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Abstract. The address space layout randomization (ASLR) has been
widely deployed on modern operating systems against code reuse attacks
(CRAs) such as return-oriented programming (ROP) and return-to-libc.
However, porting ASLR to resource-constrained IoT devices is a great
challenge due to the limited memory space. We propose a function-
based ASLR scheme (fASLR) for IoT runtime security utilizing the ARM
TrustZone-M technique and the memory protection unit (MPU). fASLR
loads a function from the flash and randomizes its entry address in a ran-
domization region in RAM when the function is called. We design novel
mechanisms on cleaning up finished functions from the RAM and mem-
ory addressing to deal with the complexity of function relocation and
randomization. Compared with related work, a prominent advantage of
fASLR is that fASLR can run an application even if the application code
cannot be completely loaded into RAM for execution. We test fASLR
with 21 applications. fASLR achieves high randomization entropy and
incurs runtime overhead of less than 10%.

Keywords: Function-based randomization · IoT · ASLR · CRA ·
ROP

1 Introduction

With the booming IoT industry, there are rising concerns on the security and pri-
vacy of IoT devices. IoT application code is often written in unsafe programming
languages such as C and C++, and is vulnerable to memory corruption attacks
[5]. One typical memory corruption attack is the code reuse attack (CRA), which
hijacks the control flow and reuses the application code [3]. Memory corruption
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attacks and defenses have been actively studied for mainstream operating sys-
tems such as Windows, macOS, Lniux, Android and iOS.

In this paper, we focus on defending against memory corruption attacks for
resource-constrained IoT devices, particularly those running on micrcontrollers
(MCUs). It is an intuitive idea to port existing security schemes to IoT plat-
forms. We study the use of ASLR in memory-constrained IoT devices to miti-
gate CRAs such as the return-oriented programming (ROP) by randomizing the
memory layout of code and data. Modern operating systems often implement
the following ASLR scheme. When an executable is loaded into RAM, its base
(start) address is randomly chosen while the executable structure is kept almost
intact. Fine-grained ASLR strategies have been proposed and randomize exe-
cutable code at fine levels of basic blocks, functions, or instructions [20] within a
loaded application image. However, porting ASLR to resource-constrained IoT
devices is a great challenge due to the limited memory space.

We propose a function-based ASLR scheme (fASLR) based on the ARM
Cortex-M processor with TrustZone-M enabled [2] to protect MCU-based IoT
devices from code reuse attacks that require knowledge of locations of executable
code snippets, such as ROP and JOP. The runtime fASLR is located in the Secure
World (SW) of TrustZone-M. The application is in the Non-secure World (NSW)
flash and denoted as the NS app, which is protected by the memory protection
unit (MPU). When a function call occurs, MPU redirects the function call to the
runtime fASLR for callee randomization. Compared to the most recent related
work [19] that requires loading the whole application code into RAM, fASLR can
run an application even if the application on flash is too large to be completely
loaded into RAM.

Our major contributions are summarized as follows. (i) We propose a
function-based ASLR scheme for resource-constrained IoT devices with limited
RAM and flash. fASLR dynamically loads only needed functions into RAM and
randomizes their entry addresses so as to achieve large randomization entropy.
(ii) Novel schemes are designed for fASLR to perform memory management and
addressing. Finished functions are efficiently removed from RAM when there is
no RAM for storing more functions. We carefully address the issue of addressing
since functions are randomly moved around. (iii) We implement fASLR with a
TrustZone-M enabled MCU, SAM L11, and validate the feasibility and perfor-
mance of fASLR with 21 applications. fASLR incurs a runtime overhead of less
than 10% for all the applications.

2 Related Work

Compared to conventional ASLR which rebases the whole executable, fine-
grained ASLR strategies achieve higher randomization entropy, change the struc-
ture of the executable, and thereby are considered to be more effective against
CRAs and brute-force attacks. Code randomization can have different granular-
ities [14] based on what is diversified. ASLP [12] is a code permutation scheme
which applies function level permutation to the code segment and object permu-
tation to the data segment without knowledge of source code. In [22], the original
binary code is partitioned into small blocks of which the addresses are decided
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when the application is loaded. Xifer [8] achieves fine-grained randomization
by splitting code into arbitrary small pieces, spreading the code pieces within
the address space, and rewriting the code to preserve its semantics. ILR [11]
is an instruction-based randomization scheme which relocates every instruction
thereby achieving high randomization entropy.

Snow et al. [20] introduce an attack framework which bypasses fine-grained
randomization via just-in-time code reuse (JIT-ROP). With the knowledge of a
single memory disclosure, the framework is able to excavate memory contents
of multiple memory pages at runtime, search and assemble gadgets on-the-fly,
and then launch code reuse attack. Accordingly a fine-grained randomization
approach named Isomeron [7] is proposed as the countermeasure to JIT-ROP
attacks. Combining fine-grained ASLR with execution path randomization, Iso-
meron makes any gadgets unpredictable. Related research has been performed to
overcome newly emerging code reuse attacks and meet increasing compatibility
requirements [13,17,21,23].

Shi et al. [19] leverage the TrustZone-M hardware extension to enable a
function-level ASLR scheme for ARM-based MCUs. The proposed system loads
the NS code to NS RAM and periodically reordering all functions at runtime.
Compared with our work, this scheme loads the whole application code to RAM.
Instead of loading the whole NS app code, our mechanism—fASLR—only loads
functions in use and promptly cleans up finished functions from RAM at runtime.
fASLR requires smaller RAM and achieves larger randomization entropy for
resource constrained IoT devices. [19] rewrites binaries of the NS code offline
and introduces a code size overhead of about 10%–15%, while fASLR has a code
size overhead below 5%.

3 System Architecture

In this section, we first present the threat model and design goals of our ASLR
scheme—fASLR. We then introduce the architecture of a fASLR-enabled system
and the workflow of fASLR. At last, we discuss challenges for implementing a
practical fASLR.

3.1 Threat Model

fASLR leverages ARM Cortex-M processors and hardware-based techniques
including TrustZone-M, memory protection unit (MPU), and exception han-
dling mechanism. Based on the hardware isolation provided by TrustZone-M,
on-device system resources are divided into two worlds, namely the Secure World
(SW) and the Non-secure World (NSW).

We assume a TrustZone-M enabled device has the following security features.
(i) Main components of fASLR reside in the SW and can be fully trusted. The
application (denoted as NS app) is located in the NSW and may be vulnerable.
(ii) The NS app is located at a fixed address in the NS flash and is executed
from the flash (instead of RAM) by default. (iii) The device supports the memory
protection mechanisms such as the MPU.
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Fig. 1. fASLR architecture.

We assume an adversary has the following capabilities. (i) The NS app may
be subject to CRAs such as the ROP attack. (ii) The adversary can obtain the
binary of the NS app, disassemble the binary, and obtain code gadgets for CRAs.

3.2 Design Goals

fASLR is designed to achieve the following goals.

– Mitigating CRAs. The scheme shall provide dynamic function-level code
randomization for resource-constraint IoT devices to mitigate CRAs, which
require a certain chain of gadgets found in the NS app. The randomization
shall achieve high entropy to defeat brute-force guessing attacks.

– Usability. The scheme shall be user-friendly and will not add much burden
of programming.

– Low overhead. The proposed scheme cannot introduce large overhead in
terms of time and space and affect the NS app performance much.

3.3 System Architecture

As illustrated in Fig. 1, fASLR has three key components. (i) the Static Pre-
processing Module (SPM) for compilation time preparation, (ii) The Boot
Engine (BE) for boot time configuration, and (iii) The Function Random-
ization Engine (FRE) for runtime function-level randomization.

Static Preprocessing Module (SPM). The SPM serves two major purposes:
(i) Creating the Function Table. Once the NS app code is compiled via a GCC
compiler, the SPM tries to extract needed information of all functions in the ELF
object file, including function entry point addresses and function sizes from the
symbol table, and function stack frame sizes from .debug frame section of the
ELF file. Function information is recorded in a data structure called Function
Table. (ii) Profiling randomization region. Extracting RAM usage information
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from the compiler output file, the SPM determines the size and location of the
largest unused RAM space as the randomization region. Users can also set a
smaller randomization region by manually modifying related configurations.

Boot Engine (BE). When a TrustZone-M enabled device boots, the boot flow
is the Secure bootloader, Secure app, and then the NS app. The NS app starts
with the reset handler that calls the first function, e.g., main(). The BE is a part
of the Secure bootloader stored in the SW flash. It configures and enables the
MPU to mark the NS app code in the flash as non-executable for two purposes:
(i) MPU prevents the NS app in the NS flash from being exploited by CRAs. (ii)
Once the NS code is set as non-executable, any attempt to execute the NS code
triggers a hardware exception, which is handled by the HardFault exception
handler in the SW [1].

Function Randomization Engine (FRE). The FRE is a part of the
HardFault exception handler and handles invoked functions in the NSW flash
protected by the MPU. It serves two purposes, i.e., function entry point ver-
ification and memory management.

When a HardFault exception occurs, the FRE fetches the return address
of the exception, which is the entry point of the invoked function, through the
NSW exception stack frame. Then the function entry point verification is
performed by comparing the return address to all legitimate function entry point
addresses in the Function Table until there is a match. After a match, the FRE
obtains the size of the corresponding function from the Function Table for later
use in randomization. A HardFault exception may be caused by other reasons,
for instance, memory access violation when an adversary launches CRAs trying
to execute an instruction not at legitimate function entry points. In such a case,
a security alert shall be raised.

After the function entry point verification, memory management is per-
formed. Specifically, the invoked function is randomly relocated to a RAM region
within the randomization region. After the function randomization, we need to
carefully handover the control flow from the exception handler to the relocated
function. We overwrite the return address of the exception handler on stack with
the new function entry point so that the execution mode will change back to the
mode of the NS app with correct privileges.

3.4 Workflow

Offline—Compilation and Flashing. After the NS app is compiled and linked
by the GCC compiler at compile time, the SPM creates the Function Table offline
according to the NS app ELF file. The Function Table and NS app image are
then flashed to the SW and NSW flash respectively. The BE and FRE are also
flashed to the SW flash.

Runtime. Figure 2 shows the program flow, which is an iterative sequence of
function calls (e.g., 1 and 4 ), MPU violation exception (e.g., 2 and 5 ), run-
time function randomization, function execution (e.g., 3 and 6 ), and function
return (e.g., 7 and 8 ).
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Once we turn on the device power supply, the BE boots the system and
then the NS app initiates the reset handler [24]. After a sequence of initializa-
tion operations, the reset handler branches to the main application code, i.e.,
main(). Both attempts of executing the reset handler and main() trigger runtime
fASLR, and their code is loaded by the FRE to the randomization region in the
RAM for execution. During the execution of main() function, the control flow
can divert to a callee on the MPU-protected flash only if the callee is invoked
by main().

Fig. 2. Program flow of function X, Y and Z. For any function F in the NS app, we
use F ′ to represent its corresponding copy in the randomization region.

In a fASLR-enabled system, when a function call occurs in the randomization
region, it jumps to the entry point of the callee in the original MPU-protected
application, and thus triggers the MPU violation exception. The FRE then con-
ducts runtime function randomization for the callee and diverts the control flow
to the callee relocated in the RAM. During the execution of the callee, any
function call in the callee can also trigger a MPU violation exception. The FRE
handles function calls and randomization in such an iterative way above. The
control flow returns to the caller in the RAM once its callee is finished. fASLR
does not interfere with the function return mechanism, and the function in the
RAM returns normally as functions in a system without fASLR do. Note that
in a fASLR enabled system, a callee returns to the relocated caller in the ran-
domization region since that is where the function call really occurs.

Figure 2 presents an exemplary program flow for the call path X → Y → Z
of functions X, Y and Z. A call path illustrates the calling relationship. Starting
from the leftmost one, each function in the path calls the function right after
it. Suppose that function X has been loaded to the randomization region and
the program flow starts from the relocated function X ′. When X ′ calls Y , the
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attempt of executing Y ( 1 ) results in a MPU violation exception ( 2 ), handled
by the FRE inside the HardFault exception handler. Y is then relocated to the
randomization region as Y ′ and consequently, the control flow is redirected to
Y ′ ( 3 ). During the execution of Y ′, Y ′ attempts to call Z ( 4 ), and the MPU
violation exception ( 5 ) is triggered again and is then handled by the FRE ( 6 ).
Finally, the control flow returns from Z ′ to Y ′ ( 7 ) and Y ′ to X ′ ( 8 ) when Z ′

and Y ′ finish execution.

3.5 Challenges

A practical fASLR faces the following challenges. We address these challenges
in detail in Sect. 4.

Memory Management. We target MCUs with limited RAM and the whole
NS app may not be loaded into the RAM for execution. Therefore, a memory
management strategy is needed to dynamically trim finished functions. Ancestor
functions are defined as direct or indirect callers of the current running function.
Such functions are awaiting returns from some ongoing function calls, and shall
not be trimmed before their descendants return. Finished functions are those
that have finished execution and are not ancestors of any running function. They
can be disposed safely. The runtime FRE needs to distinguish finished functions
and select an appropriate timing to trim them from the randomization region.

Memory Addressing. A function in the randomization region may contain
branches that use absolute or relative addresses. All absolute branches in the
ARMv8-M architecture compiled by GCC are function calls, which would not
be affected by the relocation and will function normally. Relative branches within
a function can work normally as well since a relative position would not change
when the function is relocated as a whole. However, relative branches may be
used to jump between functions. In a fASLR-enabled system, those relative
branches can lead the control flow to branch to an unexpected destination as
function-based randomization changes the relative position of two functions.

4 Memory Management and Addressing

In this section, we discuss the challenges of fASLR and present our key memory
management and addressing schemes.

4.1 Memory Management

We devise a function cleaning scheme that dynamically cleans up finished func-
tions from the randomization region with the following mechanisms: (i) Call stack
unwinding. Finished functions are found through unwinding the Non-secure call
stack. (ii) Cleaning on demand. Finished functions are cleaned up only if the
available randomization region space is not large enough for the callee. (iii) Call
instruction rewriting. We further reduce the runtime overhead by overwriting
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a call instruction in a loaded function if the callee of that call instruction has
already been loaded into RAM.

Call Stack Unwinding. The key of function cleaning is to distinguish fin-
ished functions from all loaded functions in RAM. However, it is difficult to
trace all finished functions at runtime because fASLR runtime does not capture
any function return information. Instead, our approach finds ancestor functions
of the current callee, and records all loaded functions. Any function that is a
loaded function but not an ancestor function is a finished function that can be
disposed. Now the problem is decomposed to record all loaded functions and find
all ancestor functions.

Algorithm 1. Call Stack Unwinding
nsSp = getNSSp()
returnAddress = readExceptionStackFrame(nsSp)
funcSp = nsSp + sizeof(ExceptionStackFrame)
for i = 1; i < loadingQueue.size; i + + do

if (returnAddress ≤ loadingQueue[i].endAddress) & (returnAddress ≥
loadingQueue[i].loadAddress) then

funcRecord = loadingQueue[i]
funcRecord.state = UNFINISHED
funcSp = funcSp + funcRecord.callFrameSize
returnAddress = getReturnAddress(funcSp)

end if
end for

A queue structure named Loading Queue is used to store meta data, denoted
as function record, of all loaded functions in the RAM. The FRE pushes a
function record into the Loading Queue when an unloaded function is called. A
function record includes the following information of the callee, (i) loadAddress–
the new entry point of the callee in the randomization region, (ii) size of the
callee, and (iii) stack frame size of the callee.

We also need to find out all ancestor functions. Modern computer system uses
the call stack to retain return addresses of functions that have been called but
have not returned yet. Such functions are direct or indirect callers of the current
running function, which is also the callee when program execution is trapped
in the FRE in our system. Therefore, functions which have their stack frames
in the call stack are ancestor functions of the callee. To figure out all functions
in the call stack, stack unwinding is needed. Basically, stack unwinding helps
to locate all return addresses in the call stack. A return address then tells
where the caller is within the RAM. If we can obtain all return addresses on the
call stack, by comparing each return address with the function records in the
Loading Queue, we are able to identify all ancestor functions.

Frame pointer is an intuitive approach of unwinding the call stack [10]. How-
ever, the Armv8-M architecture only implements the Thumb instruction set,
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which does not support the frame pointer mechanism. To achieve stack unwind-
ing without frame pointers, we devise a stack unwinding method utilizing the
stack top address and the stack frame sizes of all functions to resolve return
addresses on the call stack. Recall that the stack frame size of each function is
extracted offline by the SPM from .debug frame section of the ELF file and
stored in the Function Table.

In ARM, by convention return address is the first object pushed onto the
stack when there is a function call, and is at the bottom of the callee’s stack
frame. Once a function call triggers the HardFault exception and the program
execution is trapped by the FRE, the top stack frame is the exception stack frame
of the HardFault exception handler and has a fixed length se. The current stack
top can be obtained through the SP register of the NSW. The frame top of the
first function f1 (namely the current caller) is T1 = SP +se. According to the LR
register, which stores an address within f1, FRE is able to search the frame size
s1 of f1 from the function records in the Loading Queue. To access the return
address of f1, the frame bottom B1 is calculated by B1 = T1 +s1. Following this
procedure, the FRE is able to resolve return address of every stack frame from
the stack top to bottom. Algorithm 1 presents our stack unwinding procedure.

Note that recursion is compatible with our function cleaning strategy. A
recursive function is the function that calls itself. In our compilation environ-
ment, a recursive function uses a relative branch instruction. Therefore, when
a recursive function is loaded to the randomization region, it can still call itself
with the relative branch without triggering the MPU violation exception.

Cleaning on Demand. The FRE removes functions only when the randomiza-
tion region does not have enough space to load a new function. Before loading
a function to RAM, the FRE checks if there is enough memory space for it. If
not, the FRE first recovers rewritten call instructions in the loaded functions as
introduced below. It then unwinds the call stack, finds out all ancestor functions,
and marks those functions in the Loading Queue as unfinished. According to the
marked Loading Queue, the FRE disposes all finished functions and updates the
Loading Queue. The call instruction rewriting mechanism, which will be intro-
duced next, ensures that any function pointers pointing to a trimmed function
will be restored to point to the original function in flash.

Call Instruction Rewriting. Function call rewriting optimizes the memory
management scheme so that finished but not disposed functions in RAM can
be called again without triggering the HardFault exception. Specifically, when
a function call occurs and the control flow is trapped in the HardFault excep-
tion handler, the FRE overwrites that call instruction (in the loaded caller) to
change the destination address of the call (i.e., the entry point of the callee in
flash) with the entry of the loaded callee in RAM. Thus, the caller will directly
jump to the loaded callee next time this call instruction executes. The rewriting
history, including which instruction is rewritten and what the original instruc-
tion is, is recorded in the Rewriting List. Such records are used to recover the
call instructions with callees’ original flash entry points before function cleaning,
since the loaded callees of those call instructions might be disposed.
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Memory Fragmentation Management. In the randomization region, each
loaded function occupies a function block. A disposed function block becomes a
free block. If there are any adjacent free blocks, the FRE merges them into one
big free block. All free blocks are managed by a linked list. A function block, as
presented in Fig. 3 (a), consists of a two-word metadata, a payload and padding
bytes for memory alignment. The metadata contains the size of the block and
the pointer which points the next free block. The payload region is used to stores
the randomized function.

When the system starts, fASLR initializes the whole randomization region
as a big free block since no function has been allocated yet. Once a function is
called in the NSW, the FRE allocates a function block for the target function.
Specifically, it first scans the linked list and finds out all free blocks larger than
the target function in the payload region. The FRE randomly selects one block
among the discovered free blocks and then randomly allocates the target function
to the selected free block. After the allocation, new free blocks may be generated
and the linked list will be updated accordingly. Figure 3 (a) and (b) illustrate
the case of randomizing Function 2 when there are two free blocks. Function 2
is consequently allocated to the middle of free block 1. The new free block 1 and
free block 2 are then formed.

Fig. 3. Memory management. (a) Structure of the randomization region; (b) Memory
layout before loading Function 2; (c) Memory layout after loading and randomizing
Function 2

4.2 Memory Addressing

Control flow instructions using relative addresses in the ARMv8-M instruction
set include B (branch), BL (branch with link), and CBNZ/CBZ (conditional
branches), among which the BL (branch with link) is used to branch between
functions. It is difficult for fASLR to handle such relative addressing without
instruction patching, namely runtime instruction update. Note that the relative
positions of two functions change after function randomization. Recalculating all
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the relative addresses used in the randomized function and updating the related
instructions with the new relative addresses will result in unacceptable overhead
in performance.

fASLR eradicates relative addressing at compile time. A user needs to access
the source code of the app (including libraries) and compile the app with spe-
cific compilation flags (i.e., -mlong-calls, -fno-jump-tables). As a result, original
relative function calls now use absolute addressing. It is worth noting that com-
piling with such flags would not break the normal build process or affect runtime
behavior of the original program.

5 Security and Performance Analysis

In this section, we analyze the effectiveness of fASLR against ROP, a repre-
sentative code reuse attack. Entropy is computed to quantify the randomness
of gadgets required for the ROP attack, which indicates the difficulty of guess-
ing the gadget locations in a brute-force way. We also study time and memory
overheads introduced by fASLR.

5.1 Effectiveness Against ROP

The prerequisite of ROP is that the adversary knows where the ROP gadgets
are. In a fASLR enabled system, an adversary can only use ROP gadgets in
randomized functions relocated to the randomization region. Gadgets in the NS
app stored in flash are non-executable, so it is hard for adversaries to use them.
Recall that any MPU violation triggers the HardFault exception. As discussed
in Sect. 3.3, the FRE validates the return address of the exception by using
the Function Table. Therefore, the FRE is incapable of identifying exceptions
triggered by a ROP attack if the adversary targets the entry point of a function
since normal function calls will trigger such exceptions as well. In other words,
the adversary will succeed in reusing a whole function as a gadget for ROP
attack. However, such gadgets are often of very low quality [4,9] containing too
many instructions. It is almost impossible for an adversary to assemble a chain
of gadgets with such low quality gadgets to achieve certain malicious goal.

An adversary may also guess the addresses of randomized functions in a
brute-force way. However, our runtime randomization approach rebases a func-
tion every time as long as it has not been loaded into RAM and achieves high
randomization entropy as analyzed below.

5.2 Randomization Entropy

fASLR mitigates the brute-force guessing attack as follows. (i) fASLR restricts
the number of functions that can be reused at a time. This is achieved by con-
figuring the whole app image as non-executable. The only code snippets that
can be utilized are functions relocated to the randomization region in the RAM.
(ii) Even if all the required gadgets can be found from the relocated functions,
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the adversary has to guess locations of all those functions at once. Formula
(1) gives the total number (denoted as C) of possible function layouts in the
randomization region.

C = k!
(
V + k

k

)
, (1)

where k is the number of functions in the randomization region, and V is the
size of unused randomization space divided by two since the ARMv8-M archi-
tecture only allows even function addresses. Note the ARMv8-M architecture
only allows an function to be loaded to an even address. Thus the random-
ization space can be treated as V free randomization units and each unit is 2
bytes. We assume the randomization region is large enough to accommodate k
functions. If all free blocks are too small to fit the upcoming function, defrag-
mentation can be applied. We calculate the maximum possibility of arranging k
distinguished functions among V free units since from an attacker’s perspective,
any combination of k functions and V free units is possible. The combinations
can be counted by the binomial coefficient

(
V+k
k

)
multiplied by k! because the

k functions are distinguished. For example, if k = 5 and V = 100, there are
5!

(
100+5

5

)
= 1.159e+10 combinations in total.

The probability of a layout is the reciprocal of C, i.e., P = 1/C. Formula (2)
gives the entropy H of function randomization.

H = −
C∑

i1=1

P log2 P = −
C∑

i1=1

1
C

log2
1
C

= log2 C (2)

5.3 Time Overhead

fASLR introduces runtime overhead when it hijacks a function call for func-
tion randomization via hardware exception. According to fASLR runtime mech-
anism, we consider three factors that affect the program runtime performance,
namely the number of function calls Nc that trigger HardFault exceptions, func-
tion randomization processing time for the ith function call denoted as TR(i),
and hardware exception processing time TE . Formula (3) gives the relationship
between the time overhead TO and the three factors.

TO =
Nc∑
i=1

(TR(i) + TE). (3)

Intuitively, TR(i) would be much larger than TE since TR involves several time-
consuming operations such as memory write and table scanning, while TE is
accomplished by hardware. The overhead from the function randomization pro-
cess primarily comes from the following aspects: (i) address verification, which
involves looking up the Function Table; (ii) function cleaning on demand, which
looks up the call stack and cleans up finished functions; (iii) randomization,
which selects a free block to rebase the callee; (iv) function loading, which reads
and writes the function body; (v) function rewriting, which overwrites the des-
tination of the call instruction with the entry point of loaded function.
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5.4 Memory Overhead

The components of fASLR deployed in the SW include the BE code, FRE code,
Function Table, Loading Queue, and Rewriting List. The Function Table is a
static table with three 4-byte attributes and its size is linear to the total number
of functions in the NS app. The Loading Queue and Rewriting List are dynamic
data structures that contain function records and rewriting records respectively.
Each function record has three 4-bytes metadata and a rewriting record contains
double 4-bytes data. The maximum number of records that the Loading Queue
may contain at runtime is equal to the number of functions in the NS app, while
the maximum number of rewriting records in the Rewriting List is the total
number of call instructions. Formula (4) presents the size of the Function Table
(i.e., MOt), Loading Queue (i.e., MOq), and Rewriting List (i.e., MOl),

MOt = Nf × 3 × 4 = 12Nf , (4)

MOq = Nf × 3 × 4 = 12Nf , (5)

MOl = Nc × 2 × 4 = 8Nc, (6)

where Nf is the number of functions in the NS app, and Nc is the number of
function calls in the NS app.

5.5 Size Requirement of the Randomization Region

fASLR will run out of memory (OOM) if a new function cannot fit into the
randomization region and no function can be trimmed. To avoid such an OOM
issue, there is a size requirement of the randomization region for a certain appli-
cation. We define call path size as the total size of all functions on a call path.
The randomization region should be no less than the largest call path of the
application when fragmentation compaction is applied by the memory manage-
ment scheme. We can calculate the size requirement by statically analyzing the
application code and perform defragmentation to the randomization region if
needed.

6 Evaluation

In this section, we first present the experiment setup. We then present evaluation
of randomization entropy, runtime overhead and memory overhead.

6.1 Experiment Setup

fASLR is implemented and deployed on the SAM L11 Xplained Pro Evalua-
tion Kit, a MCU development board using the ARM Cortex-M23 core with
TrustZone-M enabled. SAM L11 has a 64 KB flash and a 16 KB SRAM.

Software in SAM L11 is built with the GNU Arm Embedded Toolchain.
User code, namely the NS app code, is compiled with two flags, -mlong-calls and
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-fno-jump-tables, to eliminate instructions using relative addressing. We recom-
pile the C library with the same compiler flags to make C functions compatible
with fASLR. A Python script runs during the compilation time to collect func-
tion metadata and saves them in the Function Table. fASLR program and the
Function Table are part of the Secure application placed in the SW flash, while
the user app is deployed in the NSW flash.

We evaluate the performance of fASLR with 21 applications, including our
own air quality monitoring system (AirQualityMonitor). The air quality mon-
itoring device, as shown in Fig. 4, consists of a SAM L11 development board,
a PMSA003 air quality sensor module, and a SIM7000 cellular module. The
NS app in SAM L11 periodically receives air quality data from PMSA003 and
sends the data to SIM7000, which then transfers the data to the AWS IoT plat-
form via secure MQTT protocol. The other twenty apps including the CoreMark
benchmark [6], two micro benchmarks Cache Test and Matrix Multiply created
based on [18], nine benchmarks of BEEBS [16], and eight SAM L11 demo apps
obtained from Atmel Start [15].

Fig. 4. Our air quality
monitoring device devel-
oped with SAML11

Fig. 5. Entropy distri-
bution

Fig. 6. Time overhead of
TrustRAM application vs.
randomization region size

6.2 Randomization Entropy

The entropy of function randomization changes dynamically when a function call
occurs. We explore the entropy for all test applications. For each measured pair
of k and V , we calculate the corresponding entropy of function randomization
according to Formulas (1) and (2). Figure 5 is the box plot demonstrating the
entropy distribution for each app. The smallest average entropy is around 80
which is still considered to be large enough to defend against brute-force guessing.

6.3 Runtime Overhead

fASLR introduces runtime overhead since it intercepts every non-rewritten func-
tion call of the NS app for function randomization. We evaluate the time over-
head by measuring and comparing the execution time of an application with
and without fASLR. We use the internal systick timer of the Cortex-M core to
record the execution time with precision of 0.01s. Since the main program of an
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IoT application is usually a big loop, in the experiments we measure the execu-
tion time of 1000 loops for each testing application. We comment out all delay
functions inside the loop for better estimation of time overhead introduced by
fASLR. Table 1 presents the total execution time of 1000 loops for each applica-
tion. The runtime overhead of fASLR is less than 10% for all apps, and 14 apps
achieve time overheads below 5%. We also count for the occurrence of function
cleaning for each app. The result shows that 19 apps have exhausted memory
space during execution and triggered at least one function cleaning.

We also evaluate the influence of the randomization region size on time
overhead with TrustRAM, the app with the largest time overhead in Table 1.
Figure 6 illustrates that fASLR tends to perform better with a larger random-
ization region. This is mainly because fASLR with a larger randomization region
will less likely apply function cleaning and function loading during program
execution.

Table 1. Total execution time (in second) of 1000 loops and overheads.

Application # of cleanings Baseline with fASLR Overhead

AirQualityMonitor 1 324.79 327.50 0.83%

CoreMark 4 15.62 15.78 1.02%

Cache test 2 2.13 2.26 6.10%

Matrix multiply 1 24.47 26.13 6.78%

SecureDriver 1 12.56 12.64 0.64%

ADC event system 2 12.41 12.54 1.04%

Calendar 0 50.36 50.33 –0.06%

Light sensor 1 24.77 25.36 2.38%

Low power 0 14.60 14.60 0%

ADP Hello 1 9.93 10.88 9.57%

CRYA 1 6.79 7.35 8.25%

TrustRAM 1 1.14 1.25 9.65%

Beebs-crc 1 7.44 7.73 3.90%

Beebs-aha-mont64 1 7.30 7.56 3.56%

Beebs-aha-compress 1 4.50 4.67 3.78%

Beebs-bs 1 0.28 0.29 3.57%

Beebs-bubblesort 1 0.33 0.35 6.06%

Beebs-compress 2 2.02 2.18 7.92%

Beebs-md5 2 0.42 0.44 4.76%

Beebs-levenshtein 1 17.42 17.97 3.16%

Beebs-edn 2 15.96 16.24 1.75%
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6.4 Memory Overhead

For each tested application, we measure the total number of functions and the
memory overhead of NS apps before and after deploying fASLR, as illustrated
in Table 2. In the SW, the code overhead is caused by the program of fASLR
with a fixed code size of 3.45 KB, and the data overhead is mainly introduced
by the static Function Table, dynamic Loading Queue and Rewriting List, and
thus depends on the number of functions in the NS app. The size of the NS app
is changed because of the compilation with specific compiler flags. Table 2 shows
little memory overhead below 5% for all tests. It can be observed the app sizes
in Table 2 are larger than the RAM size (16 KB). This shows the strength of
fASLR, which can run an applications that is too large to be completely loaded
into RAM compared with related work [19].

Table 2. NS app size (in byte) and overheads.

Application # of Functions Size of rand.
region

App size
(baseline)

App size with
fALSR

Overhead

AirQualityMonitor 148 6144 41092 43036 4.73%

CoreMark 174 6144 46048 47648 3.47%

Cache Test 140 5632 40228 41844 4.02%

Matrix Multiply 145 6144 40728 42404 4.12%

SecureDriver 139 6144 39544 41184 4.15%

ADC Event System 173 6144 43036 44640 3.73%

Calendar 97 6144 36780 36808 0.08%

Light Sensor 132 6144 40496 40528 0.08%

Low Power 67 6144 34136 34164 0.08%

ADP Hello 99 6144 38072 38316 0.64%

CRYA 143 7168 41368 43012 3.97%

TrustRAM 142 6144 39896 41500 4.02%

Beebs-crc 138 6144 39944 41492 3.88%

Beebs-aha-mont64 142 6144 40476 42028 3.83%

Beebs-aha-compress 140 6144 39944 41492 3.88%

Beebs-bs 137 6144 39344 40896 3.94%

Beebs-bubblesort 137 6144 39932 40892 2.40%

Beebs-compress 143 5632 40808 42360 3.80%

Beebs-md5 137 6144 41552 43100 3.73%

Beebs-levenshiein 138 6144 39708 41348 4.13%

Beebs-edn 144 6144 42112 43736 3.86%

7 Conclusion

In this paper, we propose fASLR, a function-based ASLR scheme for runtime
software security of resource-constrained IoT devices, particularly those based
on microcontrollers. fASLR leverages hardware-based security provided by the
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TrustZone-M technique as the trust anchor. It uses MPU and prevents direct
code execution of the application image in the Non-secure world flash. Instead, it
traps control flow in an exception handler and relocates functions to be executed
to a randomly selected location within the RAM. A memory management strat-
egy is designed for allocating and cleaning up functions in the randomization
region. fASLR is user friendly and only requires a user compiling the app with
specific flags. We implement fASLR with a TrustZone-M enabled MCU—SAM
L11. fASLR achieves high randomization entropy with acceptable overheads. We
will release fASLR to GitHub for broad adoption and refine the implementation
to further reduce the overhead.
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