
Advanced Data Structures
			

	String Pattern Matching/Text Search

.

What is Pattern Matching?

• Definition:
– given a text string T and a pattern string P,

find the pattern inside the text
• T: “the rain in spain stays mainly on the plain”
• P: “n th”

57

	 	Text search
			

• Pattern matching directly
	– Brute force
	– KMP
	– BM

• Regular expressions (Not in this course)
• Indices for pattern matching

	– Inverted files
	– Signature files
	– Suffix trees and Suffix arrays

		The Brute Force Algorithm
					

• Check each position in the text T to see
	if the pattern P starts in that position

T: a n d r e w
			

	P: r e w

T: a n d r e w
			

	P: r e w

P moves 1 char at a time through T

	 	Analysis
			

• Brute force pattern matching runs in time
	O(mn) in the worst case.

					

• But most searches of ordinary text take
	O(m+n), which is very quick.

continued

• The brute force algorithm is fast when the
	alphabet of the text is large
	 	– e.g. A..Z, a..z, 1..9, etc.

				

• It is slower when the alphabet is small
	 	– e.g. 0, 1 (as in binary files, image files, etc.)

continued

• Example of a worst case:
– T: "aaaaaaaaaaaaaaaaaaaaaaaaaah"
– P: "aaah"

• Example of a more average case:
– T: "a string searching example is standard"
– P: "store"

	 	The KMP Algorithm
			

• The Knuth-Morris-Pratt (KMP) algorithm
	looks for the pattern in the text in a left-to-
	right order (like the brute force algorithm).

				

• But it shifts the pattern more intelligently
	than the brute force algorithm.

continued

• If a mismatch occurs between the text and
	pattern P at P[j], what is the most we can
	shift the pattern to avoid wasteful
	comparisons?

Summary

• If a mismatch occurs between the text and
	pattern P at P[j], what is the most we can
	shift the pattern to avoid wasteful
	comparisons?

• Answer: the largest prefix of P[0 .. j-1] that
is a suffix of P[1 .. j-1]

Summary

k 0 1 2 3 4
F(k) 0 0 1 0 1

Example

T:
		

	P:

KMP Advantages

• KMP runs in optimal time: O(m+n)
– very fast

• The algorithm never needs to move
backwards in the input text, T
– this makes the algorithm good for processing
	very large files that are read in from external
	devices or through a network stream

KMP Disadvantages

• KMP doesn’t work so well as the size of
the alphabet increases
– more chance of a mismatch (more possible

mismatches)
– mismatches tend to occur early in the pattern,
	but KMP is faster when the mismatches occur
	later

14

Boyer and Moore Algorithm

A fast string searching algorithm. Communications of the ACM.
Vol. 20 p.p. 762-772, 1977.

 BOYER, R.S. and MOORE, J.S.

15

•  The algorithm compares the pattern P with the
substring of sequence T within a sliding
window in the right-to-left order.

•  The bad character rule and good suffix rule
are used to determine the movement of sliding
window.

Boyer and Moore Algorithm

16

Bad Character Rule
Suppose that P1 is aligned to Ts now, and we perform a pair-
wise comparing between text T and pattern P from right to left.
Assume that the first mismatch occurs when comparing Ts+j-1
with Pj .

Since Ts+j-1 ≠Pj , we move the pattern P to the right such that the
largest position c in the left of Pj is equal to Ts+j-1. We can shift
the pattern at least (j-c) positions right.

P x y t

T x t

P x y t

s

j m1 c

j m1

Shift

s +j -1

17

Character Matching Rule
•  Bad character rule uses Rule 2-1 (Character Matching

Rule).
•  For any character x in T, find the nearest x in P which

is to the left of x in T.

T

P

x

x

18

Implication

•  Case 1. If there is a x in P to the left of T, move P so
that the two x’s match.

T

P

x

x

19

•  Case 2: If no such a x exists in P, consider the partial
window defined by x in T and the string to the left of
it.

T

P

x

Partial W

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A G C A A A A

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

s=6

P A T C A C A G T A T C A
1 2 3 4 5 6 7 8 9 10 11 12

•  Ex: Suppose that P1 is aligned to T6 now. We compare pair-
wise between T and P from right to left. Since T16,17 = P11,12 =
“CA” and T15 =“G” ≠P10 = “T”. Therefore, we find
the rightmost position c=7 in the left of P10 in P such that Pc
is equal to “G” and we can move the window at least
(10-7=3) positions.

m=12 j=10 c

mismatch

directing of the scan

21

Good Suffix Rule 1
•  If a mismatch occurs in Ts+j-1, we match Ts+j-1 with Pj’-m+j , where

j’ (m-j+1≦ j’ < m) is the largest position such that
 (1) Pj+1,m is a suffix of P1,j’
 (2) Pj’-(m-j) ≠Pj.

•  We can move the window at least (m-j’) position(s).

P z t y t

T x t

P z t y t

s

Shift

s+j-1

j j’
 m1 j'-m+j

j j’
 m1 j’-m+j
z≠y

22

Rule: The Substring Matching Rule

•  For any substring u in T, find a nearest u in P which
is to the left of it. If such a u in P exists, move P;
otherwise, we may define a new partial window.

T

T

P

u

u

P

u

u

23

•  Ex: Suppose that P1 is aligned to T6 now. We compare pair-
wise between P and T from right to left. Since T16,17 = “CA”
= P11,12 and T15 =“A” ≠P10 = “T”. We find the substring
“CA” in the left of P10 in P such that “CA” is the suffix
of P1,6 and the left character to this substring “CA” in P is
not equal to P10 = “T”. Therefore, we can move the
window at least m-j’ (12-6=6) positions right.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A G C C T A G C A A C A A A A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

j=10

s=6

j’=
6

s+j-1

Shift P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

m=12

mismatch

A≠T

24

Good Suffix Rule 2

•  If a mismatch occurs in Ts+j-1, we match Ts+m-j’ with P1,
where j’ (1≦ j’ ≦ m-j) is the largest position such that
 P1,j’ is a suffix of Pj+1,m.

T x t

P t’
 y t

s

j’
 j m1

Shift

s+j-1 s+m-j’

j’
 j m1
P.S. : t’ is suffix of substring t.

P t’
 y t

t’

t’

Good Suffix Rule 2 is used only when Good Suffix Rule 1 can not
be used. That is, t does not appear in P(1, j). Thus, t is unique in
P.

25

Rule: Unique Substring Rule
•  The substring u appears in P exactly once.
•  If the substring u matches with Ti,j , no matter whether a mismatch

occurs in some position of P or not, we can slide the window by l.

 T:

 P:

The string s is the longest prefix of P which equals to a suffix of u.

s

s s

s u

i j

l

u

u

26

The Suffix to Prefix Rule
•  For a window to have any chance to match a

pattern, in some way, there must be a suffix of
the window which is equal to a prefix of the
pattern.
T

P

27

•  Note that the above rule also uses Rule 1.
•  It should also be noted that the unique

substring is the shorter and the more right-
sided the better.

•  A short u guarantees a short (or even empty) s
which is desirable.

u

s s

s u

i j

l

u

28

•  Ex: Suppose that P1 is aligned to T6 now. We compare pair-wise
between P and T from right to left. Since T12 ≠ P7 and there is no
substring P8,12 in left of P8 to exactly match T13,17. We find a
longest suffix “AATC” of substring T13,17, the longest suffix is
also prefix of P. We shift the window such that the last character
of prefix substring to match the last character of the suffix
substring. Therefore, we can shift at least 12-4=8 positions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T A A A A A A T C A C A T T A A T C A A A

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

j=7

s=6

j’=4

P A A T C A T C T A A T C
1 2 3 4 5 6 7 8 9 10 11 12

m=12

Shift

mismatch

j=7 j’=4 m=12

29

•  Let Bc(a) be the rightmost position of a in P. The
function will be used for applying bad character rule.

•  We can move our pattern right j-B(Ts+j-1) position by
above Bc function.

Σ A C G T
B 12 11 0 10

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12

P A T C A C A T C A T C A

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T A G C T A G C C T G C A C G T A C A

Move
10-B(G) = 10 positions

30

Let Gs(j) be the largest number of shifts by good
suffix rule when a mismatch occurs for comparing Pj
with some character in T.

31

•  gs1(j) be the largest k such that Pj+1,m is a suffix of P1,k and
Pk-m+j ≠ Pj, where m-j+1 ≦k<m ; 0 if there is no such k.

 (gs1 is for Good Suffix Rule 1)

•  gs2(j) be the largest k such that P1,k is a suffix of Pj+1,m,
where 1≦k ≦m-j; 0 if there is no such k.

 (gs2 is for Good Suffix Rule 2.)

•  Gs(j) = m – max{gs1, gs2}, if j = m ,Gs(j)=1.

j 1 2 3 4 5 6 7 8 9 10 11 12
P A T C A C A T C A T C A
gs1 0 0 0 0 0 0 9 0 0 6 1 0

gs2 4 4 4 4 4 4 4 4 1 1 1 0

Gs 8 8 8 8 8 8 3 8 11 6 11 1

gs1(7)=9

∵ P8,12 is a suffix of P1,9

 and P4 ≠ P7

gs2(7)=4

∵P1,4 is a suffix of P8,12

32

How do we obtain gs1 and gs2?

In the following, we shall show that by
constructing the Suffix Function, we can kill
two birds with one arrow.

33

Suffix function f’

•  For 1≦j ≦m-1, let the suffix function f’(j) for Pj be the

smallest k such that Pk,m = Pj+1,m-k+j+1; (j+2 ≦k ≦m)
–  If there is no such k, we set f’ = m+1.
–  If j=m, we set f’(m)=m+2.

•  Ex:

P t t
j+1 k mj

j+1,m-k+j+1

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 10 11 12 8 9 10 11 12 13 13 13 14

•  f ’(4)=8, it means that Pf’(4),m = P8,12 = P5,9 =P4+1,4+1+m-f’(4)
•  Since there is no k for 13= j+2 ≦ k≦12, we set f’(11)=13.

34

 Suppose that the Suffix is obtained. How can
we use it to obtain gs1 and gs2?

 gs1 can be obtained by scanning the Suffix
function from right to left.

35

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A

f’
 10 11 12 8 9 10 11 12 13 13 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C G A T C A A T C A T C A C A T G A T C A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

Example

36

As for Good Suffix Rule 2, it is relatively easier.

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A

f’
 10 11 12 8 9 10 11 12 13 13 13 14

Example

37

 Question: How can we construct the Suffix
function?

 To explain this, let us go back to the prefix
function used in the KMP Algorithm.

38

 The following figure illustrates the prefix
function in the KMP Algorithm.

The following figure illustrates the suffix
function of the BM Algorithm.

P

P

39

 We now can see that actually the suffix
function is the same as the prefix. The only
difference is now we consider a suffix. Thus,
the recursive formula for the prefix function in
KMP Algorithm can be slightly modified for
the suffix function in BM Algorithm.

40

•  The formula of suffix function f’ as follows :

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+

=≥

≤≤−+

=+

=

=>=

++

−

otherwise 1,

; such that 1
smallest theexists thereand 1-1 if ,1)1('

 if ,2

)('

)()(and 1for))('('Let 1

m

PPk
mjjf

mjm

jf

yf'yf'xyff(y)f'

1)-1(jf'1j

k

1xx

k

41

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 14

j=m=12,
f’=m+2=1

4

No k satisfies
Pj+1=Pf’k(j+1)-1,

f’=m+1=12+1=13

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 13 14

k =1à

P12≠ P13

42

No k satisfies
Pj+1=Pf’k(j+1)-1,

f’=m+1=12+1=13

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 13 13 14

No k satisfies
Pj+1=Pf’k(j+1)-1,

f’=m+1=12+1=13

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 13 13 13 14

k =1à

P11≠ P12

k =1à

P10≠ P12

43

∵Pj+1 = Pf’(j+1)-1 => P9 = P12,
f’ = f’(j+1) - 1= 13 - 1 = 12

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 12 13 13 13 14

∵Pj+1 = Pf’(j+1)-1 => P8 = P11,
f’ = f’(j+1) - 1= 12 - 1 = 11

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 11 12 13 13 13 14

44

∵Pj+1 = Pf’1(j+1)-1 => P5 = P8,
f’ = f’(j+1) - 1= 9 - 1 = 8

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 8 9 10 11 12 13 13 13 14

∵Pj+1 = Pf’3(j+1)-1 => P4 = Pf’3(4)-1= P12,
f’ = f’3(j+1) - 1= 13 - 1 = 12

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 12 8 9 10 11 12 13 13 13 14

45

∵Pj+1 = Pf’(j+1)-1 => P3 = Pf’(3)-1= P11,
f’ = f’(j+1) - 1= 12 - 1 = 11

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 11 12 8 9 10 11 12 13 13 13 14

∵Pj+1 = Pf’(j+1)-1 => P2 = Pf’(2)-1= P10,
f’ = f’(j+1) - 1= 11 - 1 = 10

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 10 11 12 8 9 10 11 12 13 13 13 14

46

•  Let G’(j), 1≦j≦m ,to be the largest number of shifts by
good suffix rules.

•  First, we set G’(j) to zeros as their initializations.

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
0 0 0 0 0 0 0 0 0 0 0 0

47

•  Step1: We scan from right to left and gs1(j) is determined
during the scanning, then gs1(j) >= gs2(j)

Ø  When j=12, t=13. t > m.
Ø  When j=11, t=12. Since P11=‘C’≠ ‘A’= P12 ,
 G’(t) = m – max{gs1(t), gs2(t)} = m – gs1(t)
 = f’(j) – 1 – j

 => G’(12)=13-1-11= 1.
j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
 10 11 12 8 9 10 11 12 13 13 13 14
G’
 0 0 0 0 0 0 0 0 0 0 0 1

Observe:
If Pj=P4 ≠P7=Pf’(j)-1, we know gs1(f’(j)-1)=m+j-f’(j)+1=9.
If t = f’(j)-1≦m and Pj ≠Pt , G’(t) = m-gs1(f’(j)-1) = f’(j) – 1 – j.
f’(k)(x)=f’(k-1)(f’(x) – 1), k ≥ 2

48

Ø  When j=10, t=12. Since P10=‘T’≠‘A’ =P12 , G’(12) ≠0.
Ø  When j=9, t=12. P9 = ‘A’ =P12.
Ø  When j=8, t=11. P8 = ‘C’ =P11.
Ø  When j=7, t=10. P7 = ‘T’ =P10
Ø  When j=6, t=9. P6 = ‘A’ =P9
Ø  When j=5, t=8. P5 = ‘C’ =P8
Ø  When j=4, t=7. Since P4 = ‘A’ ≠ P7 = ‘T’, G’(7) = 8 – 1 – 4= 3

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
0 0 0 0 0 0 3 0 0 6 0 1

Besides, t = f’(2)(4) – 1=f’(f’(4) – 1) – 1=10. Since P4 = ‘A’≠
P10 = ‘T’, G’(10) =f’(7) – 1 – j= 11 – 1 – 4 = 6.

If t = f’(j)-1 ≦ m and Pj ≠Pt , G’(t)=f’(j) – 1 – j.
f’(k)(x)=f’(k-1)(f’(x) – 1), k ≥ 2

49

Ø  When j=3, t=11. P3=‘C’=P11.
Ø  When j=2, t=10. P2=‘T’=P10
Ø  When j=1, t=9. P1=‘A’=P9.

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
0 0 0 0 0 0 3 0 6 0 0 1

•  By the above discussion, we can obtain the values using the
Good Suffix Rule 1 by scanning the pattern from right to left.

If t = f’(j)-1 ≦ m and Pj ≠Pt, G’(t)=f’(j) – 1 – j.
f’(k)(x)=f’(k-1)(f’(x) – 1), k ≥ 2

50

•  Step2: Continuously, we will try to obtain the values using
Good Suffix Rule 2 and those values are still zeros now and scan
from left to right.

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
0 0 0 0 0 0 3 0 0 6 0 1

51

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
8 8 8 8 8 8 3 8 0 6 0 1

•  Let k’ be the smallest k in {1,…,m} such that Pf’(k)(1)-1= P1
and f’(k)(1)-1<=m.

•  If G’(j) is not determined in the first scan and 1<=j<= f’(k’)

(1)-2, thus, in the second scan, we set G’(j)=m - max{gs1(j),
gs2(j)}= m - gs2(j)= f’(k’)(1) - 2. If no such k exists, set each
undetermined value of G to m in the second scan.

•  k=1=k’, since Pf’(1)-1=P9=“A”=P1, we set G’(j)=f’ (1)-2
for j=1,2,3,4,5,6,8.

Observe:
∵P1,4=P9,12, ∴gs2(j)=m-(f’(1)-1)+1=4, where 1≦ j≦ f’(k’)(1)-2.

52

•  Let z be f’(k’)(1)-2. Let k’’ be the largest value k such that f’(k)

(z)-1<=m.
•  Then we set G’(j) = m - gs2(j) = m - (m – f ’(i)(z) - 1) = f’(i)(z) - 1,

where 1<=i<=k’’ and f’(i-1)(z) < j <= f’(i)(z)-1 and f’(0)(z) = z.

•  For example, z=8 :
Ø  k=1, f’(1)(8)-1=11≦m=12
Ø  k=2, f’(2)(8)-1=12≦m=12 => k’’=2
Ø  i=1, f’(0)(8)-1 = 7 < j ≦ f’(1)(8)-1=11.
Ø  i=2, f’(1)(8)-1 =11< j ≦ f’(2)(8)-1=12.
Ø We set G(9) and G(11)= f’(1)(8) – 1= 12-1 = 11.

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A
f’
10 11 12 8 9 10 11 12 13 13 13 14
G’
8 8 8 8 8 8 3 8 11 6 11 1

53

We essentially have to decide the maximum number of steps.
We can move the window right when a mismatch occurs. This
is decided by the following function:

 max{G’(j), j-B(Ts+j-1)}

54

Shift

Example

We compare T and P from right to left. Since T12=“T”≠P12=“A”, the largest
movement = max{G’(j), j-B(Ts+j-1)} = max{G’(12), 12-B(T12)}= max{1,12-10}
= 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C G A T C A C A T A T C A C A T C A T C A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

mismatch

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

Σ A C G T
B 12 11 0 10

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A

f’
 10 11 12 8 9 10 11 12 13 13 13 14
G’
 8 8 8 8 8 8 3 8 11 6 11 1

55

After moving, we compare T and P from right to left. Since T14=“T”≠P12=“A”,
 the largest movement = max{G’(j), j-B(Ts+j-1)} = max{G’(12), 12-B(T14)}
 = max{1,12-10} = 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

T G A T C G A T C A C A T A T C A C A T C A T C A

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

mismatch

P A T C A C A T C A T C A
1 2 3 4 5 6 7 8 9 10 11 12

Shift

j 1 2 3 4 5 6 7 8 9 10
 11
 12

P A T C A C A T C A T C A

f’
 10 11 12 8 9 10 11 12 13 13 13 14
G’
 8 8 8 8 8 8 3 8 11 6 11 1

Σ A C G T
B 12 11 0 10

56

Time Complexity
•  The preprocessing phase in O(m+Σ) time and space

complexity and searching phase in O(mn) time
complexity.

•  The worst case time complexity for the Boyer-Moore

method would be O((n-m+1)m).

•  It was proved that this algorithm has O(m) comparisons
when P is not in T. However, this algorithm has O(mn)
comparisons when P is in T.

57

Reference
•  Algorithms for finding patterns in strings , AHO, A.V., Handbook of Theoretical

Computer Science ,Volume A ,Chapter 5 Elsevier , Amsterdam , 1990, pp. 255-300.
•  Computer algorithms: string pattern matching strategies , Jun-ichi, A. , IEEE

Computer Society Press , 1994.
•  Computer Algorithms: Introduction to Design and Analysis , BAASE, S. and

VAN GELDER, A. , Addison-Wesley Publishing Company , Chapter 11 , 1999.
•  Indexing and Searching , BAEZA-YATES, R. , NAVARRO, G. and RIBEIRO-

NETO, B. , Modern Information Retrieval , Chapter 8 , 1999 , pp. 191-228.
•  Éléments d'algorithmique , BEAUQUIER, D., BERSTEL, J. and CHRÉTIENNE,

P., Masson Paris , Chapter 10 , 1992 , pp. 337-377.
•  A fast string searching algorithm , BOYER R.S. and MOORE J.S. ,

Communications of the ACM , Vol 20 , 1977 , pp. 762-772 .
•  Tight bounds on the complexity of the Boyer-Moore pattern matching

algorithm , COLE, R., SIAM Journal on Computing , Vol 23 , 1994 , pp.
1075-1091.

•  Introduction to Algorithms , CORMEN, T.H. , LEISERSON, C.E. and RIVEST,
R.L. , The MIT Press , Chapter 34 , 1990 , pp. 853-885.

•  Off-line serial exact string searching , CROCHEMORE, M. , Pattern Matching
Algorithms , Chapter 1 , 1997 , pp 1-53

•  Pattern Matching in Strings , CROCHEMORE, M. and HANCART, C. ,
Algorithms and Theory of Computation Handbook , Chapter 11, 1999 , pp.
11-1-11-28.

58

•  Pattern matching and text compression algorithms , CROCHEMORE, M. and
LECROQ, T. , CRC Computer Science and Engineering Handbook , Chapter 8 ,
1996 , pp. 162-202.

•  Text Algorithms, CROCHEMORE, M. and RYTTER, W., Oxford University Press ,
1994.

•  Handbook of Algorithms and Data Structures in Pascal and C, GONNET, G.H. and
BAEZA-YATES, R.A. , Addison-Wesley Publishing Company , Chapter 7 , 1991 , pp.
251-288,.

•  Data Structures and Algorithms in JAVA , GOODRICH, M.T. and TAMASSIA, R. ,
John Wiley & Sons , Chapter 11 , 1998 , pp. 441-467.

•  Algorithms on strings, trees , GUSFIELD, D. , Cambridge University Press , 1997.
•  Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte ,

HANCART, C., University Paris 7, France , 1993.
•  Fast pattern matching in strings , KNUTH, D.E. , MORRIS, J.H. and PRATT, V.R. ,

SIAM Journal on Computing , 1977 , pp.323-350.
•  LECROQ, T., 1992, Recherches de mot,. Thesis, University of Orléans, France.
•  Experimental results on string matching algorithms , LECROQ, T. , Software -

Practice & Experience , Vol 25 , 1995 , pp. 727-765.
•  Algorithms , SEDGEWICK, R. , Addison-Wesley Publishing Company , Chapter 19 ,

1988 , pp. 277-292.
•  Algorithms in C , SEDGEWICK, R. , Addison-Wesley Publishing Company ,

Chapter 19 , 1988.
•  String Searching Algorithms , STEPHEN, G.A. , World Scientific , 1994.
•  Taxonomies and Toolkits of Regular Language Algorithms , WATSON, B.W. ,

Eindhoven University of Technology , 1995.
•  Algorithms & Data Structures , WIRTH, N. , Prentice-Hall , Chapter 1 , 1986 , pp.

17-72.

66

Suffix trees and suffix arrays

String/Pattern Matching

•  You are given a source string S.
•  Answer queries of the form: is the string pi a

substring of S?
•  Knuth-Morris-Pratt (KMP) string matching.

– O(|S| + | pi |) time per query.
– O(n|S| + Si | pi |) time for n queries.

•  Suffix tree solution.
– O(|S| + Si | pi |) time for n queries.

String/Pattern Matching

•  KMP/BM preprocesses the query string pi,
whereas the suffix tree method preprocesses
the source string S.

67

	Trie
			

• A tree representing a set of strings.

a

c

b

c

e

e

f

d b

f

e g

{
aeef
ad
bbfe
bbfg
c }

68

	Trie (Cont)
			

• Assume no string is a prefix of another

a

c

b

c

e

e

f

d b

f

e g

Each edge is labeled by a letter,
no two edges outgoing from the same
node are labeled the same.

Each string corresponds to a leaf.

69

	Compressed Trie
			

• Compress unary nodes, label edges by strings

a

c

b

c

e

e

f

d b

f

e g

a

c

bbf

c

eef
d

e g

è

70

	Suffix tree
		

Given a string s a suffix tree of s is a
compressed trie of all suffixes of s
			

To make these suffixes prefix-free we add a
special character, say $, at the end of s

66	

The suffix tree Tree(T) of T

•  data structure suffix tree, Tree(T), is
compacted trie that represents all the suffixes
of string T

•  linear size: |Tree(T)| = O(|T|)
•  can be constructed in linear time O(|T|)
•  has myriad virtues (A. Apostolico)
•  is well-known: Google hits

71

	Suffix tree (Example)
		

Let s=abab, a suffix tree of s is a compressed
trie of all suffixes of s=abab$

{
$
b$
ab$
bab$
abab$ }

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

$

72

Trivial algorithm to build a Suffix tree

Put the largest suffix in
																
Put the suffix bab$ in

		 						a
		 					b
		 				a
		 			b
		 		$
								
		 			a
		 	b
		a
	b
$

b
	$

b
	a

73

Put the suffix ab$ in

		 	 	a
		 	b
		a
	b
$

b
	$

b
	a

	a
b

	 	a
	b
$

b
	$

b
	a

$

74

Put the suffix b$ in

	a
b

	 	a
	b
$

b
	$

b
	a

$

	a
b

	 	a
	b
$

a
b

$

b

$

$

75

Put the suffix $ in

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

$

76

	a
b

	 	a
	b
$

a
	b

b

$

	$
				
$

$

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

We will also label each leaf with the starting point of the corres. suffix.
		

	$

73	

On-line	construc1on	of	Trie(T)	

•  T	=	t1t2	…	tn$			
•  Pi	=	t1t2	…	ti					i:th	prefix	of	T		
•  on-line	idea:	update	Trie(Pi)	to	Trie(Pi+1)		
•  =>	very	simple	construc1on	

74	

Trie(abaab)	

a	 a	

b

b a	

b

b

a	
a	

Trie(a)	 Trie(ab)	 Trie(aba)	

chain	of		links																	connects	the	end	points	of	current	
suffixes	

abaa	
baa	
aa	
εa	
ε	

	

75	

Trie(abaab)	

a	 a	

b

b a	

b

b

a	
a	

a	

b

b

a	
a	a	

a	
a	

Trie(abaa)	

76	

Trie(abaab)	

a	 a	

b

b a	

b

b

a	
a	

a	

b

b

a	
a	a	

a	
a	

Trie(abaa)	

Add	next	symbol	=	b	

77	

Trie(abaab)	

a	 a	

b

b a	

b

b

a	
a	

a	

b

b

a	
a	a	

a	
a	

Trie(abaa)	

Add	next	symbol	=	b	

From	here	on	b-arc	already	exists	

78	

Trie(abaab)	

a	 a	

b

b a	

b

b

a	
a	

a	

b

b

a	
a	a	

a	
a	

a	

b

b

a	
a	a	

a	
a	

b	

b	

b	

Trie(abaab)	

79	

What	happens	in	Trie(Pi)	=>	Trie(Pi+1)	?	

ai	

ai	

ai	
ai	

ai	
ai	

Before	

A)er	

New	nodes	

New	suffix	links	

From	here	on	the	ai-arc	exists	
already	=>	stop	upda1ng	here	

80	

What	happens	in	Trie(Pi)	=>	Trie(Pi+1)	?	

•  1me:	O(size	of	Trie(T))	
•  suffix	links:																																								

	slink(node(aα))	=		node(α)	

78

What can we do with it ?

Exact string matching:
Given a Text T, |T| = n, preprocess it such

that when a pattern P, |P|=m, arrives
you can quickly decide when it occurs in
T.

W e may also want to find all occurrences
of P in T

79

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

	Exact string matching
		
In preprocessing we just build a suffix tree in O(n) time
	

	 	$

Given a pattern P = ab we traverse the tree according to the pattern.

79

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

	Exact string matching
		
In preprocessing we just build a suffix tree in O(n) time 	

	 	$

Given a pattern P = ab we traverse the tree according to the pattern.

80

	a
b

			a
	b
$
	
		1

a
b
	$
		
2

b

	$
		
3

4

$

5

$

If we did not get stuck traversing the pattern then the pattern occurs in the text. 					
Each leaf in the subtree below the node we reach corresponds to an occurrence. 					
By traversing this subtree we get all k occurrences in O(n+k) time

81

Generalized suffix tree
Given a set of strings S a generalized suffix
tree of S is a compressed trie of all suffixes of
s ∈ S
To make these suffixes prefix-free we add a
special char, say $, at the end of s

To associate each suffix with a unique string
in S add a different special char to each s

82

b#
ab#
aab#

$
b$
ab$
bab$
abab$

{
										
}

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									

a
	b

2

3

	#
				
4

4

	Generalized suffix tree (Example)
			

Let s1=abab and s2=aab here is a generalized
suffix tree for s1and s2
	

	 	#

83

	So what can we do with it ?
				

Matching a pattern against a database of
strings

84

Longest common substring (of two strings)
			
	Every node with a leaf descendant from

string s1 and a leaf descendant from string

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									
	#

a
	b

2

3

	#
				
4

4

S2 represents a maximal common substring

and vice versa.
					
Find such node with largest
“string depth”

84

Longest common substring (of two strings)
			
	Every node with a leaf descendant from

string s1 and a leaf descendant from string

1

2

a

b

	 	a
	b
$

a
	b
	$

$
		
	3

$

5

$

1

b
									
	#

a
	b

2

3

	#
				
4

4

S2 represents a maximal common substring

and vice versa.
					
Find such node with largest
“string depth”

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

85

	Lowest common ancestor
		

A lot more can be gained from the suffix tree
if we preprocess it so that we can answer
LCA queries on it

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

86 1

2

a

b

	 	a
	b
$

a
	b
	$

b

$
		
	3

$

5

$

1

a
	b

2

3

	#
				
4

4

	Why?
		

The LCA of two leaves represents the longest
common prefix (LCP) of these 2 suffixes
				

	 	#

87

	 	Finding maximal palindromes
			

	• A palindrome: caabaac, cbaabc
	• Want to find all maximal palindromes in a
	 		string s
				

	Let s = cbaaba
					
The maximal palindrome with center between i-1 and i is the
 LCP of the suffix at position i of s and the suffix at position m-i+1
 of sr

88

	Maximal palindromes algorithm
		

Prepare a generalized suffix tree for
s = cbaaba$ and sr = abaabc#
				

For every i find the LCA of suffix i of s and
suffix m-i+1 of sr

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

a b

c#

89

3

a

ba
	ab
	 	a$

b

3

$

7

$

	b
			
a

7

c

1

6 	a
b

c

5

2 2

	a
$

c

a

5

6

$

4

4

1

c

a
$

$

		abc#

Let s = cbaaba$ then sr = abaabc#

90

	Analysis
			

O(n) time to identify all palindromes

91

	 	Drawbacks
			

• Suffix trees consume a lot of space
					

• It is O(n) but the constant is quite big
					

• Notice that if we indeed want to traverse
	an edge in O(1) time then we need an
	array of ptrs. of size |Σ| in each node

92

	 	 	Suffix array
			

• We loose some of the functionality but we
	 	save space.
			

	Let s = abab
	Sort the suffixes lexicographically:
	ab, abab, b, bab
	

	The suffix array gives the indices of the
	suffixes in sorted order

3 1 4 2

93

	 	How do we build it ?
			

• Build a suffix tree
• Traverse the tree in DFS, lexicographically

	picking edges outgoing from each node
	and fill the suffix array.

					

• O(n) time

94

	How do we search for a pattern ?
				

• If P occurs in T then all its occurrences are
		consecutive in the suffix array.

					

• Do a binary search on the suffix array
					

• Takes O(mlogn) time

95

	Example
	

Let S = mississippi
i
ippi
issippi
ississippi

5
	
2

11
	
	8

	1
	
10
	
	9
	
	7 	
	4
	
	6
	
	3

mississippi
pi
ppi
sippi
sisippi
	ssippi
		ssissippi

L

Let P = issa

	M
														
R

•

	 	 	 	 	Supra index
			
Structure
	– Suffix arrays are space efficient implementation of suffix
	 	trees.
	– Simply an array containing all the pointers to the text suffixes
	 	listed in lexicographical order.
	– Supra-indices:
	 	 	• If the suffix array is large, this binary search can perform
	 	 	 	poorly because of the number of random disk accesses.
	 	 	• Suffix arrays are designed to allow binary searches done by
	 	 	 	comparing the contents of each pointer.
	 	 	• To remedy this situation, the use of supra-indices over the
	 	 	 	suffix array has been proposed.
							
	 	 	 	 	 	96

97

	 	 	Supra index
			

• Example
		
																			1 6 9 11 17 19 24 28 33 40 46 50 55 60

	This is a text. A text has many words. Words are made from letters

60 50 28 19 11 40 33 SuffixArray

60 50 28 19 11 40 33

lett text word

SuffixArray

Supra-Index

97

	 	 	Supra index
			

• Example
		

	1 6 9 11 17 19 24 28 33 40 46 50 55 60
	This is a text. A text has many words. Words are made from letters

60 50 28 19 11 40 33 SuffixArray

50 19 11 33

lett
				
	60

	text
				
28

word
				
	40

Supra-Index 				
SuffixArray

suffix tree 		
	1

5 			
6

60 	
	3

50 	
28
19 	
11
40
33

110	

Tree(haXvaX)	
ha+va+	

a+va+	

+va+	

-va+	

iva+	

va+	

a+	

+	

-	

i	

ha+va+	
a+va+	 +va+	

-va+	

iva+	

va+	

va+	
va+	

a+	
-	

i	

i	

+	

-	

t	

i	

va+	

va+	

va+	

ha+va+	

a+	

111	

Tree(haXvaX)	
ha+va+	

a+va+	

+va+	

-va+	

iva+	

va+	

a+	

+	

-	

i	

ha+va+	
a+va+	 +va+	

-va+	

iva+	

va+	

va+	
va+	

a+	
-	

i	

i	

+	

-	

t	

i	

va+	

va+	

va+	

ha+va+	

ha+va+	

a+	

substring	labels	of	edges	
represented	as	pairs	of	
pointers	

112	

Tree(haXvaX)	
ha+va+	

a+va+	

+va+	

-va+	

iva+	

va+	

a+	

+	

-	

i	

1	 2	 3	
4	

5	

6	

6,10	
6,10	

2,5	
4,5	

i	

10	

8	

9	

3,3	

i	

va+	

va+	

va+	

ha+va+	

ha+va+	

7	

113	

Tree(T)	is	full	text	index	
Tree(T)	

P	

31	 8	

P	occurs	in	T	at	
loca1ons	8,	31,	…	

P	occurs	in	T	ó	P	is	a	prefix	of	some	suffix	of	T	ó	

Path	for	P	exists	in	Tree(T)		

All	occurrences	of	P	in	1me	O(|P|	+	#occ)	

114	

Find	a]	from	Tree(haXvaX)	
ha+va+	

a+va+	

+va+	

-va+	

iva+	

va+	

a+	

+	

-	

i	

ha+va+	
a+va+	 +va+	

-va+	

iva+	

va+	

va+	
va+	

a;i	
-	

2	

i	

+	

-	

t	

i	

va+	

va+	

va+	

ha+va+	

a+	
7	

115	

Linear	1me	construc1on	of	Tree(T)	

ha+va+	

a+va+	

+va+	

-va+	

iva+	

va+	

a+	

+	

-	

i	

Weiner	
(1973),	

’algorithm	
of	the	
year’

McCreight	
(1976)	

’on-line’	algorithm	
(Ukkonen	1992)	

