120618115257259, and by Jiangsu Provincial
Natural Science Foundation of China under Grants No.
BK2008030, Jiangsu Provincial Key Laboratory of Network
and Information Security under Grants No. BM2003201,
and Key Laboratory of Computer Network and Information
Integration of Ministry of Education of China under Grants
No. 93K-9. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Na-
tional Science Foundation. The authors would like to
acknowledge Ms. Larisa Archer for her dedicated editorial
help to improve the paper.

Appendix A. Protocol-level attack algorithms

Algorithm 2 gives a formal description of our proposed
protocol-level attack algorithms stated in Section 3.

Algorithm 2. Protocol-Level Attacks

Require:
(a) The attacker controls both entry onion router
and exit onion router,
(b) Nc, the number of CELL_CREATE cells at the entry
onion router,
(c) Nr, the number of CELL_RELAY cells at the entry
onion router,
(d) Nd, the number of CELL_CREATED cells at the
entry onion router,
(e) ?, the forward path,
(f) , the backward path,
(g) N0r , the number of CELL_RELAY cells at the exit
onion router,

1: Calculate Nc, Nr, and Nd at the entry onion router
2: STEP1:

3: if (Nc
�! ¼¼ 1 & & Nr

�! ¼¼ 2) & & (Nd
 � ¼¼ 1 & &

Nr
 � ¼¼ 2) then

4: Identify a specific created circuit from an OP
5: GOTO STEP2
6: else
7: Continue to calculate Nc, Nr, and Nd

8: end if
9: STEP2:

10: if Nr
�! ¼¼ 3 then

11: Identify a CELL_RELAY_BEGIN cell from an OP
12: Continue to calculate Nr

13: end if
14: if Nr
�! ¼¼ 4 then

15: Identify the first CELL_RELAY_DATA cell from an OP
16: GOTO STEP3
17: end if
18: STEP3:
19: Select one of strategies: (i) replaying the cell, (ii)

modifying the cell, (iii) inserting the faked cell, and
(iv) deleting the cell

20: Launch the protocol-level attack, record the
timestamp of the manipulation and the source IP
address

21: GOTO STEP4
22: STEP4:
23: Inspect each cell at the exit onion router
24: if Detect a cell recognition error then
25: Record the timestamp of the cell and the

destination IP address
26: Confirm the communication relationship

between Alice and Bob using timestamp based on
Eq. (1)

27: end if
Appendix B. Property of P(k)

In this appendix, we show that P(k) is an increasing
function of the number of malicious routers.

Pðkþ 1Þ ¼
Xkþ1

i¼1

ai

Xkþ1

j¼1;j–i

aj

1� ai
ð15Þ

¼
Xk

i¼1

ai

Xkþ1

j¼1;j–i

aj

1� ai

þ akþ1

Xk

j¼1

aj

1� akþ1
ð16Þ

¼
Xk

i¼1

ai

Xk

j¼1;j–i

aj

1� ai
þ akþ1

1� ai

 !

þ akþ1

1� akþ1

Xk

j¼1

aj ð17Þ

¼
Xk

i¼1

ai

Xk

j¼1;j–i

aj

1� ai

þ
Xk

i¼1

akþ1
ai

1� ai
þ akþ1

1� akþ1

Xk

j¼1

aj ð18Þ

¼PðkÞ þ akþ1

Xk

i¼1

ai

1� ai
þ ai

1� akþ1

� �
: ð19Þ

Since

akþ1

Xk

i¼1

ai

1� ai
þ ai

1� akþ1

� �
> 0; ð20Þ

we have

Pðkþ 1Þ > PðkÞ: ð21Þ

Z. Ling et al. / Computer Networks 57 (2013) 869–886 885
References

[1] Q.X. Sun, D.R. Simon, Y. Wang, W. Russell, V.N. Padmanabhan, L.L.
Qiu, Statistical identification of encrypted web browsing traffic, in:
Proceedings of IEEE Symposium on Security and Privacy (S&P), May
2002.

[2] X. Fu, Y. Zhu, B. Graham, R. Bettati, W. Zhao, On flow marking attacks
in wireless anonymous communication networks, in: Proceedings of
the IEEE International Conference on Distributed Computing
Systems (ICDCS), April 2005.

[3] L. Overlier, P. Syverson, Locating hidden servers, in: Proceedings of
the IEEE Security and Privacy Symposium (S&P), May 2006.

[4] D. Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms, Communications of the ACM 4 (2) (1981).

[5] G. Danezis, R. Dingledine, N. Mathewson, Mixminion: design of a
type iii anonymous remailer protocol, in: Proceedings of the 2003
IEEE Symposium on Security and Privacy (S&P), May 2003.

[6] C. Gülcü, G. Tsudik, Mixing email with babel, in: Proceedings of the
Network and Distributed Security Symposium (NDSS), February
1996.

[7] M. Reiter, A. Rubin, Crowds: anonymity for web transactions, ACM
Transactions on Information and System Security 1 (1) (1998).

[8] R. Dingledine, N. Mathewson, P. Syverson, Tor: The second-
generation onion router, in: Proceedings of the 13th USENIX
Security Symposium, August 2004.

[9] Anonymizer, Inc., 2008. <http://www.anonymizer.com/>.
[10] B.N. Levine, M.K. Reiter, C. Wang, M. Wright, Timing attacks in

low-latency mix-based systems, in: Proceedings of Financial
Cryptography (FC), February 2004.

[11] Y. Zhu, X. Fu, B. Graham, R. Bettati, W. Zhao, On flow correlation
attacks and countermeasures in mix networks, in: Proceedings of
Workshop on Privacy Enhancing Technologies (PET), May 2004.

[12] S.J. Murdoch, G. Danezis, Low-cost traffic analysis of tor, in:
Proceedings of the IEEE Security and Privacy Symposium (S&P),
May 2006.

[13] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, D. Sicker, Low-resource
routing attacks against anonymous systems, in: Proceedings of ACM
Workshop on Privacy in the Electronic Society (WPES), October
2007.

[14] X. Wang, S. Chen, S. Jajodia, Network flow watermarking attack on
low-latency anonymous communication systems, in: Proceedings of
the IEEE Symposium on Security & Privacy (S&P), May 2008.

[15] W. Yu, X. Fu, S. Graham, D. Xuan, W. Zhao, Dsss-based flow marking
technique for invisible traceback, in: Proceedings of the 2007 IEEE
Symposium on Security and Privacy (S&P), 2007 May.

[16] Y. Guan, X. Fu, D. Xuan, P.U. Shenoy, R. Bettati, W. Zhao, Netcamo:
Camouflaging network traffic for qos-guaranteed critical applica-
tions, in: IEEE Transactions on Systems, Man, and Cybernetics Part A:
Systems and Humans, Special Issue on Information Assurance, vol.
31(4), July 2001, pp. 253–265.

[17] W. Dai, Pipenet 1.1, 2009. <http://weidai.com/pipenet.txt>.
[18] D.M. Goldschlag, M.G. Reed, P.F. Syverson, Hiding routing

information, in: Proceedings of Workshop on Information Hiding,
1996.

[19] X. Wang, D.S. Reeves, S.F. Wu, J. Yuill, Sleepy watermark tracing: an
active network-based intrusion response framework, in: Proceed-
ings of 16th International Conference on Information Security (IFIP/
Sec), June 2001.

[20] X. Wang, D.S. Reeves, Robust correlation of encrypted attack traffic
through stepping stones by manipulation of inter-packet delays, in:
Proceedings of the 2003 ACM Conference on Computer and
Communications Security (CCS), November 2003.

[21] X. Wang, S. Chen, S. Jajodia, Tracking anonymous peer-to-peer voip
calls on the internet, in: Proceedings of the 12th ACM Conference on
Computer Communications Security (CCS), November 2005.

[22] P. Peng, P. Ning, D.S. Reeves, On the secrecy of timing-based active
watermarking trace-back techniques, in: Proceedings of the IEEE
Security and Privacy Symposium (S&P), May 2006.

[23] N. Kiyavash, A. Houmansadr, N. Borisov, Multi-flow attacks against
network flow watermarking schemes, in: Proceedings of USENIX
Security, 2008.

[24] Y.J. Pyun, Y.H. Park, X. Wang, D.S. Reeves, P. Ning, Tracing traffic
through intermediate hosts that repacketize flows, in: Proceedings
of IEEE INFOCOM, May 2007.

[25] S.C.X. Wang, S. Jajodia, Network flow watermarking attack on low-
latency anonymous communication systems, in: Proceedings of
the 2007 IEEE Symposium on Security and Privacy (S&P), May
2007.

[26] S.J. Murdoch, Hot or not: Revealing hidden services by their clock
skew, in: Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), November 2006.

[27] R. Dingledine, N. Mathewson, P. Syverson, Tor: anonymity online,
2008. <http://tor.eff.org/index.html.en>.

[28] R. Dingledine, N. Mathewson, Tor protocol specification, 2008.
<http://tor.eff.org/svn/trunk/doc/spec/tor-spec.txt>.

[29] N. Mathewson, Tor directory protocol, version 3, 2008. <http://
tor.eff.org/svn/trunk/doc/spec/dir-spec.txt>.

[30] R. Dingledine, N. Mathewson, Tor path specification, 2008. http://
tor.eff.org/svn/trunk/doc/spec/path-spec.txt>.

[31] G. Danezis, R. Clayton, Route fingerprinting in anonymous
communications, in: Proceedings of the Sixth IEEE International
Conference on Peer-to-Peer Computing, September 2006.

[32] M. Wright, M. Adler, B.N. Levine, C. Shields, Defending anonymous
communication against passive logging attacks, in: Proceedings of
the IEEE Symposium on Security and Privacy, May 2003.

[33] A. Serjantov, R. Dingledine, P. Syverson, From a trickle to a flood:
active attacks on several mix types, in: Proceedings of Information
Hiding Workshop (IH), February 2002.

[34] Tor: anonymity online, 2008. <http://tor.eff.org/>.
[35] A transparent socks proxying library, 2008. <http://tsocks.

sourceforge.net>.
[36] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, D. Sicker, Low-resource

routing attacks against anonymous systems, University of Colorado
at Boulder, Tech. Rep., August 2007.

[37] The Trustees of Princeton University, Planetlab–an open platform for
developing, deploying, and accessing planetary-scale services, 2008.
<http://www.planet-lab.org/>.

[38] K. Harfoush, A. Bestavros, J.W. Byers, Measuring bottleneck
bandwidth of targeted path segments, in: Proceedings of the IEEE
INFOCOM, April 2003.

[39] Theonionrouter/torfaq, 2008. <http://wiki.noreply.org/noreply/The
OnionRouter/TorFAQ>.

[40] The Tor Project, Inc., Tor: Bridges, 2009. <https://www.torproject.
org/bridges>.

[41] R. Dingledine, Behavior for bridge users, bridge relays, and bridge
authorities, November 2007. <https://git.torproject.org/checkout/
tor/master/doc/spec/proposals/125-b%ridges.txt>.

Zhen Ling is a PhD candidate in the School of
Computer Science and Engineering, Southeast
University, Nanjing, China. He received the BS
degree in Computer Science from Nanjing
Institute of Technology, China, in 2005. He
joined Department of Computer Science at the
City University of Hong Kong from 2008 to
2009 as a research associate, and then joined
Department of Computer Science at the Uni-
versity of Victoria in 2011 as a visiting scholar.
His research interests include network secu-
rity, privacy, and forensics.
Dr. Junzhou Luo is a full Professor in the
School of Computer Science and Engineering,
Southeast University, Nanjing, China. He
received his B.S. degree in applied mathe-
matics from Southeast University in 1982, and
then got his M.S. and Ph.D. degree in com-
puter network both from Southeast University
in 1992 and in 2000 respectively. His research
interests are next generation network, proto-
col engineering, network security and man-
agement, grid and cloud computing, and
wireless LAN. He is a member of the IEEE

Computer Society and co-chair of IEEE SMC Technical Committee on
Computer Supported Cooperative Work in Design.

https://vpn2.seu.edu.cn/,DanaInfo=www.anonymizer.com+
https://vpn2.seu.edu.cn/,DanaInfo=weidai.com+pipenet.txt
https://vpn2.seu.edu.cn/,DanaInfo=tor.eff.org+index.html.en
https://vpn2.seu.edu.cn/svn/trunk/doc/spec/,DanaInfo=tor.eff.org+tor-spec.txt
https://vpn2.seu.edu.cn/svn/trunk/doc/spec/,DanaInfo=tor.eff.org+dir-spec.txt
https://vpn2.seu.edu.cn/svn/trunk/doc/spec/,DanaInfo=tor.eff.org+dir-spec.txt
https://vpn2.seu.edu.cn/svn/trunk/doc/spec/,DanaInfo=tor.eff.org+path-spec.txt
https://vpn2.seu.edu.cn/svn/trunk/doc/spec/,DanaInfo=tor.eff.org+path-spec.txt
https://vpn2.seu.edu.cn/,DanaInfo=tor.eff.org+
https://vpn2.seu.edu.cn/,DanaInfo=tsocks.sourceforge.net+
https://vpn2.seu.edu.cn/,DanaInfo=tsocks.sourceforge.net+
https://vpn2.seu.edu.cn/,DanaInfo=www.planet-lab.org+
https://vpn2.seu.edu.cn/noreply/TheOnionRouter/,DanaInfo=wiki.noreply.org+TorFAQ
https://vpn2.seu.edu.cn/noreply/TheOnionRouter/,DanaInfo=wiki.noreply.org+TorFAQ
https://vpn2.seu.edu.cn//www.torproject.org/,DanaInfo=https+bridges
https://vpn2.seu.edu.cn//www.torproject.org/,DanaInfo=https+bridges
https://vpn2.seu.edu.cn/checkout/tor/master/doc/spec/proposals/,DanaInfo=www.git.torproject.org+125-b
https://vpn2.seu.edu.cn/checkout/tor/master/doc/spec/proposals/,DanaInfo=www.git.torproject.org+125-b

886 Z. Ling et al. / Computer Networks 57 (2013) 869–886
Dr. Wei Yu is an assistant professor in the
Department of Computer and Information
Sciences, Towson University, Towson, MD
21252. Before that, He worked for Cisco Sys-
tems Inc. for almost 9 years. He received the
BS degree in Electrical Engineering from
Nanjing University of Technology in 1992, the
MS degree in Electrical Engineering from
Tongji University in 1995, and the PhD degree
in computer engineering from Texas A&M
University in 2008. His research interests
include cyber space security, computer net-

work, and distributed systems.
Dr. Xinwen Fu is an assistant professor in the
Department of Computer Science, University
of Massachusetts Lowell. He received his BS
(1995) and MS (1998) in Electrical Engineer-
ing from Xi’an Jiaotong University, China and
University of Science and Technology of China
respectively. He obtained his PhD (2005) in
Computer Engineering from Texas A&M Uni-
versity. From 2005 to 2008, he was an assis-
tant professor with the College of Business
and Information Systems at Dakota State
University. In summer 2008, he joined Uni-

versity of Massachusetts Lowell as a faculty member. His current research
interests are in network security and privacy.
Prof. Weijia Jia is currently a full Professor in
the Department of Computer Science and the
Director of Future Networking Center,
ShenZhen Research Institute of City Univer-
sity of Hong Kong (CityU). He received BSc
and MSc from Center South University, China
in 1982 and 1984 and Master of Applied Sci.
and PhD from Polytechnic Faculty of Mons,
Belgium in 1992 and 1993 respectively, all in
Computer Science. He joined German National
Research Center for Information Science
(GMD) in Bonn (St. Augustine) from 1993 to

1995 as a research fellow. In 1995, he joined Department of Computer
Science, CityU as an assistant professor. His research interests include
next generation wireless communication, protocols and heterogeneous
networks; distributed systems, multicast and anycast QoS routing pro-
tocols.

Dr. Wei Zhao is currently the Rector of the
University of Macau. Before joining the Uni-
versity of Macau, he served as the Dean of the
School of Science at Rensselaer Polytechnic
Institute. Between 2005 and 2006, he served
as the director for the Division of Computer
and Network Systems in the US National Sci-
ence Foundation when he was on leave from
Texas A&M University, where he served as
Senior Associate Vice President for Research
and Professor of Computer Science. He was
the founding director of the Texas A&M Cen-

ter for Information Security and Assurance, which has been recognized as
a Center of Academic Excellence in Information Assurance Education by
the National Security Agency. Dr. Zhao completed his undergraduate

program in physics at Shaanxi Normal University, Xian, China, in 1977. He
received the MS and PhD degrees in Computer and Information Sciences
at the University of Massachusetts at Amherst in 1983 and 1986,
respectively. Since then, he has served as a faculty member at Amherst
College, the University of Adelaide, and Texas A&M University. As an
elected IEEE fellow, Wei Zhao has made significant contributions in dis-
tributed computing, real time systems, computer networks, and cyber
space security.

	Protocol-level attacks against Tor
	1 Introduction
	1.1 Motivation
	1.2 Our contribution
	1.3 Related work
	1.4 Paper organization

	2 Basic components and operation of Tor
	2.1 Components of the Tor network
	2.2 Selecting a path and creating a circuit
	2.3 Transmitting TCP streams

	3 Protocol-level attacks
	3.1 Basic principle
	3.2 Algorithms of protocol-level attacks
	3.3 Discussion
	3.3.1 Making attacks stealthy
	3.3.2 Controlling onion routers
	3.3.3 Reducing noise
	3.3.4 Launching protocol-level attacks in parallel
	3.3.5 Launching DoS attack

	4 Evaluation
	4.1 Experiment setup
	4.2 Experimental results of protocol-level attacks
	4.3 Analysis of the impact of protocol-level attacks
	4.3.1 Scheme 1: Injecting malicious onion routers
	4.3.2 Scheme 2: Compromising existing Tor routers
	4.3.3 Comparison with a brute force attack

	4.4 Evaluation based on empirical data

	5 Guideline of countermeasures
	5.1 Minimizing number of compromised entry routers
	5.2 Monitoring manipulated cells
	5.3 Using bridge relays

	6 Conclusion
	Acknowledgments
	Appendix A Protocol-level attack algorithms
	Appendix B Property of P(k)
	References

