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Abstract—Crowdsourcing has become a popular service computing paradigm for requesters to integrate the ubiquitous human-

intelligence services for tasks that are difficult for computers but trivial for humans. This paper focuses on crowdsourcing complex 

tasks by team formation in social networks (SNs) where a requester connects to a large number of workers. A good indicator of 

efficient team collaboration is the social connection among workers. Most previous social team formation approaches, however, 

either assume that the requester can maintain information of all workers and can directly communicate with them to build teams, or 

assume that the workers are cooperative and be willing to join the specific team built by the requester, both of which are 

impractical in many real situations. To this end, this paper first models each worker as a selfish entity, where the requester prefers 

to hire inexpensive workers that require less payment and workers prefer to join the profitable teams where they can gain high 

revenue. Within the non-cooperative SNs, a distributed negotiation-based team formation mechanism is designed for the requester 

to decide which worker to hire and for the worker to decide which team to join and how much should be paid for his skill service 

provision. The proposed social team formation approach can always build collaborative teams by allowing team members to form 

a connected graph such that they can work together efficiently. Finally, we conduct a set of experiments on real dataset of workers 

to evaluate the effectiveness of our approach. The experimental results show that our approach can 1) preserving considerable 

social welfare by comparing the benchmark centralized approaches and 2) form the profitable teams within less negotiation time 

by comparing the traditional distributed approaches, making our approach a more economic option for real-world applications.  

Index Terms—Team formation, social networks, crowdsourcing, multiagent, non-cooperative, negotiation 
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1 INTRODUCTION

riven by the requirement of massive human intelli-
gence service-oriented applications, such as data 
sensing [1], language translation [2] and image clas-

sification [3], crowdsourcing has become a flexible service 
computing paradigm by making the ubiquitous human 
resources available to requesters on demand [4]. By using 
certain crowdsourcing platform (e.g., Upwork), the re-
questers can advertise their tasks (i.e., service requirement) 
to workers and the workers choose whether or not to par-
ticipate in and complete the tasks in change for monetary 
reward [5]. Typical crowdsourcing applications include 
solving simple tasks that each worker can complete each 
task independently and complex interdependent tasks that 
need to be solved in multiple phases [6] (e.g., sentence 
spelling mistakes correction) or teamwork [7][8] (e.g., arti-
cle editing in Wikipedia). In crowdsourcing environment, 
due to the diversity of workers’ skills on performing tasks, 
previous researches mainly focus on whether the hired 
workers are professional enough such that they can satisfy 
a task’s skill requirements [1-8]. 

In this paper, we concentrate on crowdsourcing an im-
portant class of complex tasks, where the success of com-
pleting such a complex task depends not only on the skills 
of the hired workers but also on how efficiently these 
workers can work together as a team [9]. For example, to 
develop a software product successfully, the product man-

ager first needs to hire a group of professional software 
engineers with the necessary skills: Requirement Analysis, 
Architecture Design, Implementation, Testing, Deployment, 
and Maintenance. During software development, the engi-
neer who performs Testing must communicate with the 
engineer who performs Implementation again and again to 
debug and optimize the software. Once the communication 
fails between the engineers due to language barriers or 
geographic distance, the product cannot be produced on 
time [10]. Therefore, the hired workers must also be able to 
cooperate with each other efficiently for team task comple-
tion. Now the manager’s problem is how to build such a profes-
sional and collaborative team of workers. 

With the advent of online social networks (e.g., 
LinkedIn, linkedin.com and Github, github.com), social 
networks (SNs) provide good opportunities for the re-
quester addressing this social team formation problem. On 
one hand, within SNs, the requester connects to a large 
number of social individuals and can collect these individ-
uals’ public information (e.g., skill, salary requirement and 
working experience, etc.) by learning their profiles. This 
advantage will help the requester build professional teams 
[11][12]. On the other hand, social connections among so-
cial individuals might represent collaboration relationships 
[13][14] (e.g., collaborate on common task previously). The 
advantage of using these SNs is that the social individuals 
who have worked together previously are estimated to 
work effectively as a team without much coordination 
overhead [15][16]. Motivated by this advantage, we con-
sider building collaborative teams in SNs where team 
members form a connected graph such that they can work 
together efficiently [17-19].  

Although a number of social team formation approach-
es have been proposed to build professional and collabora-
tive teams in SNs [15][16][20-23], from which we find a 
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couple of restrictive assumptions that we feel that are im-
practical. First, they assume that workers are cooperative, 
i.e., each worker is willing to join a team built by the re-
quester to optimize the requester’s objective. However in 
practice, workers are always rational and their only incen-
tive to join a team and provide skill services is to maximize 
their own benefits [24-26]. A practical social team for-
mation should consider the worker’s selfish nature. Sec-
ond, they assume that the requester can maintain infor-
mation of all workers and can directly communicate with 
them to build professional teams. However, because of 
privacy-preserving in SNs, the requester can only maintain 
limited information of its directly connected social neigh-
bors [27-30]. Therefore, a practical social team formation 
should build teams in a natural distributed manner with 
partial information of socially-close partners. 

To address these issues, this paper first models each in-
dividual as a selfish entity, where the requester aims to 
hire a collaborative team of inexpensive workers to mini-
mize expense and the worker aims to join a profitable team 
and provide skill services to earn a considerable payment. 
Within the non-cooperative SNs, we then present a distrib-
uted negotiation-based social team formation approach by 
allowing the requester to negotiate with the team mem-
bers’ neighbor workers only. As the main contribution of 
this paper, we rigorously design the negotiation mecha-
nism for the requester and worker to make agreement on 
skill provision and payment for their own profit maximiza-
tion. This negotiation-based social team formation mecha-
nism mainly consists of the following three phases: i) offer: 
the requester interacts with the worker and sends an offer 
to the worker on skill provision and payment; ii) Respond: 
the worker responds (e.g., accept, reject or propose skill 
payments improvement) to the requester on this offer and 
iii) Confirm: the requester makes the final confirmation on 
the received response and updates the team’s profile.  

Our theoretical analyses show that the requester can 
always find the most beneficial skills from the workers. 
Finally, we also conduct a set of experiments on real da-
taset to evaluate the proposed social team formation ap-
proach. The experimental results show that 1) compared to 
the ideal centralized approach [17][18][22], our approach 
can preserve considerable social welfare and 2) compared 
to traditional distributed contract-net approach [31] and 
the greedy approach [28], our approach forms desirable 
teams by spending less budget and team formation time.  

The remainder of this paper is organized as follows. In 
the next section, we provide a brief review of related work 
on crowdsourcing and team formation in SNs. In section 3, 
we give a formal definition of the social team formation 
problem. In Section 4, we present the framework of negoti-
ation-based social team formation approach. In section 5, 
we discuss the negotiation mechanism employed by the 
requester and worker in detail. In Section 6, we conduct a 
set of experiments to evaluate the proposed approach’s 
effectiveness. Finally, we give a conclusion of our paper 
and discuss the future work in Section 7. 

2  RELATED WORK 

2.1 Crowdsourcing for Task Allocation 

Crowdsourcing is a useful paradigm for requesters to har-
ness the ubiquitous human resources on solving tasks that 
are difficult for computers. To motivate workers to con-
tribute their personal resources, the workers should gain 
certain economic benefit from the task completion. How-
ever, because of the limited budget, the requester should 

decide how much should be paid to the workers. To ad-
dress this issue, Azaria et al. [32] develop an agent-based 
reward determination mechanism by allowing agents to 
determine each worker’s reward autonomously. To cap-
ture the dynamic characteristics of online labor markets, 
Singer and Mitta [33] introduce a truthful pricing mecha-
nism which in addition is budget balanced. Unfortunately, 
due to the openness and dynamics of the online markets, 
workers might vary greatly in the quality of task comple-
tion [34]. Therefore another key challenge in crowdsourc-
ing is to guarantee the quality of task completion. To ad-
dress this issue, a novel multi-armed bandit approach is 
devised for the requester to spend the first εB budget of its 
total budget B to derive workers’ quality estimates and 
spend the remaining (1−ε)B budget to maximize the task 
quality based on those estimates [34]. 

Although the above approaches are efficient in 
crowdsourcing simple tasks, there is a need to consider 
crowdsourcing a complex task that requires to be solved in 
multiple phases [6] or by teamwork [7][8]. A popular 
method for solving a complex task is to decompose such a 
complex task into a flow of simple sub-tasks, allocate them 
to workers subsequently and finally combine the partial 
results of sub-tasks together to get the final solution [6]. 
These methods only focus on hiring professional workers 
[6-8]. In comparison, this paper not only crowdsources 
complex tasks by hiring professional workers but also 
guarantees the hired workers can collaborate with each 
other effectively. Being aware of the fact that teamwork 
can produce higher product quality than individuals alone, 
Rokicki et al. [35] allow workers to build teams to improve 
the cost efficiency of crowdsourcing. On the other hand, 
Woolley et al. [36] empirically show that a number of fac-
tors (e.g., social sensitivity and conversation democracy) 
are correlated with team performance and Kittur and 
Kraut [8], Lykourentzou et al. [9] and Dow et al. [37] fur-
ther verify that timely task-specific feedback, flexible coor-
dination tools and personality similar can improve team 
performance. Complementary to these works [8][9][37], we 
aim to build the collaborative team with socially-close 
workers in social networks. Recently, being aware of the 
social influence and similar attributes among socially-close 
users, social networks have also been used in recommen-
dation systems to improve the quality of recommendations 
[38-40]. To predict the rating of an item for a particular 
user, these methods [38-40] aggregate the ratings of a set of 
direct or indirect connected users on that item and then 
perform the recommendation based on the predicted rat-
ings. These concepts (e.g., trust/influence propagation) 
proposed in the social network-based recommendation can 
inspire to form the collaborative team for social network-
based crowdsourcing. 

2.2 Team Formation in Social Networks 

Wolf et al. [10] first realize that social networks play an 
important role in team collaboration. Meantime, Lappas et 
al. [15] first formally formulate the problem of team for-
mation in social networks. They model each social network 
as a weighted and undirected graph G=<V,E>, where V 
represent individuals, E represent social connections and 
the weights on the connections represent the communica-
tion cost between connected individuals. Given a social 
network G and a task J, Lappas et al. [15] target to find a 
team of individuals V*⊆V such that V* not only meets all of 
the skill requirements of J but also incurs the least team 
communication cost. Following [15] are other social team 
formation variants with different application constraints 
and objectives, such as online dynamic settings where 
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tasks arrive to the system dynamically [20]; expertise query 
settings where each required skill needs to be satisfied by 
adequate number of experts [21]; load balancing where the 
workers’ assigned tasks should not exceed their capacity 
[16]; and budget minimization where the workers need to 
be paid for their skill contribution [22]. Rangapuram et al. 
[23] propose a more generalized social team formation 
problem where team size, team budget and team commu-
nication cost are considered. Noticing that all of these 
problems are NP-hard, the previous researches [15][16][20-
23] focus on developing centralized approximations with 
rigorous quality guarantees. These centralizations, howev-
er, are impractical for real-world applications where many 
SNs do not involve such a central coordinator and indi-
viduals are always building or joining teams in a self-
organized manner [25-28]. In comparison, our work aims 
to design a distributed team formation approach for the 
requester to build teams and for workers to join teams.  

Negotiation is a very effective distributed problem solv-
ing technique, which can be utilized to build social teams 
[40-44]. For example, Jiang et al. [41][42] present a contex-
tual based team formation model, where the requester ne-
gotiates resources from nearby individuals to faraway in-
dividuals gradually. Recently, Wang and Jiang [43] pro-
pose a game-theoretic team formation model by modeling 
each subtask as a cooperative mobile agent and then each 
agent targets to move to the individual that has the least 
workload. On the other hand, being aware of that the net-
work has a dramatic effect on team performance [44], Gas-
ton and desJardins [45] develop a dynamic structural 
adaption team formation method by allowing individuals 
to delete costly connections and rewire to professional in-
dividuals. Moreover, to improve team collaboration effi-
ciency, system designer can facilitate social relationships to 
increase system social welfare [46][47]. All of these pro-
posals [41-45][48] assume that social individuals are coop-
erative, i.e., each individual is willing to join the specific 
team built by the requester. In contrast, this work mainly 
focuses on building social teams in non-cooperative social 
networks, where individuals are selfish with the aim of 
maximizing their own profit. Wang et al. [49] recent pro-
pose a reverse auction-based truthful team formation in 
social networks that consider the individuals’ selfish na-
ture. This work mainly focuses on maximizing social wel-
fare (i.e., the aggregate utility of the requester and worker), 
while this work attempts to maximize the requester and 
worker’s utilities simultaneously. 

Weerdt et al. [31], Ye et al. [28] and Wang and Jiang [27] 
have made great effort on team formation in non-
cooperative systems. For example, Weerdt et al. [31] pro-
pose a greedy neighbor-aware team formation model, 
where workers contribute their resources to the most de-
sirable neighbor requester with the most profitable task. 
Although this model is easy to implement, its efficiency is 
limited due to its greedy nature. Ye et al. [28] consider a 
market-based team formation problem, where requesters 
have incomplete information (e.g., working cost) of work-
ers. To address this issue, they propose an efficient bilat-
eral bargaining-based negotiation mechanism, where 
workers negotiate with each other until they reach an 
agreement on working cost. However, computing equilib-
rium strategies for such complex negotiation problem is 
difficult even impossible [26]. Thus, this paper proposes a 
set of negotiation strategies to compensate for these disad-
vantages. In addition, compared to [27][28][31], our ap-
proach also considers forming social collaborative teams 
such that team members can work together efficiently.  

3 PROBLEM DESCRIPTION 

In this section, we define the problem of team formation 
for crowdsourcing complex tasks in social networks. Table 
1 gives a summary of notations used in this paper. 

Social Networks. Each social network SN=<A,E> is an 
unweight and undirected graph, where A={a1,a2,…,am} is 
the set of agents (hereafter, we use the terms “agent”, 
“worker” and “freelancer” interchangeably). ∀(ai,aj)E rep-
resents the existence of a social connection between agents 
ai and aj. Those connections can provide high collaboration 
efficiency during task execution. Moreover, we assume 
that there are l type skills S={s1,s2,…,sl} available in a SN. 
We can transform any weight network to unweight net-
work by removing the low social collaborations and re-
garding all of the remaining collaborations as the unweight 
social relationships with high collaboration efficiency. 

Agents. Each agent aiA is defined by a 3-tuple <Q(ai), 
C(ai), N(ai)>, where Q(ai)⊆S indicates the set of skills that 
agent ai owns and if sjQ(ai), agent ai can provide the skill sj; 
C(ai)={c(ai,s1),…, c(ai,s|Q(ai)|)} indicates agent ai’ s working cost 
of providing its skill sjQ(ai) (where |X| denotes the num-
ber of elements in the set X); and N(ai) indicates the direct 
social neighbors of ai, i.e., N(ai)={aj|(ai,aj)E}. Furthermore, 
we assume that each agent cannot join more than one team 
at a time. However, as a member of a team it can provide 
more than one skill to team task. This assumption is rea-

Table 1 Definition of Notation 

Notation Definition Notation Definition 

ai Agent i sj Skill j 
Q(ai) The skills owned by agent ai N(ai) The neighbors of ai 
c(ai,sj) The cost of ai providing skill sj p(ai,sj) The payment paid to ai for providing skill sj 
κ Task κ Iaκ The initiator agent of task κ 
Rκ The skills required by task κ Itκ The initialization time of task κ 
Dlκ The deadline of task κ Wtκ The working time of task κ 
vκ(t) The value function of task κ on time t Tκ The team built for task κ 
Ωκ The team members of team Tκ Cont(Ωκ,κ,∙) The team members’ skill contribution in Tκ 
usκ The unsatisfied skills of team Tκ Ev(κ,t) The estimated value of task κ at time τ 
Ep(Tκ,τ) The estimated profit of team Tκ at time τ Er(ai,Tκ,∙) Agent ai’s estimated remuneration in Tκ 
Sr(Tκ) The success rate of forming a complete 

team for task κ 
Re(Tκ) The remuneration paid to team members in 

Tκ 
as(ai,Rκ) Agent ai’s available skills for task κ, which 

is computed as Q(ai)∩Rκ 
Er(ai,Tκ,ns,∙) Agent ai’s estimated remuneration in Tκ by 

providing skills ns 
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sonable since each individual has limited energy and par-
ticipating in multiple teams will degrade the performance 
of each team it joins [17][46].  

Tasks. We consider a set of tasks Κ={κ1,κ2,…,κn} initiated 
by these agents A independently. Then, each task κK can 
be defined by a tuple <Iaκ,Rκ,Itκ,Dlκ,Wtκ,vκ(t)>, where Iaκ: 
κ→A indicates the agent that initiates task κ. In this paper, 
we consider a practical scenario that at each time step, 
tasks are initiated by agents independently with certain 
probability. Rκ is the set of skills required by κ and if sjRκ, 
task κ needs the skill service sj. Itκ is the initialization time 
of κ, i.e., at time Itκ, κ is generated by Iaκ. Dlκ is the dead-
line (the latest execution start time) of κ and Wtκ indicates 
the working time it will take to execute κ (note that κ must 
be executed completely before Dlκ+ Wtκ). Finally, vκ(t) rep-
resents the value associated with the task κ, which is a 
function of time t. Here, referring to the related definition 
in [26], we define the value function as: 

( ) ,
( )

0 ,

Dl Wt t
v t Dl Wt

Dl Itv t

t Dl Wt

 
  

 

 

 
 

 
  

                (1) 

vκ is the value associated with κ, set by its initiator Iaκ at 
the initialization time Itκ; δ (0<δ≤1) is the parameter model-
ing how task value decreases with the elapse of time t. If 
task κ starts execution before its deadline Dlκ, vκ(t) has the 
maximum value at time Itκ+Wtκ and the minimum value at 
time Dlκ+ Wtκ. 

Teams. Each team Tκ is responsible for a task κ and is 
denoted by a 3-tuple <Ωκ,Cont(Ωκ,κ,Pκ),usκ>, where Ωκ is 
the set of agents that join Tκ, i.e., the team members of Tκ. 
Cont(Ωκ,κ,Pκ)={(ai,sj,p(ai,sj)),…,(ap,sq,p(ap,sq))} is the skill con-
tribution function indicating that which team member con-
tributes which skill service and how much will be paid. In 
other words, the tuple (ai,sj,p(ai,sj)) means that team mem-
ber ai contributes skill sj and in return, team manager Iaκ 
pays p(ai,sj) for ai’s skill provision of sj. Finally, usκ is the 
skills that are not satisfied by the team members Ωκ, i.e., 
usκ=Rκ\{sj|(ai,sj,p(ai,sj))Cont(Ωκ,κ,Pκ)}. A team Tκ is called a 
complete fulfilled team if each skill has been satisfied by 
one team member, i.e., ∀sjRκ, ∃aiΩκ: (ai,sj,·)Cont(Ωκ,κ,∙). 
Otherwise, Tκ is a partial fulfilled team.  

Social Team Formation Problem. Given a task κ and a 
social network SN=<A,E>, the team manager Iaκ first wish-
es to build a feasible team Tκ=<Ωκ,Cont(Ωκ,κ,Pκ), ∅>. A fea-
sible team Tκ must satisfy the following three constraints.  
 The team Tκ must be professional. Each skill of κ must 

be satisfied by one team member, i.e., ∀sjRκ, ∃aiΩκ: 
(ai,sj,·)Cont(Ωκ,κ,∙).  

 The team Tκ should not include any redundant workers. 
Each team member must provide at least one skill ser-
vice, i.e., ∀ aiΩκ and sjRκ, ∃(ai,sj,·): (ai,sj,·)Cont(Ωκ,κ,∙). 

 The team Tκ must be collaborative. The subgraph in-
duced by the team members Ωκ must be connected. 
Besides satisfying the feasibility property, the re-

quester’s ultimate objective is to form the optimal feasible 
team with the cheapest workers as soon as possible, i.e., 
maximize vκ(t)-∑(ai,sj,p(ai,sj))Cont(Ωκ,κ,Pκ)p(ai,sj). This is because the 
task profit is discounted over time, and the earlier the team 
formed, the earlier the task can be completed, thereby the 
more profit will be produced for the requester. 

4 SKETCH OF THE SOCIAL TEAM FORMATION  

Before describing the social team formation model, we first 
define three roles of agents used throughout the team for-
mation process, i.e., Manager, Contractor and Freelancer.  

Definition 1. Manager, Contractor and Freelancer. Given a 

team Tκ for task κ, the agent who initiates κ is called the Man-
ager, the agents who join the team Tκ are called the Contractor 
of team Tκ and other agents are called the Freelancer that the 
team manager Iaκ can negotiate with. 

The social team formation model employed by the team 
manager Iaκ to find a set of beneficial freelancers is pre-
sented in Algorithm 1.  

Algorithm 1. Social Team Formation Model (κ,Iaκ) 
1. Initialize Ωκ=Iaκ, Rκ=Rκ\Q(Iaκ), Cont<Ωκ,κ,·>=Ø. 
2. Initialize Tκ=<Ωκ, Cont<Ωκ,κ,·>, Rκ >. 
3. While Itκ≤t≤Dlκ                    /* t is the team formation time */ 
4.     For each contractor ajΩκ 

5.         For ai∈N(aj) 
6.             Negotiate(Iaκ,aj,ai) and update team Tκ. 
7.             If ∀syRκ, ∃axΩκ: (ax,s,·)Cont(Ωκ,κ,·) 
8.                  Terminate team formation. 
9.         End for 
10.   End for 
11. End while 

In Step 1, as the initiator of task κ, agent Iaκ is responsi-
ble for contributing all of its available skills to κ and is re-
sponsible for building a team Tκ=<Iaκ,Ø,Rκ\Q(Iaκ)> to man-
age team contractors and recruit new freelancers (Step 2). 
Before the deadline of task κ (Step 3), each team contractor 
ajΩκ is responsible for introducing its neighbor freelanc-
ers N(aj) to the team manager Iaκ. After team contractor aj’s 
introduction, in Step 6, the team manager Iaκ is able to ne-
gotiate with the freelancer aiN(aj). The negotiation proto-
col adopted to make a contract between the team manager 
Iaκ and the freelancer ai about which skills to contribute 
and how much to be paid for ai’s skill provision will be 
discussed in Section 5. Finally, if the team manager Iaκ has 
recruited enough contractors such that they can satisfy all 
of the skill requirements of κ, Iaκ will terminate the team 
formation process and start task execution (Steps 7~8). It 
should be noted that this social team formation model can 
always form a connected sub-graph of SNs, which satisfies 
collaboration objective of social team formation. 

5 NEGOTIATION MECHANISM 

The negotiation mechanism, adopted in the team formation 
model, extends the traditional contract net protocol [31] by 
allowing a team manager Iaκ and a freelancer ai to reach an 
agreement on skill provision and skill provision payment. 
This mechanism mainly consists of three phases: i) offer: Iaκ 
sends an offer to ai on skill provision and skill provision 
payment; ii) Respond: ai responds to Iaκ’s offer, such as ac-
cept, reject this offer or propose payment improvement and 
iii) Confirm: Iaκ confirms a final contract with ai on skill pro-
vision and skill payment. Because of system dynamics, un-
certainty, team competition and time factor, it is almost 
impossible to compute the best strategies of the requesters 
and workers. Therefore, inspired by the evidence for these 
factors in the performance of real-world applications e-
commence [25][26][28], the proposed negotiation mecha-
nism connects these influential factors indirectly and de-
velops a set of heuristics to approximate agents’ optimal 
strategies. The main contribution of this paper is the strat-
egies designed for the manager to build beneficial feasible 
teams and for the worker to join the profitable teams, ra-
ther than only implementing the contract-net framework. 
In the following, we will describe these three phases in de-
tail in Section 5.1 (i.e., offer), Section 5.2 (i.e., Respond) and 
Section 5.3 (i.e., Confirm), respectively.  
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5.1 Team Manager Makes Offer to the Freelancer 

Before presenting the offer strategy, it is necessary to dis-
cuss the definition of the estimated profit that team man-
ager aims to maximize. Due to the dynamics and uncer-
tainty during social team formation, there are many factors 
correlated with the manager’s estimated profit, such as 
 The estimated value Ev, attached to task κ at time τ, 

which is given by the average value of finishing the task 
between the earliest completion time (τ+Wtκ) and the 
latest completion time (Dlκ+Wtκ), i.e., 

( )
( , )

Dl Wt

Wt
v t dt

Ev
Dl

 








 









                             (2)  

 The success rate Sr of forming a complete team, which is 
given by the fraction of task κ’s skills that have been sat-
isfied by team contracts, i.e., Sr(Tκ)=1-|usκ|/|Rκ|. The larg-
er fraction of skill requirement has been satisfied, the 
higher possibility a complete team will be formed. 

 Team contractors’ remuneration Re for performing task 
κ, which is given by 

( , , ( , )) ( , , )
( ) ( , )

i j i j
i ja s p a s Cont P

Re T p a s
 

  
           (3) 

p(ai,sj) is the payment that ai requires for providing skill 
service sj. In practical applications, the worker’s work-
ing costs for providing skills are often public and from a 
worker's perspective, letting the requesters know its 
true information may help him get a beneficial occupa-
tion [25]. Therefore, in the offer phase, the skill payment 
p(ai,sj) is equal to the public skill working cost c(ai,sj).  
As the manager of task κ, Iaκ prefers to employ a free-

lancer ai if ai’s participation increases the success rate of 
forming a complete team and ai asks for low skill service 
provision payment. Then, the estimated profit of team 
manager can be defined as follows. 

Definition 2. Estimated Profit of Team Manager. For a 
partial fulfilled team Tκ=<Ωκ,Cont(Ωκ,κ,Pκ),usκ> at time step τ, 
the team manager Iaκ’s estimated profit is: 

Ep(Tκ, τ)=Sr(Tκ)∙Ev(κ, τ)-Re(Tκ)                      (4) 
The meanings of the terms Sr, Ev and Re are defined above. 

Given the freelancer ai that team manager Iaκ is negotiat-
ing with, Iaκ should consider all of ai’s available skills as(ai, 
Rκ)=Q(ai)∩Rκ to compute the optimal skill provision. Dif-
ferent freelancers might have different kinds of available 
skills, with whom the team manager should negotiate with 
different strategies. Next, we first divide the freelancers 
into two different categories (i.e., fresh freelancer and redun-
dant freelancer) according to his available skills and then 
present different offer strategies for the requester to negoti-
ate with the two kinds of freelancers in Section 5.1.1 and 
5.1.2, respectively. 

Definition 3. Fresh Freelancer and Redundant Freelancer. 
Given a freelancer ai that the team manager Iaκ is negotiating 
with, if ai’s available skills as(ai, Rκ) are exactly what team Tκ 
lacks, i.e., as(ai, Rκ)⊆usκ, then ai is called a fresh freelancer. 
These available skills of the fresh freelancer are called the fresh 
skills. Otherwise, if there exists certain available skill sxas(ai, 
Rκ) that has been satisfied by certain team contractors ayΩκ, 
i.e., as(ai, Rκ)⊄usκ, then ai is called a redundant freelancer. 
These available skills that have been satisfied by certain team 
contractors are called the redundant skills. 

5.1.1 Team Manager Makes Offer to a Fresh Freelancer 

Suppose the team manager Iaκ is negotiating with a fresh 
freelancer ai whose available skills are just what the team 
Tκ lacks, Iaκ has to decide which skills to recruit such that 
these skills’ contribution can maximize Iaκ’s estimated prof-

it. We propose a polynomial algorithm for Iaκ to select the 
optimal skills of ai, shown in Algorithm 2.  

Algorithm 2. Offer to Fresh Freelancer (Iaκ, Tκ, ai, ns, τ) 
/*ns: the set of skills that freelancer ai should provide; 

τ: the current time. */ 
1. Initialize th=Ev(κ, τ)/|Rκ|, ns=∅. 
2. For sjas(ai,Rκ) 
3.        If c(ai,sj)≤th, then ns=ns∪sj and j=j+1. 
4. End For      
5. If ns≠∅, send the Offer O=<Iaκ,Tκ,ai,ns> to ai.  

In Step 1 of Algorithm 2, before negotiating with ai, Iaκ 
first initializes some useful variables: the threshold value 
th=Ev(κ, τ)/|Rκ| represents how much will the estimated 
profit be improved by hiring a fresh skill sjusκ. This value 
is used to evaluate whether a skill is worth hiring or not. 
The set ns stores the skills that Tκ would hire from ai. In 
Step 2, Iaκ evaluates ai’s available skills as(ai, Rκ) one by one, 
and if the cost of skill sj is not larger than the threshold 
value th, the manager adds sj to the skill set ns and pro-
ceeds to evaluate the next skill (Step 3). Finally, if Iaκ finds 
that it is beneficial to recruit ai by using its skills ns (i.e., 
ns≠∅), Iaκ sends an offer O=< Iaκ,Tκ,ai,ns> to ai for skill ac-
quirement (Step 5). 

Besides its low O(l) time complexity (l is the number of 
available skills in the system), Algorithm 2 also guarantees 
that the selected skills ns maximizes Iaκ’s estimated profit. 

Theorem 1. Given a fresh freelancer ai that the team manager 
Iaκ is negotiating with, Algorithm 2 returns the optimal skill 
provision of ai that maximizes Iaκ’s estimated profit. 
Proof. Before the negotiation, assume that the team Tκ’s 

current team profile Tκ=<Ωκ,Cont(Ωκ,κ,Pκ),usκ> and the 
team manager Iaκ’s current estimated profit is: 
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where the threshold value th represents the estimated prof-
it improvement per skill, i.e., th=Ev(κ, τ)/|Rκ|. Then we can 
derive that the marginal benefit from adding a fresh skill is 
exactly the threshold and adding a skill that has larger cost 
than th will definitely decrease Iaκ’s estimated profit. Now 
we can conclude that for a given fresh freelancer ai, Algo-
rithm 2 always returns ai’s optimal skill provision.    □ 

5.1.2 Team Manager Makes Offer to a Redundant 
Freelancer 

For a redundant freelancer ai that agrees to contribute a 
redundant skill sj that has been satisfied by the certain 
team contractor axΩκ, Iaκ needs to remove ax’s skill con-
tribution of sj. If removing ax’s contribution of skill sj 
makes ax do not contribute skills any more, Iaκ then will 
break the contract with ax. Moreover, if ay is only connect-
ed with the team contractor ax and removing ax from team 
Tκ makes other team contractor ayΩκ be isolate, ay will 
also depart from Tκ, which further degrades the estimated 
profit of team Tκ.  

Thus, given a redundant freelancer ai, on one hand, even 
if ai’s available skill sjas(ai, Rκ) has been satisfied by cer-
tain team contractor ax, sj still needs to be accounted for. 
This is because the freelancer ai might require a lower 
payment for providing sj. On the other hand, even if the 
available skill sj requires a lower payment than that of the 
existing team contractor (e.g., ax) for providing sj, team 
manager Iaκ should not replace the existing skill contribu-
tion (ax,sj,·) by the cheaper skill contribution (ai,sj,·). This is 
because this kind of replacement might make existing team 
contractors depart. At first glance, Iaκ needs to consider all 
of the exponential O(2|as(ai,Rκ)|) possible skill combinations to 
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identify the optimal skill contribution of ai. In the following, 
we propose an efficient polynomial algorithm (i.e., Algo-
rithm 3) to find the optimal skill contribution of ai that 
produces the maximal estimated benefit for Iaκ. 
Algorithm 3. Offer to Redundant Freelancer (Iaκ,Tκ,ai,ns,τ) 
1. Initialize q=1, H=∅, max=Ep(Tκ, τ), th=Ev(κ, τ)/|Rκ|. 
2. Rank sjas(ai,Rκ) such that c(ai,s1)≤…≤c(ai,s|as(ai,Rκ)|).  
3. While q≤|as(ai,Rκ)| 
4.        If Ep(Tκ⊗ {ns∪sq}, τ)≥max 
5.            ns=ns∪sq, max=Ep(Tκ⊗ ns, τ). 
6.        Else  
7.            If sq∉usκ&&c(ai,sq)≤min{th,p(ax,sq)}  

/*ax is the team contractor that provides skill sq*/ 
8.               Set rs=Tκ\{Tκ⊗ {ns∪sq}} and cs=∪q<p≤|as(ai,Rκ)|sp∩rs. 
9.             For sp∈cs  
10.                   If c(ai,sp)≤th, then H=H∪sp; 
11.           End for  
12.           If Ep(Tκ⊗ {ns∪sq∪H, τ)≥max, then ns=ns∪sq∪H; 
13.       End Else 
14.      q=q+1; 
15. End while 
16. If ns≠∅, send the Offer O=<Iaκ,Tκ,ai,ns> to ai.  

In Algorithm 3, Step 1, before negotiating with the re-
dundant freelancer ai, the manager Iaκ first initializes some 
useful variables, such as max, denoting the current team 
Tκ’s estimated profit and the threshold th, denoting how 
much will be improved on current team’s estimated value 
by contributing each fresh skill. This variable th is used to 
evaluate whether ai’s skill is profitable. In Step 2, Iaκ first 
sorts ai's available skills as(ai, Rκ) in increasing order of 
working cost and then evaluates these skills in the order of 
their rank (Steps 3~15). In step 4, we use Ep(Tκ⊗ {ns∪sq}, τ) 
to represent Iaκ’s estimated profit after the redundant free-
lancer ai contributes skills {ns∪sq}. In this case that ai is a 
redundant freelancer, Ep(Tκ⊗ {ns∪sq}, τ) can be computed 
by Algorithm 4, where Iaκ first adds ai’s each contributed 
skill sy{ns∪sq} to the current skill contribution function 
Cont(Ωκ,κ,∙) (Step 1 of Algorithm 4). And then Iaκ updates 
team configuration Tκ⊗ {ns∪sq} by removing existing team 
contractors’ overlapping skill contribution (Step 2 of Algo-
rithm 4), removing the team contractors that do not con-
tribute any skill after removing their overlapping skill con-
tribution (Step 3 of Algorithm 4), and finally removing the 
team contractors that are isolate from the team Tκ (Step 4 of 
Algorithm 4). If the estimated profit produced by the up-
dated team Tκ⊗ {ns∪sq} in not less than that of the previous 
team Tκ⊗ ns with the estimated profit max (Step 4), add sq to 
ns (Step 5). Otherwise, if ai’s working cost for sq, c(ai,sq) is 
not greater than the minimum between the value th and 
the skill payment p(ax,sq) of the team contractor ax (Step 7), 
then the only reason for the updated team Tκ⊗ {ns∪sq} 
produces a lower estimated profit than that of the previous 
team Tκ⊗ ns is that ai’s skill contribution of sq will make the 
contractor ax and other contractors (if any) depart. These 
team contractors’ departure will make their contributed 
skills removed in Tκ, thereby decreasing the estimated 
profit of team Tκ⊗ {ns∪sq}. Therefore, in the following steps 
(Steps 8~11), we try to compensate for these removed skills 
by using the remaining available skills ∪q<p≤|as(ai,Rκ)|sp of ai. 
First, in step 8, denoted by rs=Tκ\{Tκ⊗ {ns∪sq}} as the re-
moved skills because of ai’s skill contribution of sq and by 
cs=∪q<p≤|as(ai,Rκ)|sp∩rs as the remaining available skills of ai 
that can be used to compensate for the removed skills rs. 
Here, we can derive that cs is exactly what the current 
team Tκ⊗ {ns∪sq} lacks. Then be similar to the scenario of 
negotiating with a fresh freelancer, we can utilize the idea 

of Algorithm 2 to identify the optimal compensation skills 
(i.e., H) from the available compensation skill set cs (Steps 
9-11). If the value of Ep(Tκ⊗ {ns∪sq∪H, τ) by contributing 
the compensation skills H to team Tκ⊗ {ns∪sq} is not less 
than max, Iaκ will consider hiring ai’s skill sq together with 
the compensation skills H (Step 12). Finally, if Iaκ finds it is 
beneficial to hire ai by using its skills ns (i.e., ns≠∅), Iaκ then 
sends an offer to ai for skill acquirement (Step 16).  

Algorithm 4. Function (Tκ⊗ cs)  
/*cs: the set of skills that the team Tκ hires and this function re-
turns the team configuration after team Tκ hires skill set cs*/ 
1. Manager Iaκ adds ai’s each contributed skill sycs to the 

current skill contribution function Cont(Ωκ,κ,Pκ). 
2. Remove the team contractor ax’s overlapped skill contri-

bution (ax,sy), where sycs. 
3. Remove the team contractor ax that does not contribute 

any skill after removing its skill contribution of sy.  
4. Remove the team contractors (as well as their contribut-

ed skills) that are isolate in the team Tκ after removing 
certain team contractors removed in Step 3. 

Before presenting the optimization of Algorithm 3 
(which is given in Theorem 2), we first give the following 
two lemmas that are useful to prove Theorem 2.  

Lemma 1. Given a team Tκ and a redundant freelancer ai with 
the available skills Z=X∪Y (X, Y≠∅ and X∩Y=∅), then 
Ep(Tκ⊗ Z)=Ep(Tκ⊗ X)+Ep(Tκ⊗ Y)-Ep(Tκ), where Tκ⊗ X is the 
updated team of Tκ by contributing the skills X to Tκ (defined in 
Algorithm 4). 

Proof: Based on the definitions of team manager’s estimat-
ed profit (i.e., Ep) and team updating function Tκ⊗ Z (i.e., 
Algorithm 4), we can derive the estimated profit by con-
tributing the skill set X 
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where th=Ev(κ, τ)/|Rκ| is the estimated profit improvement 
per skill contribution, and rsx indicates the skills removed 
from team Tκ because of the contribution of skills X’s. Since 
X∩Y=∅, then we have 
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    (7) 

Therefore, we can conclude Ep(Tκ⊗ Z)=Ep(Tκ⊗ X)+Ep(Tκ⊗ 

Y)-Ep(Tκ). Here for simplicity, we omit the symbol τ.      □ 
Lemma 2. Given a team Tk and a redundant freelancer ai with 

the available skills Z=∪1≤i≤nXi (∀Xj, Xk: Xj, Xk≠∅ and Xj∩Xk=∅), 

then Ep(Tκ⊗ Z)=Ʃ1≤i≤nEp(Tκ⊗ Xi)-(n-1)Ep(Tκ), where Tκ⊗ Xi is 

the updated team of Tκ by contributing the skill set Xi to Tκ. 
Proof: According to Lemma 1, we can derive  
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   (8) 

Summing all of the above n-1 equations in (8), we have 

Ep(Tκ⊗ Z)=Ʃ1≤i≤nEp(Tκ⊗ Xi)-(n-1)Ep(Tκ).             □ 
Now we are ready to give the optimization of Algorithm 3. 

Theorem 2. Given a redundant freelancer ai that Iaκ is negotiat-
ing with, Algorithm 3 returns the optimal skill contribution of ai 

that produces the maximal estimated profit for Iaκ. 
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Proof. Suppose that the skill set returned by Algorithm 3 is 
Alg, and the skill set returned by the optimum is Opt. In 
the following, we will prove that Opt=Alg. Denoted by Θ as 
the common contributed skills between Alg and Opt, i.e., 
Θ=Alg∩Opt, by θ as the skills contributed by Alg only, i.e., 
θ=Alg\Θ and by ψ as the skills contributed by Opt only, i.e., 
ψ=Opt\Θ. To prove Opt=Alg, we only need to prove θ=ψ=∅.  

Conclusion 1) ψ=∅. We achieve this conclusion by prov-
ing that if the skills contributed only by Opt (i.e., ψ) in-
crease the estimated profit of the team of Tκ⊗ Θ, the team 
manager Iaκ can always find the skills ψ that increases the 
estimated profit of the team Tκ⊗ Alg. As described in Algo-
rithm 3, the skills ψ are first sorted in increasing order of 
their working cost such that c(ai,s1)≤…≤c(ai,s|ψ|) and then 
are evaluated one by one in their order. For the first skill 
s1ψ, if Algorithm 3 does not select s1, we have Ep(Tκ⊗ 
{Alg∪s1})<Ep(Tκ⊗ Alg) (Assumption 1), otherwise, Algo-
rithm 3 will identify this beneficial skill. According to Al-
gorithm 3, we can derive that there are three possible cases 
to support Assumption 1. Case 1) s1usκ&&c(ai,s1)>th. This 
is impossible, because it is profitable for Opt to select the 
unsatisfied skill s1, where c(ai,s1)≤th. Case 2) 
s1∉usκ&&c(ai,s1)>min{th,c(ax,s1)} (ax is the team contractor 
that has agreed to contribute s1). This is also impossible, 
because contributing s1 will also decreases the estimated 
profit of team Tκ⊗ {Opt\s1}, which contradicts the fact that 
Opt is the optimal skill contribution. And case 3) 
s1∉usκ&&c(ai,s1)<min{th,c(ax,s1)}, in this case, the reason that 
contributing s1 does not improve the team profit Ep(Tκ⊗ Alg) 
is that the skill contribution of s1 makes other satisfied 
skills rs⊆Alg\s1 removed, thereby decreasing the estimated 
profit of team Tκ⊗ Alg. Next, we will prove that case 3) 
never happens. If the skill contribution of s1 to team Tκ⊗ Alg 
makes other satisfied skills rs removed, then by Steps 9-12, 
Algorithm 3 can always find the optimal compensation 
skills cs⊆{ψ\s1} for team Tκ⊗ {Alg∪s1} (which has been 
proved in Theorem 1). By Assumption 1, this contributions 
of skill s1 associated with the compensation skills cs does 
not increase the estimated profit of team Tκ⊗ Alg, i.e.,  
Ep(Tκ⊗ {Alg∪s1∪cs})<Ep(Tκ⊗ Alg) 
⇒ Ep(Tκ⊗ Alg)+Ep(Tκ⊗ {s1∪cs})-Ep(Tκ)<Ep(Tκ⊗ Alg)          (9) 
⇒ Ep(Tκ⊗ {s1∪cs})-Ep(Tκ)<0                                                   

The inequality (9) is derived from Lemma 2. On the oth-
er hand, from the view of Opt, we have  
Ep(Tκ⊗ Opt) 
=Ep(Tκ⊗ {Θ∪{s1∪cs}∪{ψ\{s1∪cs}}) 
=Ep(Tκ⊗ Θ)+Ep(Tκ⊗ {ψ\{s1∪cs}})+Ep(Tκ⊗ {s1∪cs})-2Ep(Tκ) 
<Ep(Tκ⊗ Θ)+Ep(Tκ⊗ {ψ\{s1∪cs}})-Ep(Tκ)                             (10) 

However, as Opt is the optimal skill provision, we have 
Ep(Tκ⊗ Opt)≥Ep(Tκ⊗ {Θ∪{ψ\{s1∪cs}}}) 
⇒ Ep(Tκ⊗ Opt)≥Ep(Tκ⊗ Θ)+Ep(Tκ⊗ {ψ\{s1∪cs}})-Ep(Tκ)   (11) 
The inequality (11) holds because Θ∪{ψ\{s1∪cs}}⊆Opt and 
Θ∩{ψ\{s1∪cs}}=∅, which contradicts inequality (11). There-
fore, we can conclude that ψ=∅. 

Conclusion 2): θ=∅. The proof of this conclusion is simi-
lar to that for Conclusion 1) and due to the limitations of 
space, we omit the proof.               □ 

5.2 Freelancer Makes Response to the Team 
Manager 

Once the freelancer ai receives the offer O=<Iaκ,Tκ,ai,ns> 
from team manager Iaκ, ai assesses this offer and make a 
response to Iak. Before describing ai’s response strategy, we 
first define the states (i.e., Fully-contracted, Partial-contracted 
and Free) of ai during social team formation.  

Definition 4. States of Agents. During social team formation, 

the agent who initiates a task or has been a member of a fulfilled 
team is in state Fully-contracted; the agent who has been a 
member of a partial team is in state Partial-contracted; and the 
agent who neither initiates a task nor has joined a team is in 
state Free. 

Agents in different states might have different response 
strategies. In the following we will present ai’s optimal re-
sponse strategies within different states. 

Case 1) ai is Free. In this case, ai will accept team Tκ’s of-
fer. This is because joining a team to work on team task can 
obtain some financial remuneration, which is a rather eco-
nomical option compared to state in Free where there is no 
payment. Moreover, in the Free state, the payment p(ai,sj) 
required for providing ai’s skill service sj is just his public 
working cost c(ai,sj), i.e., p(ai,sj)=c(ai,sj). 

Case 2) ai is Partial-contracted. Assume that ai has been 
a member of a partial team Tκ* and now at time step τ, ai 
receives a new offer O=<Iaκ,Tκ,ai,ns> from a new team Tκ. A 
dilemma is faced by ai: breaking the contract with the orig-
inal team Tκ* by joining this new team Tκ or staying with 
the original team Tκ* by rejecting the new offer O(∙,Tκ,∙). 
Here, to quantify how much ai gains by accepting or reject-
ing, the measure of estimated remuneration (per unit time) 
is utilized. On one hand, staying in the original team Tκ*, ai 
will obtain the estimated remuneration: 
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The formula (12) indicates that ai’s  estimated remunera-

tion (per unit time) Er(ai, Tκ*, τ) is 1) directly proportional 

to the success rate, Sr(Tκ*,τ) of forming a complete team Tκ*, 

which is further positively related to the skills that have 

been satisfied and the remaining time for building team, 

i.e., Sr(Tκ*,τ)=(1-|usκ*|/|Rκ*|)(Dlκ*-τ); 2) directly proportional 

to the revenue achieved by providing his skill service, i.e.,
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to the working time, Wtκ*, that is required to accomplish 

the task κ*.  
On the other hand, joining the new team Tκ that sends 

the new offer O=<Iaκ,Tκ,ai,ns>, ai will obtain the estimated 
remuneration (per unit time):  
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where Sr(Tκ,τ)=(1-|usκ\ns|/|Rκ|)(Dlκ-τ) indicates the success 
rate of the new team Tκ that will be formed completely if ai 
agrees to contribute the skills ns. The value ∑sj∈nsc(ai,sj) in-
dicates the revenue ai will achieve by joining Tκ. The mean-
ings of other terms are similar to those discussed in Equa-
tion (12).  

As a rational freelancer that aims to maximize his own 
payment, ai prefers to join the team that can achieve a high 
estimated remuneration. Now we are ready to discuss the 
corresponding response strategy of ai by comparing the 
values of Er(ai, Tκ*, τ) and Er(ai, Tκ, ns, τ).  
 If Er(ai,Tκ*,τ)≥Er(ai,Tκ,ns,τ). In the case that ai’s estimated 

remuneration achieved from the original team Tκ* is not 
less than that of the new team Tκ, ai prefers to stay in the 
original team Tκ* and reject the offer of Tκ. 

 If Er(ai,Tκ*,τ)<Er(ai,Tκ,ns,τ). In this case, intuitively, ai 
should break the contract with the original team Tκ* and 
join the new team Tκ. However, the team contractor ai’s 
departure will make the original team Tκ* be disconnect-
ed. This disconnection will make other team contractors 
isolate and depart, which will degrade the estimated 
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profit of Tκ*. Therefore, when considering to terminate 
the contract with his joined team Tκ*, ai should attempt 
to propose whether the team manager Iaκ* is willing to 
improve the payments of the contributed skills to per-
suade him to stay with the team. Here, denoted by cs as 
ai’s contributed skills to his joined team Tκ*, i.e., cs(ai, 
Tκ*)={sj|(ai,sj,∙)∈Cont(Ωκ*,κ*,∙)}. Then, to achieve as high 
estimated remuneration as that would be achieved from 
the new team Tκ, ai will propose to improve the payment 
of each contributed skill sj∈cs to 
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where Er(ai,Tκ,ns,τ) is the estimated remuneration that 
would be achieved from the new team Tκ computed by 
Equation (13). The values p(ai,sj) and p’(ai,sj) are the orig-
inal and adjusted skill payment, respectively. After 
computing the adjusted payment, ai will send a payment 
improvement response R=<{p(ai,sj)→p’(ai,sj)|sj∈cs(ai,Tκ*)}> 
to the original team’s manager Iaκ*. 
Case 3) ai is Fully-contracted. If ai’s joined team Tκ has 

hired enough contractors such that they can satisfy all of 
the skill requirements of team task κ and has started task 
execution, ai will reject any new offer until task κ has been 
finished. This is because each contractor can only make 
contract with one team and breach the current complete 
fulfilled team will suffer tremendous monetary penalty or 
reputation loss [18][47].  

5.3 Team Manager Makes Confirmation to the 
Freelancer 

As the manager of Tκ, Iaκ might receive two kinds of re-
sponses: 1) the payment improvement response from his 
team contractors because of other teams’ competition; and 
2) the acceptance or rejection response from the freelancer. 
Next we will discuss the corresponding confirmation strat-
egy of Iaκ when he confronts these two kinds of responses.  

Case 1) For the contractor ai that proposes to improve 
skill payment <{p(ai,sj)→p’(ai,sj)|sj∈cs(ai,Tκ*)}> (cs represents 
the skills that ai agrees to provide to his joined team Tκ), the 
team manager Iaκ will compare the estimated profit of 
team profile Ep(Tκ, {p(ai,sj)→p’(ai,sj)|sj∈cs(ai,Tκ*)},τ) by im-
proving ai’s skill payment and the estimated profit 
Ep(Tκ\{ai},τ) of the team profile Tκ\{ai} by removing the 
team contractor ai. If Ep(Tκ, {p(ai,sj)→p’(ai,sj)|sj∈cs(ai,Tκ*)}, 
τ)≥Ep(Tκ\{ai}, τ), Iaκ will accept ai’s proposal on skill pay-
ment improvement. Otherwise, he will reject ai’s proposal. 

Case 2) For the freelancer ai that sends the acceptance or 
rejection response, the team manager Iaκ needs to make 
some agreements for this response. On one hand, if ai ac-
cepts Iaκ’s offer O=<Iaκ,Tκ,ai,ns>, Iaκ first makes a tentative 
contract with ai on skill contribution ns and skill payment. 
A tentative contract means that before Tκ is formed com-
pletely, team contractor ai can adjust its skill contribution 
to Tκ as well as can propose to improve the skill payment. 
Furthermore, if ai’s skill contribution leads to a complete 
fulfilled team for task κ, all tentative contracts of this team 
will become a final contract such that team contractors 
cannot breach the contract unilaterally until κ is finished 
successfully. After making the contract with ai, Iaκ then 
updates team configuration by adding the skill contribu-
tions ∪sjns(ai,sj,p(ai,sj)) to Cont(Ωκ, κ, Pκ), removing the 
overlapped skill contributions provided by other team con-
tractors, removing the team contractors that do not con-
tribute skills anymore and removing those isolate team 
contractors as well as these contractors’ skills. On the other 
hand, if ai rejects Iaκ’s offer O=<Iaκ,Tκ,ai,ns>, Iaκ does nothing. 

5.4 Negotiation Algorithm 

Up to this point, we have described the negotiation process 
between a team manager and a freelancer. A formal de-
scription of this negotiation mechanism that makes an 
agreement on skill provision and skill provision payment 
between team manager Iaκ and freelancer ai is shown in 
Algorithm 5. Algorithm 5 is implemented in a distributed 
manner such that each requester/worker invokes the nego-
tiation mechanism independently. 

Algorithm 5. Negotiate(Iaκ,aj,ai) 
Stage 1: Manager Iaκ calls Algorithm 2 (i.e., ai is a fresh free-
lancer) or Algorithm 3 (i.e., ai is a redundant freelancer) to 
generate the offer O=< Iaκ,Tκ,ai,ns> to ai.  
Stage 2: 
1) If ai is Free 
2)     Freelancer ai sends response R=<acceptance> to Iaκ. 
3) If ai is Fully-contracted 
4)     Freelancer ai sends R=<rejection> to Iaκ. 
5) If ai is Partially-contracted 
6)     If  Er(ai,Tκ*,τ)≥Er(ai,Tκ,ns,τ) 

/* Tκ* is the current team of which ai is a member */ 
7)          Freelancer ai sends R=<rejection> to Iaκ. 
8)     Else 

Freelancer ai first proposes to his joined team man-
ager Iaκ* for payment improvement {sj∈cs(ai, 
Tκ*)|p(ai,sj)→p’(ai,sj)} (computed by formula (15)). 

9)           If Iaκ* agrees to improve ai’s payment  
10)     Freelancer ai sends R=<rejection> to Iaκ. 
11) Else   Freelancer ai sends R=<acceptance> to Iaκ. 
Stage 3: If R=<acceptance>, Iaκ makes a contract (tentative or 
final) with ai and updates team configuration. 

6 EXPERIMENTAL VALIDATION AND ANALYSES 

In Section 6.1, we compare the proposed social team for-
mation model with the traditional distributed models on 
social welfare and team formation time. In Section 6.2, we 
compare our model with the benchmark centralized model 
on social welfare.  

6.1 Comparing with the Traditional Distributed 
Social Team Formation Models 

6.1.1 Experiment Setting 

A Dataset. We collect the data on 764 workers registered in 
the crowdsourcing website Upwork, upwork.com. For 
each worker, we record two kinds of personal information: 
1) the set of skills he owns and 2) the salary in dollars per 
hour he requires. Through analyzing these workers’ in-

Table 2 Parameter Setup 

Parameter  Value Definitions 

n 746 The number of agents in SN 
l 20 The number of skills in SN 

|Q(ai)| [1, 13] The number of skills of ai 
c(ai,sj) [0.5, 90] The cost of ai providing skill sj  
d [6, 20] The network degree 
λ [0.1, 0.9] The task arrival rate  
π 1000 The system running time steps 
Itκ [0,π] The initialization time of task κ 
Dlκ [Itκ,Itκ+50] The deadline of task κ 
Wtκ [20, 40] The working time of task κ 
vκ [200, 400] The value of task κ 
δ [0.2, 1.6] Task discount rate 
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formation, we observe that there are 20 kinds of skills 
available by these workers, the skill number of each work-
er distributes in the range [1, 13] and the cost of providing 
each skill service distributes in [0.5, 90] randomly. These 
collected workers are interconnected by three typical social 
network structures such as Random network (Random), 
Small-World network (SMW) and Scale-Free network (SF).  

B. Parameter setting. By referring to the related defini-
tion on parameter setting in [26], we range other parame-
ters involved in the social team formation process as fol-
lows. At each time step, a task arrives at the system with a 
probability λ=0.1~0.9. The period required to accomplish a 
task (i.e.,Wtκ) is drawn from U(20,40) (U(a,b) returns the 
value in the range [a,b] randomly) and the deadline of each 
task (i.e., Dlκ) is distributed in [Itκ, Itκ+50], which must be 
greater than the task’s initiation time Itκ. The value associ-
ated with each task (i.e., vκ) is distributed in U(200, 400) 
and the discount rate on time decay (i.e., δ) is distributed 
in [0.2, 1.6]. For clarity, we give a detail description of the 
used variables in Table 2.  

C. Comparison models and performance metrics. We 
compare the designed social team formation model (Our 
model) with other two distributed models, i.e., the greedy 
model (Greedy) and contract net model (CN). 
 Greedy Model (Greedy) [28]. In this model, the task 

manager evaluates the skills of the negotiated worker ai 
one by one and once he finds ai has lower working cost 
of providing sj than that of certain team member ax∈Ωκ, 
i.e., c(ai,sj)<c(ax,sj), the manager replaces the skill contri-
bution (ax,sj,c(ax,sj)) by using ai’s skill service sj. On the 
other hand, the workers only join the team where they 
can achieve high payment. Compared to this model, our 
model’s advantage of considering the combinational 
skill contribution could be revealed. 

 Contract Net Model (CN) [31]. In this model, the task 
manager only selects the workers that have the skills the 
team lacks and the workers only join the team where 
they can achieve high payment. Since the negotiated 
workers always contribute the team’s lacked skills, there 
is no conflict between the negotiated worker and team 
contractors, therefore the formed team is always con-
nected. Compared to this model, our model’s advantage 
of negotiating the working cost could be revealed. 

 We evaluate the performance of these models through 
social welfare (SW) and the time used for team for-

mation. SW is defined as the sum of all managers’ prof-
its, i.e., 

        
1

( ) ( ( ) ( ))
i

n

i CT
SW profit Ia v ct Re T

   
           (15) 

where CT denotes the set of tasks that are completed suc-
cessfully and ctκ is the completion time of task κ and Re(Tκ) 
indicates the total remuneration paid to team workers. 
We perform a series of experiments to validate our model: 
we first test the effect of network degree and task discount 
rate on the distributed social team formation models’ social 
welfare and team formation time in Section 6.1.2A and 
6.1.2B respectively. In Section 6.2, we test the social welfare 
of our model by comparing our model with the benchmark 
centralized model. Moreover, in Appendix A3 an A4, we 
also test the robustness and scalability of our model. All 
the results plotted in the figure are recorded by averaging 
over 50 instances.   

6.1.2 Experimental Results 

A. The Effect of Network Degree on Social Welfare and 
Team Formation Time 

Fig. 1 shows the social welfare (Fig. 1a~Fig. 1c) and the 
team formation time (Fig. 1d~Fig. 1f) achieved by our 
model, CN and Greedy on network degree, where task 
discount rate is set to 0.8. The network degree is computed 
as the average degree of all workers. From Fig. 1, we have 
the following observations. 

1) Within all network structures from Fig. 1a~Fig. 1c, 
our model produces larger social welfare than the other 
two distributed Greedy and CN models. This can be ex-
plained from two perspectives: i) As shown in Fig. 1d~Fig. 
1f, our model uses less time on team formation. Because 
the task value is discounted over time, the less time used 
for team formation, the earlier the task will be completed, 
and then the larger task profit will be produced. ii) Com-
pared to CN model, the team manager in our model nego-
tiates with the workers on working cost, which can help 
the manager build team of inexpensive workers. Although 
the team manager in Greedy also evaluates the worker’s 
working cost, its large team formation time prevents 
Greedy producing high task profit. 

2) The social welfare produced by Greedy performs 
much worse in the networks of Scale-Free (SF) compared 
to the social welfares in Random and Small-Word (SMW). 
This can be explained from the perspective of team for-
mation time. Compared Fig. 1d and Fig. 1e with Fig. 1f, we 

 
                         (a) Random                                                   (b) Small-World                                                     (c) Scale-Free     

 
(d) Random                                                     (e) Small-World                                                    (f) Scale-Free  

Fig. 1. The effect of network degree on different social team formation models’ social welfare (a~c) and team formation time (d~f). 
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can observe that the team formation time of Greedy in SF is 
larger than the team formation time of Random (or SMW). 
However, why does Greedy generate larger team for-
mation time in SF than that in Random (or SMW)? We can 
explain this phenomenon by the network property. Table 3 
shows the three typical network properties, such as net-
work diameter (Dia), average shortest path length (Aspl) 
and clustering coefficient (Clu) ([50] gives a detail illustra-
tion of these properties). From Table 3, we can find that the 
SF network have shorter Dia and Aspl than those of Ran-
dom (or SMW). The shorter Dia and Aspl indicate that the 
workers can interact with others more easily. Now we will 
explain why Greedy generates the larger team formation 
time in SF than that in Random (or SMW). On one hand, in 
Greedy, as long as a worker has the skills the team re-
quires, the team manager would negotiate with the worker 
for skill provision, leading to the manager consume much 
time on making a contract with a freelancer and breaking a 
contract with certain existing contractor. And because of 
the shorter Dia and Aspl, this repetitive action of making 
and breaking contracts will happen more frequently, 
which will consume much more team formation time. 
While our model negotiates with the worker if and only if 
he can provide the available skills with cheaper working 
cost and CN only negotiates the worker that can provide 
the skills the team current lacks. Therefore, Dia and Aspl 
have not much effect on our model and CN model. 

3) Within all the networks, as the network degree in-
creases, our model, Greedy and CN will consume much 
more time on team formation (Fig. 1d~Fig. 1f). However, 
the social welfares of our model, Greedy and CN increase 
gradually. The potential reason is that on one hand, the 
larger the network degree, the managers will have more 
social neighbors, and then they will have higher probabil-
ity to negotiate with the cheap workers, leading to an in-
crease of their profit. On the other hand, the more social 
neighbors can make these managers access different kinds 

of skills, thereby increasing the success rate in task comple-
tion, which will also increase system social welfare.  

B. The Effect of Task Discount Rate on Social Welfare 
and Team Formation Time 

Fig. 2 shows the social welfare (Fig. 2a- Fig. 2c) and team 
formation time (Fig. 2d- Fig. 2f) of these models on differ-
ent task discount rates, where network degree is 8. From 
Fig. 2, we have the following two findings. 1) Within all 
the networks, the team formation time of Greedy and CN 
stay nearly invariable, while surprisingly, our model de-
creases with the increase of task discount rates (Fig. 2d~Fig. 
2f). This can be explained as follows: on one hand, in our 
model, the manager’s decision on hiring workers depends 
on the remaining time for team formation. This means that 
when the task discount rate becomes larger, the threshold 
th=Ev(κ, τ)/|Rκ|, which is used to evaluate whether a skill is 
worth hiring, decreases as well. And this lower threshold 
will increase the probability of workers to be hired, there-
by resulting in a fast team formation. While in CN and 
Greedy, the team manager’s decision on hiring a skill is 
time independent and when the task discount becomes 
larger, the team formation time stays invariable. 2) Within 
all the networks, the social welfare of our model, CN and 
Greedy is negatively proportional to task discount rate (Fig. 
2a~Fig. 2c). This finding is intuitive because the larger the 
task discount rate, the less task profit will be produced. 

6.2 Comparison with the Benchmark Centralized 
Optimal Approach 

To test the efficiency of our model, we compare our model 
with the benchmark centralized model [17], where there 
exists a central controller maintaining information on all of 
the agents’ social connections and working costs. When a 
task submitted by a requester, the controller can build a 
team of connected workers that have the least working 

 
                       (a) Random                                                      (b) Small-World                                                   (c) Scale-Free 

 
(d) Random                                                    (e) Small-World                                                     (f) Scale-Free  

Fig. 2. The effect of task discount rate on different social team formation models’ social welfare (a~c) and team formation time (d~f). 

Table 3 The properties of networks 

 Network Degree 

=6 =10 =14 =18 

Dia Aspl Clu Dia Aspl Clu Dia Aspl Clu Dia Aspl Clu 

Random 7.0 4.0 0.007 5.1 3.3 0.011 4.9 3.0 0.015 4.0 2.7 0.019 

Small-World 7.5 4.5 0.22 5.2 3.5 0.24 5. 0 3.1 0.25 4.0 2.8 0.26 

Scale-Free 6.0 3.5 0.03 5.0 2.9 0.035 4.0 2.7 0.045 4.0 2.5 0.053 

 

Property 

Network 



TOWARDS EFFICIENT TEAM FORMATION FOR CROWDSOURCING IN NON-COOPERATIVE SOCIAL NETWORKS 11 

 

costs. This is an ideal model, which is impractical, but it 
can be used as an upper bound of system performance.  

Experiment setting. This experiment setting (including 
the workers and social network) is similar to the setting in 
Section 6.1, a notable exception is that because the bench-
mark centralized model does not consume any team for-
mation time, here we set the task discount rate δ=0 for the 
correct comparison. Moreover, in this kind of experiment, 
we only consider the effect of network degree on our mod-
el and this centralized model’s social welfare performance. 

Experiment results. The comparison results are shown 
in Fig. 3, from which we can observe that 1) both of the 
centralized model and our model’s social welfares increase 
with the network degree (Fig. 3a) and 2) In all of the exper-
iments, although the benchmark centralized optimal mod-
el produces more social welfare than our model’s, our 
model preserves at least 70 percent of social welfare of the 
benchmark centralized optimal model (Fig. 3b), which can 
validate the efficiency of our model’s efficiency on produc-
ing social welfare to some extent. 

7 CONCLUSIONS AND FUTURE WORK 

In real-world social team crowdsourcing markets, the re-
quester aims to build a professional and collaborative team 
for task completion, and the worker aims to join the desir-
able team for its own profit maximization. Being aware of 
the dynamics, uncertainty, heterogeneous working cost, 
team competition and time factor during social team 
crowdsourcing, we first develop a set of heuristics connect-
ing these inter-dependent factors indirectly to approximate 
the requester’s and worker’s objective functions. Then to 
satisfy the requester and worker’s conflict objectives, we 
propose a decentralized team formation model for the re-
quester to negotiate with the workers on skill provision 
and skill provision cost. These negotiation strategies are 
useful for real-world requesters, since this mechanism 
closely models real-world crowdsourcing markets (i.e., 
worker’s selfish nature). Theoretic analyses ensure that the 
requester can always recruit the worker’s optimal skill 
provision that can yield the maximal profit for the re-
quester. Moreover, we also conduct a series of experiment 
to highlight the efficiency, robustness and scalability of the 
proposed social team formation model. The experimental 
results determine that compared to the optimal centralized 
model, our model can preserve desirable percentage of 
social welfare. Moreover, compared to the traditional de-
centralized approaches, the proposed team formation ap-
proach not only builds a feasible (i.e., professional and col-
laborative) team of inexpensive workers, but also reduces 
social team formation time.  

In the current study, the requesters and workers are as-
sumed to break the partial contract without suffering any 
penalty. However, in real-life scenarios, breaking a con-
tract unilaterally will always suffer certain penalty such as 
monetary compensation or reputation loss [26][42]. There-
fore, in the future, it is more practical to consider the de-

commitment penalty during negotiation and investigate 
how to optimize the penalty strategy.  
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