Hindawi

Security and Communication Networks
Volume 2018, Article ID 6124160, 15 pages
https://doi.org/10.1155/2018/6124160

WILEY

Hindawi

Research Article

Fingerprinting Network Entities Based on Traffic Analysis in
High-Speed Network Environment

Xiaodan Gu, Ming Yang ®, Yiting Zhang, Peilong Pan, and Zhen Ling
School of Computer Science and Engineering, Southeast University, Nanjing, China

Correspondence should be addressed to Ming Yang; yangming2002@seu.edu.cn

Received 24 August 2018; Accepted 28 October 2018; Published 16 December 2018

Guest Editor: Yuan Yuan

Copyright © 2018 Xiaodan Gu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For intrusion detection, it is increasingly important to detect the suspicious entities and potential threats. In this paper, we introduce
the identification technologies of network entities to detect the potential intruders. However, traditional entities identification
technologies based on the MAC address, IP address, or other explicit identifiers can be deactivated if the identifier is hidden or
tampered. Meanwhile, the existing fingerprinting technology is also restricted by its limited performance and excessive time lapse.
In order to realize entities identification in high-speed network environment, PFQ kernel module and Storm are used for high-speed
packet capture and online traffic analysis, respectively. On this basis, a novel device fingerprinting technology based on runtime
environment analysis is proposed, which employs logistic regression to implement online identification with a sliding window
mechanism, reaching a recognition accuracy of 77.03% over a 60-minute period. In order to realize cross-device user identification,
Web access records, domain names in DNS responses, and HTTP User-Agent information are extracted to constitute user behavioral
fingerprints for online identification with Multinomial Naive Bayes model. When the minimum effective feature dimension is set
to 9, it takes only 5 minutes to reach an accuracy of 79.51%. Performance test results show that the proposed methods can support
over 10Gbps traffic capture and online analysis, and the system architecture is justified in practice because of its practicability and

extensibility.

1. Introduction

With the rapid development and widespread application of
computer networks, mobile communications, smart devices,
and the Internet of Things technology, cyberspace is becom-
ing more and more integrated into people’s social life. People
can access services through various devices anytime and
anywhere, thereby realizing the interconnection between
people and people, people and things, and even things and
things. However, while cyberspace brings a lot of convenience
to people, network attacks such as DDoS attacks, worm
attacks, information theft, and cyber fraud have become
increasingly severe. Therefore, it is imperative to effectively
protect against cyber threats.

The intrusion detection system is used to monitor a
network or system, which can identify malicious activities or
policy violations from both inside and outside intruders. As
an important and dynamic research area, the network intru-
sion detection technology can identify malicious activities by

monitoring and analyzing inbound and outbound traffic [1,
2]. But there is less work that can effectively identify potential
threats if an intruder has no abnormal activity. To address this
issue, we introduce the identification technologies of network
entities to detect the intruder with no abnormal activity,
which mainly consist of device identification and user iden-
tification. The basic idea is that if we detect unauthorized
devices or unauthorized users using authorized devices, we
can indicate that a network intrusion may be taking place.
However, the conventional identification technologies of
network entities are usually based on explicit identifiers.
For example, user devices are always identified by the MAC
addresses or browser cookies, and the user is identified by
intercepting and verifying his account information in the net-
work traffic through the Deep Packet Inspection (DPI). These
explicit identifiers can be easily hidden or tampered, causing
an identification failure. In response to this problem, the
researchers have demonstrated [3] that the absence of explicit
identifiers brings no harm as long as well-chosen implicit

http://orcid.org/0000-0002-8209-1000
http://orcid.org/0000-0001-9691-8702
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6124160

identifiers are reasonably combined. The potential selections
are instantiated as the SSID information in the 802.11 active
probe frame, the plug-in installed in the browser, the font
library in the system, etc. Although these implicit identifiers
cannot uniquely identify a network entity individually, they
are hard to be concealed because they usually reflect the
user’s personalized configuration, historical behavior records,
or subtle differences between entities. Therefore, in practice,
a combination of the implicit identifiers is usually utilized
to generate a fingerprint for device identification and user
tracking. The fingerprinting technology based on implicit
identifiers is essentially a method of traffic analysis and side-
channel attack. Although its effectiveness has been initially
verified by existing work, there are still many problems to
be solved in practical application, including the selection
of efficient features, realization of real-time processing of
network traffic in a high-speed network environment, and
quick identification of devices and users in a short period of
time.

In view of the problems mentioned above, we use PFQ
kernel module to realize high-speed capture of network
packets and use Storm, a well-known distributed real-time
streaming data processing technology, to realize online anal-
ysis of network traffic. Based on these, a device identification
method based on runtime environment analysis and a net-
work user identification method based on behavioral finger-
printing are proposed separately. The main contributions of
the paper are as follows:

(i) A distributed traffic analysis framework for high-
speed network environments is designed. The frame-
work uses the PFQ kernel module to implement
packet capture, Kafka for packet distribution, and
Storm for packet content analysis and information
extraction of applications, operating systems, HTTP
User-Agents, domain names, and Web access records.

(ii) An online device identification technology based on
the analysis of user device operating environment is
proposed. This technology selects 961 features such
as applications, operating systems, and HTTP User-
Agent fields to constitute the fingerprints of the
devices, while a variety of offline classification models
are trained and verified. Finally we select the logistic
regression algorithm to identify the user device in a
sliding window manner.

(iii) In order to realize network user identification, Web
access records, domain names, and HTTP User-
Agent fields are selected to constitute user behavioral
fingerprints according to the user’s network behavior
habits. These fingerprints, containing a total of 57593
feature columns, are trained and verified by the two
offline classification models using machine learning,
which are Naive Bayes and random forest models. By
comparison, the Multinomial Naive Bayes model is
found to outperform the random forest model, so it is
chosen as the classification algorithm for identifying
online users in a sliding window manner.

Security and Communication Networks

(iv) In order to achieve high-efficiency identification,
the impacts of different time window sizes on the
recognition rate are tested. Specifically, the accuracy
rate of device identification reaches 77.03% within 60
minutes, and 79.51% of user identification accuracy
can be achieved within 5 minutes. The packet cap-
ture rate, distributed processing speed, and online
recognition response speed are also evaluated to
verify the practicability of the proposed identification
technology.

An early version of the network entities identification
is presented in [4]. In the early version, we design a dis-
tributed high-speed traffic analysis framework to recognize
devices based on runtime traffic. In this journal version, to
deal with the cross-device scenario, we further analyze the
user’s network behavior habits and generate fingerprints to
identify the network users. We also evaluate the identification
performance difference between the Boolean and numerical
type fingerprints in this extended version.

The rest of this paper is organized as follows. In Section 2
we overview the related work. In Section 3 we describe the
overall design of our network entities fingerprinting technol-
ogy. Section 4 introduces a distributed traffic analysis frame-
work for high-speed network environments. In Sections 5 and
6, we present the details of the identification technologies
of network device and user, respectively. Section 7 tests the
performance of the identification technologies. Finally, the
paper is concluded in Section 8.

2. Related Work

The identification of network users and that of devices are
two differentiated research directions but are closely related.
Earlier device identification technologies mainly obtain the
information of the hardware, operating systems, network
protocols, and other parameters by collecting and analyzing
the physical signals or traffic generated by the device. For
example, in the physical layer [5], the TCP packet time
stamps are analyzed to obtain the clock skew [6], and the
Ethernet frames are analyzed to obtain the differences among
the analog signals of different devices [7]. While in the
operating system layer, the active scanning algorithm used
by the wireless device driver might be inferred by analyzing
the interval time of 802.11 probe request frames [8]. In the
application layer, the User-Agent field, IP address, browser
cookie, user login ID, and other identity information are
extracted through the traffic analysis in clear text [9]. The
interval time, number, direction, and other attributes of the
encrypted wireless packets are analyzed for the distinction
of different terminal applications [10]. Other researches have
applied different threat models to achieve the identification of
devices, e.g., the device recognition based on browsers [11-17]
and that based on mobile applications [18, 19].

The above-mentioned identification technologies are
merely, in essence, the identification of a single browser
[20] or a single terminal device. They are far from being
capable enough to identify the user’s cross-device activities.
For example, in the scenario of intrusion detection, if some

Security and Communication Networks

intruder occupies an authorized device, we cannot detect
the intrusion by using the device identification technologies.
So it is necessary to carry out the research on the user
identification technology based on behavioral fingerprints.

Essentially, user identification technologies based on
behavioral fingerprinting are biometric, which use the inher-
ent physiological characteristics or behavioral characteristics
of the human body for identification. They can be categoried
into two types. The former one has been widely used by
employing the characteristics of human body parts, such as
fingerprint identification, face identification, and iris identi-
fication.

The behavior-based identification technology [21]
extracts the features for identification with the information
of the user’s operation skills, knowledge, styles, preferences,
and strategies revealed in behaviors. For example, researchers
have found that different users differentiate from each other
in moving, clicking, dragging, and releasing the mouse [22].
Some may be different in key stroking when keyboarding
[23]. All of these differences can help to extract fingerprints
for effective identification. In the network area, users have
different behavioral patterns for network access due to
different preferences, habits, etc. Different behavior patterns
lead to different traffic flows. Therefore, researchers believe
that the network traffic generated by the user can be regarded
as biometric for user identification [24].

In order to identify users based on network traffic, early
solutions are implemented by extracting explicit identifiers
such as IP addresses or MAC addresses [3]. However, such
method based on explicit identifiers is not reliable for that
it will fail once the user changes the IP address or devices.
So far, the dynamic address allocation scheme adopted by
ISP makes users change the IP more frequently. To address
this issue, the researchers apply the behavior fingerprinting
technology to user identification based on network traffic.
Padmanabhan et al. [25] find that different users may have
different behaviors when browsing the same website. By
analyzing the real data, they extract the users’ clickprints
to generate behavioral fingerprints. Pang et al. [3] propose
to explore the destination address, network name, 802.11
option configuration, and broadcast frame length so as to
identify the user from the perspective of protocol and user
preferences. This is actually a comprehensive application of
user-related and device-related implicit identifiers.

Yang [26] uses data mining techniques on the Web
browsing dataset in order to mine association rules for each
user’s behavior, proposes three strength evaluation criteria
based on support and lift to generate fingerprints, and finally
calculates the distance between fingerprints for identification.
Kumpostetal. [27] believe that the websites visited by the user
and the corresponding frequencies, which reflect individual
preferences, can be identified as a behavioral fingerprint.
They store the source IP, destination IP, and frequency in a
two-dimensional matrix and perform the inverse document
frequency and cosine similarity algorithm to identify users.
Similarly, Herrmann et al. [28] extract user’s destination
domain names and the corresponding visiting frequency
to derive the behavioral fingerprints and use Multinomial
Naive Bayes classifier to classify them. Experiments are

conducted on a dataset containing HT TP traffic generated by
28 volunteers, and a 73% accuracy rate is obtained.

Since the data set used in the experiments [28] is not
big enough to prove the feasibility of the method, the
author conducts a larger-scale experiment in the later work
[29]. He tests a dataset containing more than 2,100 users’
DNS requests, uses the cosine similarity algorithm to filter
the noise data, and finally obtains an accuracy of 88%. In
addition, Herrmann et al. [30] also compare and evaluate
three classification methods through a large number of
experiments, including the Multinomial Naive Bayes classi-
fier, the nearest neighbor algorithm, and association rules
mining technology. Kim et al. [31] get the user’s behavioral
fingerprints based on DNS traffic by analyzing the domain
name, the sequence of domain names, and the requested
periods. Gu et al. [32] infer the users’ preferences through the
semantic analyses of search records and achieve an accuracy
of 93.79% on the dataset of 509 network users.

Overall, the current device and user identification
researches have some defects. For example, only a few features
are explored and the identification effect is prone to jitter. In
addition, the existing studies are not time-efficient enough as
it needs to aggregate a whole day’s traffic as a fingerprint.

To avoid the aforementioned problems, we adopt the
distributed processing technology to extract information
such as applications, operating systems, HT'TP User-Agent,
domain names, and Web access records in real time from
high-speed network traffic. Then we propose two online
identification methods based on the runtime environment
and the behavioral fingerprints, respectively, which are made
possible in the pattern of sliding windows. In addition, we
also focus on testing the impact of different traffic window
sizes on the identification rate and thereby prove the high
efficiency and practicality of the proposed technologies.

3. Overall Design of Fingerprinting

The overall design of our network entities fingerprinting
technology is shown in Figure 1. The initial step leverages
the PFQ-based high-speed packet capture module to capture
high-speed network traffic and then forwards the packets to
distributed high-speed network traffic processing modules
through the Kafka message queue. Then the processing
module parses the message content, extracts the relevant
feature data, and stores it in the HBase. Finally, the Spark-
based online identification module periodically reads the
feature data from the distributed database and realizes the
online identification of network devices and users by employ-
ing the machine learning algorithms in a sliding window
mechanism. The working mechanism and functions of each
module are specified as follows:

(i) PFQ-based high-speed packet capture module.
Configure a mirror port on the switch or router, or use
an optical splitter to mirror the traffic to a data distri-
bution server. The high-speed packet capture module
on this server achieves highly efficient packet capture
by adopting the memory mapping mechanism, zero

Spark-based online identification module

HBase
Storm-based Data Processing Module

HDEFS

*

Application- - -
layer Protocol Appl}catlgn Application
. . Identification Identification
Identification
HT;FEIHS“' DNS Web Access
D gent Resolution Record
etection
Kafka Message Queue

$

PFQ-based High-speed Packet Capture
Module

FIGURE 1: Overall design of network entities identification.

copy technology, and double-buffering mechanism
based on the PFQ Linux kernel module.

(ii) Kafka message queue. The distributed message
queue is a data transmission channel between the
packet capture module and the distributed processing
module. More specifically, it is a buffer zone for coor-
dinating the producer and consumer. We use Kafka to
implement distributed message publish, which has a
high linear extensibility in adapting to the high-speed
data transmission scenario.

(iii) Storm-based data processing module. The dis-
tributed data processing module, as a core functional
module, undertakes all processing and analysis tasks
for network traffic, including parsing of network mes-
sages, identification of application protocols, identifi-
cation of applications, and finally extracts and stores
data of applications, operating systems, Web access
records, domain names, and HTTP User-Agent fields.
We realize distributed streaming data processing
based on the Storm platform, which can achieve high-
speed data reading combined with Kafka queues and
can achieve high-speed data writing combined with
HBase. Meanwhile, data transmission performance
between the internal components of Storm is also very
efficient.

(iv) HBase. The online identification module is proposed
to read and analyze the data periodically. Thus, as
a distributed column-oriented database, the HBase
functions as a data medium between the distributed
data processing module and the online identification
module.

Security and Communication Networks

(v) Spark-based online identification module. Our
identification module is based on the Spark platform
and designed to fit into two scenarios. For the device
identification scenario, the module extracts device
features about runtime environment to generate the
fingerprints. For the cross-device identification sce-
nario, the user behavior data are collected to imple-
ment fingerprinting for network users. The relevant
feature data are read from the HBase distributed
database, and the machine learning algorithms in
Spark MLIib along with the sliding window mecha-
nism are employed to identify the network devices
and users online.

4. Collection and Distributed Processing of
High-Speed Network Traffic

4.1. Collection of High-Speed Network Traffic. Compared to
Pcap, which is a traditional packet sniffing toolkit, PFQ
is a better designed network packet capture framework
customized for the optimization of multicore CPUs and
multihardware queue network interfaces. It is primarily used
for efficient packet capture and transmission on Linux. In its
internal implementation, PFQ eliminates the cost of copying
packets from kernel space to user space by adopting a
memory mapping mechanism, and performs concurrency
operations of user-space applications and PFQ kernel packet
grabbing programs on the buffers by means of double-
buffering technology. The core components of PFQ fall into
three parts: packet extracting program, packet forwarding
module, and socket queue. First, the packet extraction pro-
gram directly obtains the packets from the network interface
card (NIC) driver and transfers them to the batch queue.
Then, the packet forwarding module selects the socket and
sends packets to the user-space applications.

After the packets are captured, librdkatka is used to
write them into the Kafka message queue. In this paper,
we decouple the high-speed packet capture module and
the Kafka message queue through the open source project
Blockmon [33].

4.2. Distributed Processing of Network Trafficc. When the
captured packets are written into the Kafka message queue,
we implement distributed analysis and processing of packets
based on the Storm platform. The following are the key
concepts related to the Storm:

(i) Topologies: the logic of the application which defines
various components and the ways of communication
between them.

(ii) Streams: data flows consisting of message tuples
transmitted between Storm components. All Streams
are parallel transferred in a distributed way.

(iii) Spouts: data sources. Usually, a Spout reads messages
from an external data source and transfers them into
the Topology in the form of tuples.

(iv) Bolts: Storm processing units. Each Bolt completes
one or more processing tasks and is responsible for

Security and Communication Networks

Application-layer Protocol
Identification Bolt

Protocol
Documents

Protocol
Identification
Rules

[Network Packet }—D[Rule Ma'tching jﬁ
Engine

Application-
layer Protocol

FIGURE 2: Application layer protocol identification bolt.

transmitting the processing results to the external
system for storage or display.

4.2.1. Input of Flow Data. Data transmission between Spouts
and Bolts, as well as that among Bolts, is in the form of
Streams, while Spouts obtain data from external sources in
different ways. In this paper, we use KafkaSpout to read
packets from the Kafka message queue and transmit tuples
to the packets parsing Bolts.

In the distributed processing environment, KafkaSpouts
retrieve data from Kafka partitions in parallel on all slave
nodes. And the degree of parallelism has a crucial influence
on the throughput of the system. Meanwhile, it is affected by
the number of Kafka partitions, because each Kafka partition
can only be consumed by one KafkaSpout. Namely, the key
to improving Storm throughput is to increase the number of
Kafka partitions.

4.2.2. Packets Analyzing and Filtering. The inputting packet
tuples are analyzed and filtered to obtain the content of
messages, and the header information in each layer of the
network protocol is extracted, including PFQ pkthdr header,
Ethernet frame header, IP header, TCP header, and UDP
header. In the process of packet analysis, several rules are set
to filter packets unrelated to network device identification,
such as the network control protocol packets and routing
protocol packets to improve the processing efficiency of the
system.

4.2.3. Application Protocol Identification. Traditionally, in
order to identify application protocols, the port numbers
of the captured packets are always matched with the well-
known ones. Such method is deficient due to a high false
positive rate. Therefore, we aim to improve the identification
accuracy by employing DPI technology to analyze the packet
payloads. Although such method is less efficient, its accuracy
rate is significantly higher than that of the former. The
module of application protocol identification is developed in
two phases: (a) designing the rule matching engine and (b)
writing protocol identification rules. The first step extracts
the rule matching engine of the Snort core components
and introduces multithreading. Then, based on referencing
protocol documents, we summarize the characteristics of a

alert udp $SEXTERNAL_NET any -> $HOME_NET any
(msg: "snmp"; content: "[30|"; offset:0; depth:1;
byte_test:1,<,0x80,1; content: "|02]"; offset:2; depth:1;
sid:70; rev:1;)

Box1

typical protocol and write an appropriate rule according to
the writing specification of Snort rules.

The process of identifying application protocols is shown
in Figure 2. The rule matching engine generates a rule tree
according to the specified protocol identification rules and
performs rule matching for network traffic. When a match
occurs, it indicates that the packet is identified as a specific
type of protocol.

Box 1 shows an identification rule for the SNMP protocol
and corresponding explanation ensues.

This statement indicates that the rule is released as the first
version, with the id of 70. All the UDP packets sent from any
port or IP address are detected without exception. According
to the identification rule, the first byte value of the application
layer payload is 0x30. The second byte value must be less than
0x80, and the third is 0x02. When the match is successful, the
alert action is triggered and the protocol type value SNMP is
returned to the caller.

After a review of various typical protocol documents,
we have completed the writing of recognition rules for 25
typical application layer protocols such as BITTORRENT,
DNS, DROPBOX, HTTP, SMTP, and SSH.

4.2.4. Application Identification. After the identification of
the application protocol, we further figure out the type
of application that generates the packets. As we all know,
apart from the traffic generated by the user interaction, the
background process of the application communicates with
the server periodically, thereby generating more traffic. We
analyze the traffic and extract various features to identify the
applications.

The data transmission between an application and the
server is generally divided into two cases. First, the applica-
tion uses a custom data transmission protocol, such as the
OICQ protocol, which is designed by Tencent and is merely
used as the data transmission protocol of QQ. In this case,
as long as the application protocol has been identified, the
application is sure to be identified. Second, multiple kinds
of applications share an application layer data transmission
protocol, such as the HT'TP protocol, to encapsulate data
transmitted between the client and the server. For this
situation, we distinguish different applications by extracting
multiple field values from the traffic. For example, in the
HTTP protocol, the HOST field represents the combination
of the domain name and the port number of the server
address. Usually, the addresses and corresponding domain
names of applications devised by different companies are not
identical. Even though different applications provided by the
same company share the same server, the addresses are still
distinguished from each other with different HTTP request
parameters. Therefore, the combination of the HOST field

of HTTP protocol and request parameters can be used to
identify different applications.

This paper observes and analyzes the application traffic
in the experimental network and summarizes a collection
of 116 commonly used application identification rules under
21 categories, such as browser, e-mail, remote management,
online game, instant messaging, social networking, Web disk,
input tool, online video, P2P video, and stock software. These
identification rules cover traffic generated from users’ clicks,
login activities, automatic updates, and background process
communications.

4.2.5. HTTP User-Agent Detection. As the name suggests,
the User-Agent field in HTTP traffic contains the user
agent information. Generally, the User-Agent field generated
by a browser contains the information like the types and
versions of the browser and the operating system. As an
important piece of information in the User-Agent field, a
specific operating system has its own structure-mapping
rules, diversifying the types of all the existing operating
systems. For instance, the prefixes of the Windows operating
systems are normally Windows NT, and suffixes represent
specific operating system versions. The identification rules
of the operating systems presented in this paper cover the
mainstream operating systems such as Windows, Mac OS,
OpenBSD, and Ubuntu.

4.2.6. DNS Resolution and Web Access Records. The user
generates a large number of HTTP requests and DNS requests
when he manipulates the applications or accesses websites
using the browser. The destination IP address in an HTTP
request together with the corresponding time information
can reflect the behavioral characteristics of the user to some
extent. And the DNS responses can help us to associate
multiple IP addresses of the same domain name together.
The resolution of DNS packets is mainly for the IPv4
protocol. From the response packets, we can extract the
<domain name, address> pairs. Specifically, the Questions
field indicates the number of requested domain names, and
the number of corresponding addresses is contained in the
Answer RRs field. There are many kinds of DNS response
types, which are distinguished by the Type field. For example,
the A record maps a domain name to the corresponding IP
address while the CNAME record maps an alias name to a
canonical domain name.

4.3. Distributed Storage of Network Traffic Data. Based on the
processing and extraction of the packets, the information of
the extracted applications, operating systems, HTTP User-
Agent, DNS, and Web access records is stored in the cor-
responding columns of the distributed database HBase. By
reading data from HBase, the device identification and user
identification are implemented.

5. Device Identification Based on Runtime
Environment Analysis

5.1. Basic Ideas. For the first device identification scenario,
we propose a novel identification method based on runtime

Security and Communication Networks

Spark-based Offline Spark-based Online
Training Phase Identification Phase
Classification Classification
Model Result
Offline Model N Online
Training w Identification
Fingerprint R Fingerprint
Generation Generation
A A
h 4

Classification Model

HBase

HDEFS

FIGURE 3: Two-stage fingerprint recognition.

environment analysis. Its basic idea is to realize the unique
identification of devices based on the combination of the
device operating system, the HTTP User-Agent information,
and especially the installed applications.

As shown in Figure 3, the identification process can be
divided into two phases, namely, the Spark-based offline
training phase and the Spark-based online training phase.
In the offline training phase, Spark distributedly reads the
relevant features from the HBase, generates the correspond-
ing device fingerprint denoted as a vector, and accordingly
learns an appropriate classification model by offline training.
The dataset needed for offline training and verification can be
labeled with IP addresses (MAC addresses can be utilized for
labeling in LANSs instead). In the online identification stage,
distributed analysis and feature extraction are performed on
the real-time traffic. And the generated fingerprint vector is
classified by the offline training model. Finally, the classifica-
tion results indicate the identity of the device.

5.2. Feature Selection and Fingerprint Generation. This sec-
tion focuses on the operating environment of user devices
and derives a device identification technology based on its
characteristics. The operating environment mainly includes
two types of features, which are the operating system type
and application type (version information is included). To
generate the device fingerprints for identification of the
user device, we collect the type and version information of
applications from the results of application identification, and
extract the attributes such as the browser type and version and
operating system type from the results of HTTP User-Agent
detection.

Specifically, the device fingerprints are generated by ana-
lyzing the traffic per unit time. If the traffic of an application
is detected within the time period, the corresponding feature
attribute of the application is set to 1 or the corresponding
frequency. The dimension of the device fingerprint feature
vector is 961. According to the value types of the extracted
feature attributes, we design two types of device finger-
prints: boolean type device fingerprint and numerical type

Security and Communication Networks

device fingerprint, where the Boolean type device fingerprint
indicates whether features such as applications or operating
systems appear in the network traffic, and the numeric device
fingerprint indicates how often these features appear.

Note that all the identifiable application type sets are
S = {5,,8,,---,Sy} and the ith application’s version set is
V, = {VLVA.. ,Vl.c"}. C; refers to the total number of
recognizable versions of the ith application and OS represents
the operating system type. The feature vector of the device
fingerprint can be presented by formula (1).

FPy, = 18,8V}, 8V, S, 8,V - S, Va2, -
S, S,

Sx> S Vi -+, Sy VN, 08
Sy

When the value of the attribute in fingerprint leev is
numerical, it is a numerical type device fingerprint. When the
value of the attribute is only 0 or 1, it is a Boolean type one.
Then the device identification problem can be modeled as a
multiclassification problem in machine learning.

5.3. Offline Model Training and Verification. Since the effi-
ciency of identification depends greatly on the classifica-
tion algorithm and the dimension of the device fingerprint
vector is relatively small, the multiclassification algorithm
can generally be used to train the identification model. We
compare the classification effects of Multinomial Naive Bayes
algorithm, random forest algorithm, and the logistic regres-
sion algorithm. After that, the best performed algorithm is
selected for online identification.

We collect network traffic of 118 user devices for 53
days from June Ist to July 23rd, 2016. The network traffic
produced on each device is examined per hour. Based on the
examination, the features are extracted to form a fingerprint
(all zero-vector fingerprints are discarded). Then we get
50,305 valid device fingerprints in total. The data collected
in the first 30 days is used to train and verify the offline
model, including 30,148 records, while the remaining 20,157
records gathered in the following days are used to evaluate the
accuracy of the classification model.

During the offline training process, the device finger-
prints in the data set are randomly divided into two subsets,
one being the training set containing 70% fingerprints and the
other being the verification set containing the remaining 30%.
Above all, the classification model of Boolean type device
fingerprinting is trained and verified as follows.

5.3.1. Training and Verification of the Classification Model of
Boolean Type Device Fingerprinting. First, the random forest
classification model is trained. Different from Multinomial
Naive Bayesian and logistic regression, the random forest
classification model has two parameters that need to be
tuned, i.e., the number of decision trees (nums) and the
maximal depth of the decision tree (depth). The parameter of
nums affects the accuracy of the overall classification, while

depth affects the classification accuracy of each decision tree.
Training and testing are performed under different values of
nums and depth, and the obtained classification accuracy is
shown in Figure 4(a).

As can be seen from Figure 4(a), depth generally has
a greater impact on the classification accuracy. With the
increase of depth, the accuracy is significantly improved.
When the value of depth is 30, the classification turns to be
optimal. The effect of nums on the classification accuracy cor-
relates positively to depth: when depth is small, the accuracy
rate rises with the increase of nums; when the depth is larger,
the classification accuracy rate first goes up with the increase
of nums, and then remains stable when nums is greater than
20. When the value of nums is 150, the classification accuracy
is the highest. Therefore, we set the value of nums as 150 and
the value of depth as 30, respectively, for optimization.

Then, the Multinomial Naive Bayesian and logistic regres-
sion classification models are trained separately, and the
classification accuracy of the models is evaluated by the
verification set and test set, respectively. Figure 5(a) shows the
classification accuracy of the three models, where MNB refers
to Multinomial Naive Bayes, RF denotes random forest, and
LR represents logistic regression. From Figure 5(a), it can be
seen that the classification accuracy of the verification set by
performing the logistic regression algorithm is considerably
higher than that of other algorithms. For the same algorithm,
the classification effect of the test set is significantly lower
than that of the verification set. This is because the data in
the training and verification set is randomly segmented, and
data in the test and training set has a time-series relationship.
Moreover, the operating environment of the device is likely
to change, so the accuracy of the device identification may
gradually decrease over time.

Further analysis of the data reveals that a portion of
records in the device fingerprint vectors stay close to the
full value of 0. This is due to the fact that not all device
traffic is generated by the identifiable applications involved
in this paper. Such traffic cannot be identified as valid device
information. To deal with it, the following definitions are
given.

Definition I (effective dimension). Given a fingerprint vector,
denote the number of feature columns with a nonzero value
as effective dimension.

Definition 2 (the minimal effective dimension). For the set
of fingerprint vectors to be identified, the minimal effective
dimension is defined as the threshold, below which the
fingerprints are deemed as invalid ones and filtered out due
to a lack of information.

Figure 6(a) shows the impact of this threshold on the
classification accuracy. And Table 1 shows the ratio of valid
device fingerprints to the total number with different values
of the minimal effective dimension, which shows the traffic
coverage rate of device identification.

From Figure 6(a) and Table 1, we can see that the
classification accuracy of the validation set and the test
set increases gradually as the minimal effective dimension

Security and Communication Networks

0.8

0.75 0.75

0.7 0.7

0.65 0.65

0.6 0.6

0.55 0.55

0.5 0.5

0.45 0.45

200 200 o

20 o 0.35 ' Voo 035

15 03 ‘ -2 100 0.3
depth 10 0 nums depth 10 ¢ nums

(a) Boolean type fingerprints (b) Numerical type fingerprints

FIGURE 4: The classification accuracy of device fingerprints using random forest model.

Accuracy
Accuracy

MNB RE LR ' MNB(TF) RE(TF) LR(TF)
= Validation set = Validation set
m Test set m Test set
(a) Boolean type fingerprints (b) Numerical type fingerprints

FIGURE 5: The accuracy of device recognition using MNB, RF, and LR.

1.00 - -

: o o o 09571 0.9653 09707 "~ 1.00 - - . - - - - - - 0.9668 - 0.9694
0.9458 09513
095 - 09360 0 Se—— 095 - 09340 09465
0.90 - - 0.90 - -
5 0.85 5 0.85 -
< <
5 0.80 - 5 0.80 - -
3 3
< 0.75 - - < 0.75- -
0.70 - 0.70 - -
0.65 - - 0.65 - -
0.60 0.60
1 2 3 4 5 6 1 2 3 4 5 6
Minimum effective feature dimension Minimum effective feature dimension
—o— MNB(Validation set) —s— RF(Validation set) —+— MNB(TF+Validation set) ~ —m— MNB(TF+Test set)
—#— LR(Validation set) —m— MNB(Test set) —#— RF(TF+Validation set) RE(TF+Test set)
RF(Test set) —@®— LR(Test set) == LR(TF+Validation set) —@®— LR(TF+Test set)
(a) Boolean type fingerprints (b) Numerical type fingerprints

FIGURE 6: The effect of the minimum effective feature dimension on the device classification accuracy.

Security and Communication Networks

TABLE 1: The effect of the minimum effective feature dimension on
the number of device fingerprints.

Minimum Effective

. . Validation Set Test Set
Feature Dimension
1 100.00% 100.00%
2 89.58% 90.43%
3 82.98% 81.66%
4 75.94% 74.85%
5 70.57% 68.99%
6 63.73% 62.08%

climbs. The classification accuracy values of three models
all plateau close to 80% for the test set when the minimal
effective dimension is 6. However, despite the top accuracy,
only 62.08% of device fingerprints in the test set are retained.
In comparison, when the minimal effective dimension is
lowered to 4, the classification accuracy of Multinomial Naive
Bayes and logistic regression for the test set is higher than
75%, and 74.85% of device fingerprints in the test set are
retained. Considering the effect of the minimal effective
dimension on fingerprint classification accuracy and traffic
coverage, the minimal effective dimension 4 is determined as
the threshold for filtering fingerprint data. Since the logistic
regression model performs comparatively better for both the
validation set and the test set, the logistic regression model
is chosen as the online identification model for the Boolean
type device fingerprinting.

5.3.2. Training and Verification of Classification Model for
Numerical Type Device Fingerprinting. For numerical type
device fingerprinting, the same random forest parameters are
first trained. The results are shown in Figure 4(b). When nums
is 100 and depth is 30, the random forest model has the best
classification effect. Since the specific value of each feature
has an important influence on the classification result of the
Multinomial Naive Bayesian classification model, we need
to perform the term frequency (TF) transform as shown in
formula (2) for each feature value.

1 =1+log(f,))

To further implement numerical type device fingerprint-
ing, we train the Multinomial Naive Bayes classification
model and the logistic regression classification model, respec-
tively, and calculate the classification accuracy on the verifica-
tion set and the test set. The results are shown in Figure 5(b).
We also verify the impact of the minimum effective dimen-
sion on the classification accuracy, as shown in Figure 6(b). By
comparing Figures 5(a) and 5(b), Figure 6(a) and Figure 6(b),
respectively, we can find that the performances of Boolean
and numerical type device fingerprinting are basically the
same and can both achieve a comparatively high device
identification accuracy. However, because the numerical type
fingerprints may fluctuate on feature values, we only leverage
the Boolean type device fingerprinting to test the online
identification accuracy of devices.

5.4. Online Identification of User Devices. The online iden-
tification of user devices employs the Boolean type device
fingerprinting, and a logistic regression model is taken as
the classification model. The experiment is based on the
sliding window mechanism, which simulates the online
identification process by replaying network traffic in the
test set for 23 days. The sliding window has two important
parameters: the windows slide and the windows size.

A prediction is made iteratively when the sliding window
slides backward over a distance of the window slide. The
windows size is the range that fully covers flow data. When
we want to make a prediction, we need to read feature data
within the time range of the previous windows size from the
current moment. The online identification accuracy rate of
the user devices is counted as the ratio of the total number of
device fingerprints correctly classified to the total number of
device fingerprints in all the windows.

In this paper, the values of the windows slide and the
windows size are set to be 1 minute, 2 minutes, 5 min-
utes, 10 minutes, 20 minutes, 30 minutes, and 60 minutes,
respectively. By adjusting the values, we analyze how the
two parameters influence online identification accuracy of
user devices. Figure 7 shows the results when the minimum
effective dimensions are 1 and 4, respectively.

As can be seen from the figure, the online identification
accuracy rate is barely influenced by the change of windows
slide, while it is in a positive correlated response to the
increase of windows size. That is, the bigger the windows
size, the more accurate the identification. When the windows
size is 60 minutes, the identification accuracy rate reaches
a maximum value of 68.93%. If we filter the data with
low information content by setting the minimal effective
dimension to 4, the maximal online identification accuracy
will increase to 77.03%.

6. User Identification Based on Network
Behavioral Fingerprints

6.1. Basic Ideas. Inthe scenario of intrusion detection, if some
intruder occupies an authorized device, we cannot detect the
intrusion by using the device identification technologies. So
it is of great practical importance to identify user across mul-
tiple devices. To this end, we try to analyze the user’s behavior
habits and generate fingerprints, which are constituted by
the device-independent Web access records, DNS domain
name information, and HTTP User-Agent field. Except for
the feature selection, other steps are similar to those of
device identification. The specific identification procedures
and verification steps go as follows.

6.2. Feature Selection and Fingerprint Generation. The user’s
network behavior habits are mainly reflected by his Web
access records, and the attributes such as operating system
and browser in HTTP User-Agent can also reflect the user’s
preferences to some extent. Therefore, we use the Web access
records extracted from the application protocol identification
unit, the mapping relationship between IP addresses and
domain names obtained from the DNS analysis results, and

10

1000

windows slide(s) 00 windows size(s)

(a) Setting the minimum effective feature dimension to 1

Security and Communication Networks

0.75
0.7
0.65
0.6
0.55
0.5
4000
2000 3000
2000 0.45
1000 1000

windows slide(s 0 windows size(s)

(b) Setting the minimum effective feature dimension to 4

FIGURE 7: The Effect of sliding window on the accuracy of online device identification.

the information about the types of browsers, versions, and
operating system types achieved through HTTP User-Agent
detection, to generate user’s online behavioral fingerprints for
the identification of network users.

The behavioral fingerprint vector is generated by extract-
ing features from captured traffic in a unit time. For the target
IP address in the Web access record, we associate it with
the domain name based on the DNS response records and
treat all IP addresses and subdomains under the same domain
name as one attribute of the vector.

After the features of domain names are determined,
combined with the information contained in the HTTP
User-Agent field, a network user’s behavioral fingerprint is
generated, which constitutes the fingerprint vector of the user
behavior in a unit time.

The dimension of the user behavioral fingerprint vector
is 57,593. According to the value type of feature attributes,
behavioral fingerprints can also be divided into two types:
boolean and numerical type. However, we can see from the
fingerprint classification results of the device that there is no
obvious difference between the classification accuracy of the
two types of fingerprints, and the classification accuracy of
Boolean type device fingerprinting is slightly better than that
of numerical type fingerprinting. Therefore, we will test the
identification accuracy of network user with Boolean type
behavioral fingerprinting.

6.3. Training and Verification of Offline Model. Since the
overall dimension of the behavioral fingerprint vector is large,
we select Multinomial Naive Bayes and random forest to
perform and compare their performance to select the better
one for online identification of network users.

The network traffic collected in this paper contains data
of 118 users. The data collection procedure lasts for 53 days.
Each fingerprint is generated through extraction of each
user’s network data per hour. Note that the fingerprints with
a full list of zero feature values are discarded. Altogether,
we get a total of 54107 fingerprints. The overall fingerprints
are categorized into two groups. One group contains 32,217

0.75
08 - 0.7
07 0.65
0.6 0.6
051 0.55
\ 0.5
044 -
0.45
034 -
0.4
02 4.
30 : 0.35
) 200
< 0.3
2 \ " 150
15 0.25

50

depth 10 0 nums

FIGURE 8: The classification accuracy of behavioral fingerprints
using random forest model.

behavioral fingerprints collected in the first 30 days, used for
the training and verification of the offline models. The other
group includes the remaining 21,890 behavioral fingerprints
collected in the following 23 days, used for testing the
identification accuracy of network users.

Moreover, when training an offline model, the first group
of the behavioral fingerprints are randomly divided into the
training and verification sets, of which 70% of the behavioral
fingerprints are used as a training set for model training, and
the remaining 30% are used for verifying. The rest of the
behavioral fingerprints are gathered as a test set for evaluating
the classification accuracy. Two offline models, Naive Bayes
and Random Forest, are trained with the same allocation of
data sets.

First, the random forest model is trained. Its nums and
depth parameters are taken into account. The obtained clas-
sification accuracy from training and testing under different
values of nums and depth is shown in Figure 8. As can be seen

Security and Communication Networks

1.0 -
0.9 -
0.8 -
0.7 -
5 0.6-
0.5
0.4 -
0.3-
0.2-
0.1-
0.0

©0.8922

0.7842

Accurac

MNB RF

m Validation set
m Test set

FIGURE 9: Behavioral fingerprints classification accuracy using MNB
and RE.

1.00 -
095"
0.90:
0.85 :

2 0.80 :

075"

0.70 -

0.65

0.60 :

0.55

0.50 -

Accurac

1 2 3 4 5 6 7 8 9 10 11
Minimum effective feature dimension

—o— MNB(TF+Validation set) —m— MNB(TF+Test set)
RF(TF+ Validation set) RF(TF+Test set)

FIGURE 10: The effect of the minimum effective feature dimension
on the user classification accuracy.

from the figure, when the nums is 40 and the depth is 30, the
random forest model achieves the best classification accuracy.

Then the Multinomial Naive Bayes classification model
is trained, and the classification accuracy is evaluated by the
validation set and the test set, respectively. Figure 9 shows
the classification accuracy of the validation set and the test
set by performing the two models. These results show that
the random forest model is far worse than the Multinomial
Naive Bayes model for both data sets in terms of classification
accuracy.

Finally, the effect of the minimum effective dimension
on the classification effect and the ratio of valid behavioral
fingerprints are tested. The results are shown in Figure 10 and
Table 2, respectively.

As can be seen from Figure 10, the positive effect of the
Multinomial Naive Bayes model on the test set is gradually
enlarged as the minimum effective dimension increases.
When the minimum effective dimension is set to 3, the
classification accuracy rate of the test set is already higher
than 75%. And when the minimum effective dimension is
9, the classification accuracy of the test set is the highest,
reaching 80.70%, which can cover 74.87% of behavioral
fingerprints.

11

TABLE 2: The effect of the minimum effective feature dimension on
the number of behavioral fingerprints.

Minimum Effective

. . Validation Set Test Set
Feature Dimension
1 100.00% 100.00%
2 92.39% 93.70%
3 91.77% 90.54%
4 89.34% 86.72%
5 87.98% 84.22%
6 86.53% 81.03%
7 83.18% 78.36%
8 80.45% 76.42%
9 79.03% 74.87%
10 77.07% 73.43%
1 73.67% 72.16%

In comparison, the classification effect of the random
forest model is not only relatively poorer, but also not
stable enough. Therefore, we use the Multinomial Naive
Bayes classification algorithm to implement the online user
identification. Moreover, after comprehensively considering
the effect of the minimum effective dimension on the
classification accuracy and the coverage of the behavioral
fingerprints, the value of 9 is selected as a condition to filter
the invalid behavioral fingerprints.

6.4. Online User Identification. The online identification of
network users is also performed in the sliding window
manner, and the online process is simulated by replaying the
real network traffic in the test set for 23 days. The step size and
the window size of the sliding window are varied to figure out
their effects on the user identification accuracy. In this paper,
the values of step size are set to be 1 minute, 2 minutes, 5
minutes, 10 minutes, 20 minutes, 30 minutes, and 60 minutes
and so are the values of window size. Figure 11 shows the
results when the minimum effective dimensions are 1 and 9,
respectively.

As can be seen from the figure, the step size of the sliding
window has very little effect on the accuracy of online user
identification. When the minimum effective dimension is 1,
the accuracy goes up as the size of sliding window increases.
When the window size is 60 minutes, the identification
accuracy rate reaches a maximum of 72.58%. And the
experimental results also show that when the window size of
the sliding window is 20 minutes, the identification accuracy
rate has already reached 71.42%. Thus, the time window size
of the online user identification can be controlled within 20
minutes.

When the minimum effective dimension is 9, the iden-
tification accuracy rate firstly increases with the increase of
the sliding window. When the window size increases to 5
minutes, the accuracy remains basically unchanged at 79.51%.
When the window size is 20 minutes, the accuracy reaches
81.37%. And when the window size is 60 minutes, the rate

12

Security and Communication Networks

0.8
0.75 0.82 -
0.8
0.7 0.78
& 0.65 > 0.76 0.75
8 0.74
g 06 0.72
< 0.55 0.7
0.68
0.5 0.66 0.7
0.45 0.64 5!
4000 4000
3000 4000 3000 4000
2000 3000 2000 3000
2000 2000
. 4 1000 1000 . 4 1000 1000 0.65
windows slide(s) 00 windows size(s) windows slide(s) 00 windows size(s)
(a) Setting the minimum effective feature dimension to 1 (b) Setting the minimum effective feature dimension to 9
FIGURE 11: The effect of sliding window on the accuracy of online user identification.
TaBLE 3: The results of high-speed packets capture (pps).
Packet length (Byte) Number of physical cores
1 2 4 8 12
100 1329465 1566371 3206383 5936376 6272835
200 1130613 1734582 2917599 5352853 5586074
500 922524 1155344 2384589 2385555 2402127
1000 852867 1219714 1219109 1230260 1229943

is 80.74%. Therefore, the time window size of online user
identification can be further shortened to 5 minutes.

7. Performance Tests and Results

71. Test Environment. In the above we have evaluated and
proved the effectiveness of device identification and user
identification with different algorithms and parameters,
respectively. This section mainly tests the performance of the
identification methods. The test environment is as follows:

71.1. Hardware

(i) 1 master node: Dell PowerEdge R730 (CPU: 2 6-
core E5-2620V2, 2.1GHz, memory: 96 GB, external
storage: 3.6TB).

(ii) 14 slave nodes: Dell PowerEdge C6220 II (CPU: 2 6-
core E5-2620V2, 2.1GHz, memory: 64 GB, external:
8TB).

(iii) NIC: Intel 82599ES 10-Gigabit, supports up to 64
hardware queues.

7.1.2. Operating System

(i) Operating system: Red Hat Enterprise Linux 7.
(ii) Kernel version: 3.10.0-123.20.1.el7.x86_64.

7.2. Test Results. This section tests the performance of three
modules: packets capture, distributed packets processing, and
online identification modules. The test results are illustrated
as follows:

7.2.1. Packets Capture Rate. First, network traffic is generated
by the tcpreplay tool [34] and the packets capture rate
is tested on the Intel 82599ES 10-Gigabit NIC. The NIC
supports a maximum of 64 hardware queues and the number
of hardware queues can be configured freely as required.
However, due to the fact the CPU in our experimental
computing node only has 12 physical cores and that the packet
capture speed cannot be greatly enhanced if multiple packet
capture threads are located in the same physical core, at most
12 hardware queues are enabled in this experiment.

In this paper, the speed of traffic capture is tested for the
packets with different lengths and number of NIC hardware
queues, separately. The results obtained are shown in Table 3.
The results are acquired by calculating the average total
numbers of packets that multiple NIC hardware queues
capture within 10 seconds. The corresponding packet capture
rate is shown in Table 4. From Tables 3 and 4 we can conclude
that the packet length has a great influence on the capture
rate. When the packet length is 1000 bytes, the ultimate speed
of the NIC (9.76Gbps) can be reached by just consuming
two hardware queues. If the packet length is reduced to
100 bytes, the packet capture rate rises as the number of
NIC hardware queues increases till reaching a peak speed

Security and Communication Networks 13
TABLE 4: The results of high-speed packets capture (Gbps).
Packet length (Byte) Number of physical cores
1 2 4 8 12
100 1.06 1.25 2.57 4.75 5.02
200 1.81 2.78 4.67 8.56 8.94
500 3.69 4.62 9.54 9.54 9.61
1000 6.82 9.76 9.75 9.84 9.84

TaBLE 5: The speed test results of distributed processing framework.

TABLE 6: The time consuming of online identification.

The Number of Kafka Maximum # Time consuming of online
Partitions Processing Speed identification (ms)
1 3.76Gbps 1 9074
2 6.68Gbps 2 8256
3 10.01Gbps 3 7480
4 13.35Gbps 4 8188
5 6566
6 6780
of 5.02Gbps. When the length is changed to 200 bytes, the 7 6643
maximum capture rate is 8.94Gbps. When the packet length 8 6503
is 500 bytes, the maximum packet capture rate is 9.61Gbps. 9 8047
The experimental results above show that the use of Linux 10 6080

PFQ kernel module can capture packets with a high speed and
has robust systematic extensibility.

7.2.2. Speed of Distributed Processing of Packets. When testing
the speed of the distributed processing framework, this paper
uses KafkaProducer to write the network traffic captured by
the packet capture module into each Kafka partition and then
calculate the framework’s processing speed of reading and
analyzing data from Kafka partitions.

The number of KatkaSpouts is consistent with the number
of Kafka partitions, which has a crucial influence on the
speed of the distributed processing framework. Table 5
shows the speed of the distributed processing framework
under different Kafka partition numbers. As we can see, the
maximum processing speed is basically proportional to the
number of Kafka partitions. It is noteworthy that it exceeds
10Gbps when the Kafka partition number is 3.

7.2.3. Response Speed of Online Application Identification.
This paper uses the maximum window size of 60 minutes to
test the response speed of the online identification module.
This module contains two parts: online device identification
based on the runtime environment and online user identi-
fication based on network behavioral fingerprints. Through
the statistics of the time consumption of online identification
modules for 10 trials, the average value is calculated as the
response speed of the online identification module. The time
consumption of the 10 online identifications is collected in
Table 6. By averaging them, the response speed is derived
as 7362 ms. This value is much smaller than the minimum
step size of the recognition window (1 minute), so it can be
considered that the online identification processing speed can
meet the performance requirement.

8. Conclusion

In the intrusion detection area, it is increasingly important
to detect the suspicious entities and potential threats. In
this paper, we introduce the identification technologies of
network entities to detect the potential intruders. In order
to achieve network entities identification in high-speed
environment, we use PFQ kernel module to capture high-
speed network packets and employ Storm distributed real-
time streaming data processing technology to realize online
analysis of network traffic.

For the unauthorized devices in the monitored network,
we design an online device identification technology based on
runtime environment analysis. 961 features, such as applica-
tion program, operating system, and HTTP User-Agent field,
are selected to constitute the device fingerprints. And then the
logistic regression algorithm is applied in a sliding window
manner. For the case that the intruder occupies an authorized
device and disguises himself as an authorized user, we extract
the Web access record, DNS domain name, and HTTP
User-Agent field to constitute user behavioral fingerprints.
And then users are identified online in a sliding window
manner using the Multinomial Naive Bayes model. The
experimental results show that the traffic analysis framework
and identification methods proposed in this paper have a
high practicality as they can achieve satisfying identification
accuracy rates in a short time. For future research, we intend
to design an automated application identification tool in
order to identify a large scale of applications and enhance the
identification accuracy.

14

Data Availability

The network traffic data used to support the findings of this
study have not been made available because they contain a lot
of privacy information.

Disclosure

Any opinions, findings, conclusions, and recommendations
in this paper are those of the authors and do not necessarily
reflect the views of the funding agencies.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by National Key R&D
Program of China 2018YFB0803400 and 2017YFB1003000,
National Natural Science Foundation of China under grants
61572130, 61502100, 61532013, and 61632008, by Jiangsu
Provincial Scientific and Technological Achievements Trans-
fer Fund BA2016052, by Jiangsu Provincial Key Laboratory of
Network and Information Security under grants BM2003201,
by Key Laboratory of Computer Network and Information
Integration of Ministry of Education of China under grants
93K-9, and by Collaborative Innovation Center of Novel
Software Technology and Industrialization.

References

[1] G.PedroT,D.Jes:sE V, M. Gabriel F, and V. Enrique, “Anomaly-
based network intrusion detection: Techniques, systems and
challenges,” in Computers Security, pp. 18-28, 18-28, 28(1-2,
20009.

[2] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: methods, systems and tools,” IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 1, pp. 303-336, 2014.

[3] J. Pang, B. Greenstein, R. Gummadi, S. Seshan, and D. Wether-
all, “802.11 User fingerprinting,” in Proceedings of the 13th
Annual ACM International Conference on Mobile Computing
and Networking, pp. 99-110, ACM, September 2007.

[4] Y. Zhang, M. Yang, X. Gu, P. Pan, and Z. Ling, Proceedings of the
2018 International Conference on Advanced Cloud and Big Data,
LanZhou, China, 2018.

[5] B. Danev, D. Zanetti, and S. Capkun, “On physical-layer
identification of wireless devices,” ACM Computing Surveys, vol.
45, no. 1, article 6, 2012.

[6] T. Kohno, A. Broido, and C. Clafty K, “Remote physical device
fingerprinting,” in Proceedings of the 26th IEEE Symposium on
Security and Privacy (SP’05), Berkeley, CA, USA, 2005.

[7] R. Gerdes, T. Daniels, M. Mina, and S. Russell, “Device
Identification via Analog Signal Fingerprinting: A Matched
Filter Approach,” in Proceedings of the 13th Annual Network and
Distributed System Security Symposium Conference (NDSS06),
San Diego, CA, USA, 2006.

[8] E. D. Thomas, J. A. Van Randwyk, E. J. Lee et al., “Passive
data link layer 802.11 wireless device driver fingerprinting,’

Security and Communication Networks

in Proceedings of the I5th conference on USENIX Security
Symposium, Vancouver, B.C., Canada.

[9] T. Yen, Y. Xie, E Yu, R. Yu, and M. Abadi, “Host Fingerprinting
and Tracking on the Web: Privacy and Security Implications,” in
Proceedings of the 19th Annual Network and Distributed System
Security Symposium (NDSS’12), 2012.

[10] T. Stober, M. Frank, J. Schmitt, and I. Martinovic, “Who do you
sync you are?” in Proceedings of the the sixth ACM conference, p.
7, Budapest, Hungary, April 2013.

[11] P. Eckersley, “How unique is your web browser?” in Privacy
Enhancing Technologies: 10th International Symposium, PETS
2010, Berlin, Germany, July 21-23, 2010. Proceedings, vol. 6205
of Lecture Notes in Computer Science, pp. 1-18, Springer, Berlin,
Germany, 2010.

[12] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Fin-
gerprinting information in JavaScript implementations,” in
Proceedings of 2011 Web 2.0 Security and Privacy (W2SP’ll,
Oakland, California, 2011.

[13] J. Mayer and J. Mitchell, “Third-party web tracking: Policy and
technology,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy (SP’12), San Francisco, CA, USA, 2012.

[14] G. Acar, M. Juarez, N. Nikiforakis et al., “FPDetective: Dusting
the web for fingerprinters,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security,
CCS 2013, pp. 1129-1140, Germany, November 2013.

[15] N.Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna, “Cookieless monster: Exploring the ecosystem
of web-based device fingerprinting,” in Proceedings of the 34th
IEEE Symposium on Security and Privacy, SP 2013, pp. 541-555,
USA, May 2013.

[16] N.Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, E. Piessens,
and G. Vigna, “On the workings and current practices of web-
based device fingerprinting,” IEEE Security ¢ Privacy, vol. 12,
no. 3, pp. 28-36, 2014.

[17] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and
the Beast: Diverting Modern Web Browsers to Build Unique
Browser Fingerprints,” in Proceedings of the 2016 IEEE Sympo-
sium on Security and Privacy, SP 2016, pp. 878-894, USA, May
2016.

[18] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling,
“Fingerprinting Mobile Devices Using Personalized Configura-
tions,” Proceedings on Privacy Enhancing Technologies, vol. 2016,
no. 1, pp. 4-19, 2016.

[19] W. Wu, J. Wu, Y. Wang, Z. Ling, and M. Yang, “Efficient
Fingerprinting-Based Android Device Identification with Zero-
Permission Identifiers,” IEEE Access, vol. 4, pp. 8073-8083, 2016.

[20] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser fingerprinting
via os and hardware level features,” in Proceedings of the 24th
Annual Network and Distributed System Security Symposium,
NDSS, San Diego, CA.

[21] R. V. Yampolskiy and V. Govindaraju, “Behavioural biometrics:

a survey and classification,” International Journal of Biometrics,
vol. 1, no. 1, pp. 81-113, 2008.

[22] N. Zheng, A. Paloski, and H. Wang, “An efficient user verifica-
tion system via mouse movements,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security,
pp- 139-150, ACM, October 2011.

[23] S. Douhou and J. R. Magnus, “The reliability of user authen-
tication through keystroke dynamics,” Statistica Neerlandica.
Journal of the Netherlands Society for Statistics and Operations
Research, vol. 63, no. 4, pp. 432-449, 2009.

Security and Communication Networks

(24]

(25]

(26]

(27]

(29]

(30]

(31]

[32]

(33]

(34]

N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and A.
Spognardi, “No NAT'd user left behind: Fingerprinting users
behind NAT from NetFlow records alone,” in Proceedings of
the 2014 IEEE 34th International Conference on Distributed
Computing Systems, ICDCS 2014, pp. 218-227, Spain, July 2014.
B. Padmanabhan and Y. Yang, Clickprints on the web: Are
there signatures in web browsing data, 2006, http://knowledge
.wharton.upenn.edu/papers/1323.pdf.

Y. Yang, “Web user behavioral profiling for user identification,”
Decision Support Systems, vol. 49, no. 3, pp. 261-271, 2010.

M. Kumpo$t and V. Matyas, “User Profiling and Re-
identification: Case of University-Wide Network Analysis,”
in Trust, Privacy and Security in Digital Business, vol. 5695 of
Lecture Notes in Computer Science, pp. 1-10, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

D. Herrmann, C. Gerber, C. Banse, and H. Federrath, “Ana-
lyzing Characteristic Host Access Patterns for Re-identification
of Web User Sessions,” in Information Security Technology for
Applications, vol. 7127 of Lecture Notes in Computer Science, pp.
136-154, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.
C. Banse, D. Herrmann, and H. Federrath, “Tracking Users on
the Internet with Behavioral Patterns: Evaluation of Its Practical
Feasibility,” in Information Security and Privacy Research, vol.
376 of IFIP Advances in Information and Communication
Technology, pp. 235-248, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

D. Herrmann, C. Banse, and H. Federrath, “Behavior-based
tracking: Exploiting characteristic patterns in DNS traffic,”
Computers & Security, vol. 39, pp. 17-33, 2013.

D. W. Kim and J. Zhang, “You Are How You Query: Deriving
Behavioral Fingerprints from DNS Traffic,” in Security and
Privacy in Communication Networks, vol. 164 of Lecture Notes
of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, pp. 348-366, Springer Inter-
national Publishing, Cham, 2015.

X. Gu, M. Yang, C. Shi, Z. Ling, and J. Luo, “A novel attack
to track users based on behavior patterns,” Concurrency and
Computation: Practice and Experience, 2016.

Blockmon, “cnplab/blockmon,” https://github.com/cnplab/
blockmon.

Tcpreplay, “Tcpreplay development is now being done by
AppNeta,” URL http, http://tcpreplay.synfin.net.

15

http://knowledge.wharton.upenn.edu/papers/1323.pdf
http://knowledge.wharton.upenn.edu/papers/1323.pdf
https://github.com/cnplab/blockmon
https://github.com/cnplab/blockmon
http://tcpreplay.synfin.net

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

