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ABSTRACT Mobile device identification techniques can be applied to secure authentication, and will be of
particular importance for the security of mobile networks, such as avoiding spoofing attacks. For Android
devices, explicit identifiers, e.g., Android ID, are used to uniquely identify a device. However, permissions
are required to gain such identifiers, and this could cause the permission abuse and the leakage of user
privacy. To address these issues, we use the combination of implicit identifiers that cannot identify a device
individually. We first investigate 38 implicit identifiers that are acquired without requesting any permission.
Then, a feature selection algorithm is used to choose effective identifiers as the device fingerprint, and
three algorithms are designed to identify the devices. Finally, we conduct experimental evaluations on
50 830 fingerprints from 2239 different Android devices. The empirical results demonstrate the effectiveness
and efficiency of our algorithms.

INDEX TERMS Device fingerprinting, android, implicit identifier, zero-permission.

I. INTRODUCTION
In recent years, the smartphone market is in a time of
rapid growth, and the worldwide smartphone shipments are
expected to reach 1.46 billion units in 2016, according to the
latest forecast from the International Data Corporation (IDC)
Worldwide Quarterly Mobile Phone Tracker [1].

Features acquired from a smartphone can be used to iden-
tify a user of the smartphone. Different from traditional com-
puters, a smartphone is a personal belonging that is playing an
increasingly important role in people’s everyday lives, such
as communication, shopping and traveling. In other words,
a smartphone can usually be bound to a user. When the
user accesses a system through mobile networks, the system
can authenticate the user’s identity with identifying his/her
smartphone so that an attacker trying to impersonate the
device will be detected. Therefore, device identification is
of great importance for secure user authentication in mobile
networks and has attracted attentions of many researchers.
Since Android is currently dominant in mobile operating
systems (OS), we focus on Android device identification in
this paper.

Traditional methods utilize an explicit identifier that can
uniquely identify a device, such as International mobile
equipment identity (IMEI), International mobile subscriber
identity (IMSI), or Android ID.1 However, some explicit
identifiers are unreliable, and can be easily tampered or
even forged, such as Android ID. Moreover, it is necessary
to request sensitive permissions before acquiring them. For
example, the READ_PHONE_STATE permission is required
when acquiring the information about IMEI, IMSI and phone
number. This will cause the abuse of sensitive permissions
and the leakage of user privacy [2], [3].

To address these issues, we adopt implicit identifiers for
Android device identification in this paper. Unlike explicit
identifiers, the implicit identifiers investigated in this paper
cannot be used to identify devices individually, as devices
may share the same value for an identifier. However, a
combination of these identifiers shows great device-related
characteristics, so that we can use the set of them as a

1https://developer.android.com/reference/android/provider/Settings.
Secure.html
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fingerprint for device identification. More specifically, we
explore several suitable implicit identifiers that can be
obtained without requesting any permission, generate device
fingerprints through the combination of the implicit iden-
tifiers, and propose three algorithms to identify Android
devices, respectively. Themain contributions of this paper are
as follows:
• We present 38 implicit identifiers that cover the features
of physical layer, application layer, and user layer in
Android system, and take these identifiers as features
for fingerprinting. What’s more, these features can be
acquired without requesting any permission.

• We utilize a feature selection algorithm to remove irrel-
evant and redundant features. On this basis, we propose
a fingerprint matching algorithm (FMA), a fingerprint
association algorithm (FAA) and a naïve bayes classifier
based algorithm (NBCA) to achieve Android device
identification, respectively.

• We conduct experimental evaluations on 50830 finger-
print data records from 2239 different Android devices.
The results show that the NBCA algorithm outperforms
the two other algorithms, and its precision is over 99%,
while its recall is over 98%.

The rest of the paper is structured as follows. Section II
presents feature collection and selection. We then propose
three algorithms to implement Android device identification
in Section III. Next, we conduct experimental evaluations in
Section IV. Section V discusses some related work. Finally,
Section VI concludes the paper.

II. FEATURE COLLECTION AND SELECTION
In this section, we introduce and analyze the features
extracted from Android system, and then select features for
fingerprint formulation.

A. FEATURE COLLECTION
In Android system, the information about hardware, soft-
ware and user settings can be seen through the settings

menu. According to the information, we try to find some
suitable features which can be obtained without requesting
any permission. By investigating the official documents of
Google [4], we study three types of features, mainly involv-
ing hardware-related implicit identifiers in physical layer,
OS-related implicit identifiers in application layer, and user-
setting-related implicit identifiers in user layer. From the
three types of features, we eventually choose 38 different fea-
tures that can be obtained through system API or Linux Shell
command. Most of them are user-setting-related implicit
identifiers, such as timezone, ringtone, and input meth-
ods. The others are hardware-related implicit identifiers and
OS-related implicit identifiers, e.g., screen information and
kernel information. The fingerprint of an Android device can
be constituted by these features and the corresponding values,
formatted as a list of (identifier, value) pairs. Table 1, 2 and 3
present all the features that are chosen and the corresponding
approaches to acquire their values.

Among these features, the list of user package, denoting
the information about applications installed on the device, is
the most noteworthy. That is because hundreds of thousands
of applications are provided in Android market and the sets of
applications installed on user devices differ from each other
in thousands of ways. Moreover, each application has an UID
that is assigned in the stage of application installation and
remains unchanged until application uninstallation. Since the
UID owned by a removed application will be reclaimed by
system for future assignment and a new coming application
will adopt the smallest one of available UIDs. Despite the
two devices have the same set of installed applications, their
lists of user package will still be different due to the different
orders of application installation. Hence, the list of user pack-
age has the high ability of device identification. For the list
of system package, although system applications in the ROM
are installed in the same order, users may remove or install
some system applications. This will make the lists of devices
different from each other. Thus, the list of system package is
also a good feature for device identification. However, some

TABLE 1. List of hardware-related implicit identifiers.

TABLE 2. List of os-related implicit identifiers.
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TABLE 3. List of user-setting-related implicit identifiers.

security softwares, such as 360 Mobile Safe that has been
installed on 68.5% of smartphones in China,2 can control the
acquisitions of lists of user package and system package, and
the two features are unreliable to be acquired. Therefore, it
is necessary to combine with other features to achieve device
identification.

B. FEATURE ANALYSIS
In order to evaluation the goodness of these features, we
introduce the concept of surprisal and entropy in information
theory [5].

If x represents an Android device, F(x) denotes the finger-
print of x, andP(fn) is the discrete probability density function
corresponding to the probability distribution of F(x), where
fn (n ∈ [0, 1, ...,N ]) is a possible fingerprint. The surprisal I
is defined as follows:

I (F(x) = fn) = − log2(P(fn)) (1)

The device fingerprint is formed by several features, and
we can calculate the surprisal of each feature to evaluate its
distinguishing ability. Supposing that s is a feature, we can

2http://www.iimedia.cn/42606.html

calculate its surprisal and entropy by Formula 2 and 3.

I (fn,s) = − log2(P(fn,s)) (2)

H (Fs) = −
N∑
n=1

P(fn,s)× log2(P(fn,s)) (3)

For a certain device fingerprint, we can compute the
amount of information that contributes to the fingerprint by
the surprisal of each feature. For all device fingerprints, we
can calculate the entropy of the feature, which represents the
amount of information owned by the feature.

C. FEATURE SELECTION
As described above, we find a set of 38 features that can be
used to form device fingerprints directly. However, some fea-
tures are either redundant or irrelevant, and can be removed
without degrading the performance of device identification.
In addition, cardinality reduction of features will make the
process of device identification efficient. Therefore, it is nec-
essary to choose a subset of relevant features for fingerprint
generation. In general, a feature is good if it is relevant to
the class but it is not redundant to any of the other relevant
features. Hence, the key is to find a proper evaluation indi-
cator of the correlation between features and select features

VOLUME 4, 2016 8075
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based on the evaluation indicator. In this paper, we utilize a
fast correlation-based filter (FCBF) algorithm proposed in [6]
for feature selection. After feature selection, we can form
compacted device fingerprints by the selected features.

III. FINGERPRINTING-BASED DEVICE IDENTIFICATION
In this section, we propose three algorithms to achieve device
identification, respectively. Given a data set consisting of
fingerprints of known Android devices, these algorithms can
be used to identify unknown Android device.

A. FINGERPRINT MATCHING ALGORITHM
We first propose a simple FMA algorithm to exactly match
the unknown fingerprint with fingerprints in the data set,
as shown in Algorithm 1. The set of fingerprints of known
Android devices is denoted by F , and the fingerprint of an
unknown device is denoted by x. If there exists a fingerprint
f ∈ F that can be exactlymatchedwith x, i.e., each (identifier,
value) pair is the same for the two fingerprint, the unknown
device will be identified as the device whose fingerprint is f .
Otherwise, the unknown device cannot be identified, and the
algorithm returns ’null’.

Algorithm 1 Fingerprint Matching Algorithm (FMA)
Input: fingerprints in the data set F , unknown

fingerprint x
Output: matched fingerprint y

1 y← null
2 for f ∈ F do
3 if x and f are exactly matched then
4 y← f
5 return y

6 return y

B. FINGERPRINT ASSOCIATION ALGORITHM
The FMA algorithm is efficient, and its identification is
precise. However, it cannot work well when the fingerprints
of devices are changeable, since the changed fingerprint
of a device and its previous fingerprint cannot be exactly
matched. In order to address the issue, we propose an FAA
algorithm that can be utilized when the precise matching
between fingerprints is failed. According to the research work
for desktop browser fingerprinting in [7], our algorithm is
designed to associate an unknown fingerprint with its previ-
ous fingerprint if it does not change too much, specifically,
only one feature is changed and the change range is relatively
small.

Algorithm 2 shows the process of the FAA algorithm.
We denote the set of features as S, where list-type features
are involved in set Slist and other features are included in
set Sno−list .
The algorithm mainly consists of two part. In the first

part (lines 3-7), the set of fingerprints F is scanned, and the

Algorithm 2 Fingerprint Association Algorithm
Input: fingerprints in data sets F , unknown fingerprint x

(precise matching is failed)
Output: associated fingerprint y

1 y← null
2 candidates← dict()
3 for s ∈ S do
4 candidates[s]← []

5 for f ∈ F do
6 if x and f are different on only one feature s then
7 candidates[s].append(f )

8 foundF ← []
9 for s ∈ S do

10 if s ∈ Sno−list then
11 for f ∈ candidates[s] do
12 foundF .append(f )

13 if s ∈ Slist then
14 maxF ← null,maxProb← 0
15 for f ∈ candidates[s] do
16 prob← ListSimilarity(x[s], f [s])
17 if prob >= δ and prob > maxProb then
18 maxF ← f ,maxProb← prob

19 if maxF ! = null then
20 foundF .append(maxF)

21 if len(foundF) == 1 then
22 y← foundF[0]

23 return y

fingerprints that have only one feature different from finger-
print x will be added into set candidates. In the second part
(lines 8-20), we choose the fingerprints that are most possible
to change into fingerprint x from set candidates, and add them
into set foundF . For each fingerprint in set candidates, if the
changed feature is not a list-type feature, it will be added into
set foundF directly. And if the changed feature belongs to
the set of list-type features, the fingerprint with the maximum
similar degree (no less than the threshold δ, usually δ = 0.85)
will be added into set foundF .

We adopt the concept of Jaccard distance, and define
similar degree function ListSimilarity as follows:

|set(f [s]) ∩ set(x[s])|
|set(f [s]) ∪ set(x[s])|

(4)

where the operator set casts a list into a set so that the
operations such as union and intersection can be done.

At the end of the algorithm, if there exists only one
fingerprint in set foundF , the associated fingerprint will
be returned. Otherwise, we return ’null’, since we cannot
decide the association when more than one fingerprint is in
set foundF .
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C. NAÏVE BAYES CLASSIFIER BASED ALGORITHM
The FAA algorithm can be applied to identify the devices that
have only one feature changed, and the identification will fail
when there is more than one feature changed. Considering
that multiple features may be changed for a device, we utilize
the classification method to implement device identification.
We take the known devices in the set D as classes, i.e.,
d1, d2, d3, . . . , and dN . The fingerprints of the known devices
are collected in data set F , and there may be multiple fin-
gerprints corresponding to a device (class). Thus, we can
formulate the device identification problem as a multiclass
classification problem. For an unknown fingerprint x, if x is
classified as di ∈ D, it means the unknown device can be
identified as the known device di. To solve the classification
problem, we propose an NBCA algorithm.

As irrelevant and redundant features have been removed
through feature selection, we can assume that the features are
independent and there is no correlation between features. The
set of features are defined by S, i.e., {s1, s2, . . . , sM }. Thus,
given an unknown fingerprint to be classified, represented
by a vector x = (x1, x2, . . . , xM ) with some M features
(independent variables), the probability of classifying it as
class di, denoted by P(di|x), can be calculated as follows:

P(di|x) = P(di|(x1, x2, . . . , xM ))

=
P(di)

P(x1, x2, . . . , xM )

M∏
j=1

P(xj|di) (5)

Since P(di) and P(x1, x2, . . . , xM ) are taken as constants,
Formula 5 can be expressed as:

P(di|(x1, x2, . . . , xM )) ∝
M∏
j=1

P(xj|di) (6)

Hence, the most possible class that assigned to x can be
obtained by the following formula:

y = argmax
di

M∏
j=1

P(xj|di) (7)

In the following, we design methods of calculating P(xj|di)
for each feature sj. There are four categories of features:
enumerate type, numerical type, string type, and list type.

For the enumerate-type features, we count the frequency
of each value of feature sj appearing in the fingerprints of di,
and calculate the probability of the value xj. We also perform
Laplace smoothing, that adds one into the count of each value,
such that no probability is ever set to be exactly zero.

For the numerical-type and string-type features, we con-
sider the change/unchange event of the value of the fea-
ture sj, and calculate the probabilities of the two events
from the sequence of fingerprints of class di in data set.
For the feature sj of class di, the probability of the change
event is denoted by P(sj is changed|di), and the probability
of the unchange event for the feature P(sj is unchanged|di).
In addition, the last fingerprint of class di is denoted by fi,

and the value of its jth feature is fi,j. Thus, P(xj|di) is defined
as follows:

P(xj|di) =
{
P(sj is unchanged|di) if xj = fi,j
P(sj is changed|di) otherwise

(8)

For the list-type features, we evaluate the difference
between xj and fi,j through Jaccard distance, and P(xj|di) is
defined as follows:

P(xj|di) = J (xj, fi,j) =
max(|set(xj) ∩ set(fi,j)|, 1)
max(|set(xj) ∪ set(fi,j)|, 1)

(9)

Algorithm 3 Naïve Bayes Classifier based Algo-
rithm (NBCA)
Input: set of the known devices D, fingerprints of know

devices F , unknown fingerprint x
Output: identified device findD

1 maxProb← 0, findD← null
2 for d ∈ D do
3 prob←

∏M
j=1 P(xj|d)

4 if prob > maxProb and prob > λ then
5 maxProb← prob
6 foundD← d

7 return foundD

The NBCA algorithm is described in Algorithm 3. As seen
from this algorithm, the threshold λ is an important parameter
for classification. If λ is set to be high, some fingerprints of
known devices cannot be correctly identified. If λ is set to be
low, some fingerprints of new devices may be identified as
a known device. Thus, in order to improve the performance
of classification, we propose a threshold configuration algo-
rithm to obtain the optimal value of threshold λ.

To evaluate the performance of classification algorithm,
we define the standard classification metrics, i.e., precision,
recall and Fβ score. Denote TP as the number of the true pos-
itives, i.e., the number of fingerprints are correctly identified
as a known device. Let FP be the number of false positives,
i.e., the number wrongly identified as a known device. Let TN
is denoted as the number of true negatives, i.e., the number of
fingerprints are correctly identified as new devices. Likewise,
FN is denoted as the number of false negatives, i.e., the
number wrongly identified as new devices. Precision, recall
and Fβ score are defined by

precision =
TP

TP+ FP
(10)

recall =
TP

TP+ FN
(11)

Fβ = (1+ β2)
precision× recall

β2 × precision+ recall
(12)

Since we place more emphasis on FP, i.e., weighing preci-
sion higher than recall, the parameter β is set to be 0.5, and
the measure is denoted by F0.5 [8].
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Algorithm 4 Threshold Configuration Algorithm
Input: fingerprints of the known devices (as training

data)
Output: the optimal threshold λ

1 λ← 0
2 utilize training data to run Algorithm 3, and obtain TP,
FP, TN , FN and probMap

3 maxF ← the current F0.5
4 sort keys in probMap in increasing order
5 for key ∈ the set of keys do
6 if key == 0 then
7 continue

8 Update TP, FP, TN , FN according to Formula 13
9 Update F0.5 denoted by newF
10 if newF > maxF then
11 maxF ← newF
12 λ← key

13 return λ

Algorithm 4 represents the threshold configuration
algorithm that mainly involves two stages. In this first stage,
the threshold λ is set to be 0, and the training data are
utilized to run the classification algorithm. In this process,
the TP, FP, TN and FN are counted, and we define a data
structure probMap that stores some (key, five-element tuple)
pairs. For each fingerprint in the training data, its class di is
obtain after classification, and the corresponding probability
p =

∏M
j=1 P(xj|di) is calculated. Then, we verify the classi-

fication result, and update the value of TP, FP, TN , FN and
probMap[p]. probMap[p] is a five-element tuple:
• probMap[p][0]: the number of true positives where the
corresponding probability is p;

• probMap[p][1]: the number of true negatives where the
corresponding probability is p;

• probMap[p][2]: the number of false positives (the target
fingerprint is in the data set) where the corresponding
probability is p;

• probMap[p][3]: the number of false positives (the target
fingerprint is not in the data set) where the corresponding
probability is p;

• probMap[p][4]: the number of false negatives where the
corresponding probability is p

In the second stage, probMap is scanned by key in increas-
ing order, and find the value of the key to maximize F0.5.
Initially, the TP, FP, TN , and FN are corresponding to
the threshold λ, λ = 0, and the current F0.5 can be cal-
culated. Then, the n keys in probMap are sorted, that is,
(key0 =)0 < key1 < key2 < . . . < keyn < (keyn+1 =)1.
If λ is adjusted as key1 < λ < key2, the TP, FP, TN , and FN
should be updated as follows:

TP = TP− probMap[key1][0]

FP = FP− (probMap[key1][2]+ probMap[key1][3])

TN = TN + probMap[key1][3]

FN = FN + (probMap[key1][0]+ probMap[key1][2])

(13)

Thus, we iteratively adjust λ as keyi < λ < keyi+1,
i ∈ [1, n], and update the TP,FP, TN , andFN , so that theF0.5
corresponding to the new threshold can be calculated. After
the iterations, we can find the threshold that is corresponding
to the maximum F0.5.

IV. PERFORMANCE EVALUATION
A. DATA COLLECTION
Wedevelop a data collectionmodule in Android to collect and
update the data of device fingerprints. In this module, we also
apply the READ_PHONE_STATE permission to acquire the
IMEI of the device. As a reliable explicit identifier, the IMEI
is uploaded with the fingerprint, so each fingerprint is marked
with an IMEI in the data set.
In order to collect the data of real users, we integrate the

data collection module into Xiansheng APP that provides ser-
vices of information aggregation and query for the students
of Southeast University. 3 In the campus, the APP has a large
number of users. Every time a user opens the APP, the data
collection module will collect the implicit identifiers of the
current device, generate a fingerprint in the background, and
asynchronously upload the fingerprint to the server.

From September 22, 2014 to November 7, 2015, 50830
fingerprints are collected in the data set with 2239 different
IMEIs. It means that all the fingerprints are generated by
2239 different Android devices. The set of fingerprints are
denoted by DFSet .

B. DATA ANALYSIS
In statistics, all the devices in the data set are from 48 dif-
ferent manufacturers and the top 10 are shown in Figure 1.
Meanwhile, we also find the numbers of the devices

3http://herald.seu.edu.cn

FIGURE 1. Top 10 equipment manufacturers in dataset.
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TABLE 4. Manufacturers whose devices appear no more than 3 times.

from some manufacturers are no more than 3, and these
manufacturers are listed in Table 4.

As seen from the information about manufacturers, our
data set has a broad coverage, involving mainstream Android
devices and non-mainstream devices. These minor manufac-
turers are easy to be identified. Likewise, somemanufacturers
in Table 4 are not real manufacturers, such as Baidu, since the
third-part ROM is modified. This make the devices easy to be
identified.

C. FEATURE ANALYSIS
In the data set, there may bemultiple fingerprints correspond-
ing to each device, and only the last fingerprint is considered
in feature analysis. We first count the different values of each
feature, and calculate its entropy. Then, the features are sorted
by their entropy in decreasing order. Table 5 shows the top 10
features and the last 10 features.

It can be seen from Table 5 that there are 2237 different
lists of user package for the 2239 Android devices, and most
of the devices can be uniquely identified by this feature. Thus,
this feature has a high level of diversity.

TABLE 5. Number of values and entropy of features.

In the data set, there is a sequence of fingerprints corre-
sponding to a device. Due to system update, configuration,
and package installation, the fingerprint of a device is con-
stantly changing. We count the number of changes from these
fingerprint sequences for each feature, as shown in Table 6.

TABLE 6. Number of changes for each feature in the data set.
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From this table, we can see that the list of user packages
changes frequently over time, and so the stability of this
feature is poor.

D. FEATURE SELECTION
Based on the DFSet , we utilize the FCBF algorithm to select
features, and choose 9 features as QIDS1. All the features are
listed in Table 7.

TABLE 7. Feature list QIDS1 after selction.

Since some security softwares may prohibit to acquire the
list of user package and system package, we discard the two
features and then do feature selection. Thus, 10 features are
chosen in Table 8 as QIDS2.

TABLE 8. Feature list QIDS2 after selction.

E. DEVICE IDENTIFICATION
We implement the proposed identification algorithms, and
evaluate the performance of the algorithms based on the
DFSet .

We first compare the performance of the FMA algorithm
and FAA algorithm under different feature sets, i.e., QIDS1
and QIDS2. The results are shown in Figure 2. From the
figure, we can see that the precision of the FAA algorithm
is almost the same as that of the FMA algorithm, and the
recall of the FAA algorithm is much improved, compared to
that of the FMA algorithm. That is because that the FAA
algorithm can recognize the device fingerprints with one
feature changed, and avoid them to be wrongly identified as
an unknown device.

Then, we compare the performance of the NBCA algo-
rithm and FAA algorithm under different feature sets, i.e.,
QIDS1 andQIDS2. For the NBCA algorithm, we choose 40%
of DFSet for training (denoted by DFSetTrain), and the rest is
used for testing (denoted by DFSetTest ). For the FAA algo-
rithm, it runs onDFSetTest . To get the optimal threshold of the
NBCA algorithm, we useDFSetTrain to run the threshold con-
figuration algorithm under QIDS1 and QIDS2 respectively,
and obtain the optimal threshold λ = 2.05E − 4 for QIDS1
and λ = 3.19E − 5 for QIDS2. The FAA algorithm runs on
DFSetTest . The results are shown in Figure 3.

From this figure, we can see that the precision of theNBCA
algorithm is almost the same as that of the FAA algorithm,
and the recall of the NBCA algorithm is more than that of
the FAA algorithm. That is because that the NBCA algorithm
can recognize the device fingerprints with multiple features
changed, while the FAA algorithm consider the fingerprints
with only one feature changed.

Finally, we run the NBCA algorithm and FAA algo-
rithm without feature selection, that is, all the 38 features
are considered. The results are shown in Table 9. We can
see from this table that the performance of the NBCA algo-
rithm without feature selection is almost the same as that
with feature selection. This illustrates the reasonability of
feature selection, that is, the feature sets QIDS1 and QIDS2 is
good subsets of features with no loss in precision and recall.

FIGURE 2. Performance of the FMA algorithm and FAA algorithm on DFSet .
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FIGURE 3. Performance of the NBCA algorithm and FAA algorithm on DFSet_Test .

TABLE 9. Performance of NBCA algorithm and FAA algorithm on
DFSet_Test (Without feature selection).

In addition, the recall of the FAA algorithm without feature
selection is decreased, compared to that with feature selec-
tion. That is because some additional features will disturb the
process of fingerprint association, and negatively affect the
success of device identification.

V. RELATED WORK
Various techniques for device identification have been pro-
posed for user authentication, intrusion detection, and so on.
Due to the limitations of explicit identifiers, device finger-
printing based on implicit identifiers is becoming one of the
most common techniques. Several approaches have been pro-
posed, and can be classified as physical-layer identification,
protocol-layer identification, application-layer identification
and user-layer identification.

Physical-layer device identification aims at identifying
devices on characteristics of devices that are observable
from the physical hardware and their communication at
the physical layer [9]. For fingerprinting a physical device,
Kohno et al. [10] exploit microscopic deviations in device
hardware, that is, clock skews, which can be estimated
remotely using TCP and ICMP timestamps. Gerdes et al. [11]
analyze variations in the analog signal of the Ethernet devices,
and propose a corresponding method to achieve device
identification through using as few as 25 Ethernet frames.
Brik et al. [12] design and implement a technique to identify
the 802.11 wireless device through passive radio-frequency
analysis, which leverages the hardware imperfections of net-
work interface cards. Moreover, Vo-Huu et al. [13] extract
physical characteristics of theWi-Fi signal with the software-
defined radio receiver. In addition, the smart mobile devices
are equipped with several sensors, which can also be utilized
for device fingerprinting, such as accelerometers [14] and
speakers [15], [16].

For protocol-layer identification, its features are extracted
from the parameters of protocol stacks or algorithms
in network drivers. Franklin et al. [17] characterize the
implementation-dependent probing algorithms for 802.11
networks, and propose an approach to passively identify the
wireless drive employed by a device. Pang et al. [18] ana-
lyze sizes of broadcast packets from 802.11 traffic, and find
implicit identifiers that are exposed by design flaws of the
802.11 protocol.

Application-layer identification utilizes features about the
types of running applications and their behaviors, since the
installed applications and their background communication
generate a fingerprint for identification. Erman et al. [19]
propose machine learning algorithms to classify network traf-
fic and identify the types of applications. Dyer et al. [20]
show that despite the use of traffic morphing, features of
applications can still be found to implement device identifica-
tion. Stöber et al. [21] analyze characteristic Wi-Fi/3G traffic
from the background activities in Android system, and extract
features available as side-channel information such as timing
and data volume, so that the smartphones can be accurately
identified.

User-layer identification is mainly according to features
about user operations and settings. In 802.11 wireless net-
works, users add service set identifiers (SSIDs) into a prefer-
ence network list, and transmit the SSIDs in a probe request.
Since the SSID lists among different users are distinguish-
ing, Pang et al. [18] take the SSID list as a feature for
device fingerprinting. Kurtz et al. [22] propose an approach
to fingerprinting mobile devices using personalized device
configurations of apple’s iOS platform, since mobile device
configurations have now become so highly personalized that
they can be utilized to generate a unique fingerprint for every
user.

Moreover, the features from different layers are not inde-
pendent, and can be combined for device fingerprinting. For
example, Pang et al. [18] not only extract the features from
the protocol layer, but also consider the features from the
user layer. Yen et al. [23] construct device fingerprints using
user-agent string, IP address, cookie ID and user login ID,
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and identify devices with high precision and recall.
Hupperich et al. [24] conduct a systematic study of browser,
system, hardware, and behavioral features, and extract the
corresponding features to design a fingerprinting system.

VI. CONCLUSION
Device identification is an effective technology to enhance
secure authentication. In this paper, we propose an approach
to identify Android devices, utilizing implicit identifiers that
can be acquired without requesting any permission. Firstly,
we present 38 implicit identifiers (features) that cover the
features of physical layer, application layer, and user layer,
and introduce the corresponding ways to acquire these fea-
tures. Then, we analyze the information entropy of these
features, and do feature selection for device fingerprinting.
Next, we propose an FMA algorithm, an FAA algorithm and
an NBCA algorithm to achieve Android device identification,
respectively. Finally, we conduct experimental evaluations on
50830 fingerprints from 2239 different Android devices. The
results show that the performance of the NBCA algorithm is
better than the two other algorithms, and its precision is over
99%, while its recall is over 98%.

In the future, we plan to apply our device identification
approaches for user authentication, and analyze the security
of our authentication mechanism.
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