
1

Web Data Management
		

	 	Compression and Search
		

	Lecture 2: Adaptive Huffman,
	 	 	BWT

•
•
•

	Course schedule
			

Data compression
Search
Data compression + Search

3

S Freq Huffman

a 100000 0
b 6 10
c 2 110
d 1 1110
e 1 1111

4

100k
	a

	2
c

	6
b

	1
d

	1
e

2

4
0

0 1

0

1

1

Huffman coding
				

	 	100010
	 	 	1

			
	 	 	 	10

	
	0

5

H
										

L

	Huffman not optimal
			

= 0.9999 log 1.0001 + 0.00006 log 16668.333
+ … + 1/100010 log 100010
≈ 0.00
				
= (100000*1 + …)/100010
≈ 1

6

	 		Problems of Huffman coding
			

• Huffman codes have an integral # of bits.
	 	– E.g., log (3) = 1.585 while Huffman may need
	 		 	2 bits

• Noticeable non-optimality when prob of a
	symbol is high.

					

=> Arithmetic coding

7

Problems of Huffman coding

• Need statistics & static: e.g., single pass
over the data just to collect stat & stat
unchanged during encoding

• To decode, the stat table need to be
	transmitted. Table size can be significant
	for small msg.

=> Adaptive compression e.g., adaptive
huffman

8

Adaptive compression

Encoder
Initialize the model
Repeat for each input char
	(
	 	Encode char
	 	Update the model
)

Decoder
Initialize the model
Repeat for each input char
	(
	 	Decode char
	 	Update the model
)

Make sure both sides have the same Initialize & update model algorithms.

Adaptive Huffman Coding (dummy)

Encoder
Reset the stat
Repeat for each input char
	 	(
	 	 	Encode char
	 	 	Update the stat
	 	 	Rebuild huffman tree
)
										
	9

Decoder
Reset the stat
Repeat for each input char
	(
	 	Decode char
	 	Update the stat
	 	Rebuild huffman tree
)

10

Adaptive Huffman Coding (dummy)

Encoder
Reset the stat
Repeat for each input char
	(
	 	Encode char
	 	Update the stat
	 	Rebuild huffman tree
)

Decoder
Reset the stat
Repeat for each input char
	(
	 	Decode char
	 	Update the stat
	 	Rebuild huffman tree
)

This works but too slow!

10	

The key idea

•  The key idea is to build a Huffman tree that is
optimal for the part of the message already
seen, and to reorganize it when needed, to
maintain its optimality

11	

Pro & Con - I

•  Adaptive Huffman determines the mapping to
codewords using a running estimate of the
source symbols probabilities
– Effective exploitation of locality

 For example, suppose that a file starts out with a series of a
character that are not repeated again in the file. In static
Huffman coding, that character will be low down on the
tree because of its low overall count, thus taking lots of bits
to encode. In adaptive huffman coding, the character will
be inserted at the highest leaf possible to be decoded,
before eventually getting pushed down the tree by higher-
frequency characters

12	

Pro & Con - II
– only one pass over the data
•  overhead
 In static Huffman, we need to transmit someway
the model used for compression, i.e. the tree shape.
 This costs about 2n bits in a clever representation.

 As we will see, in adaptive schemes the overhead
is nlogn.

•  sometimes encoding needs some more bits w.r.t.
static Huffman. But adaptive schemes generally
compare well with static Huffman

13	

Some history

•  Adaptive Huffman coding was first conceived
independently by Faller (1973) and Gallager
(1978)

•  Knuth contributed improvements to the
original algorithm (1985) and the resulting
algorithm is referred to as algorithm FGK

•  A more recent version of adaptive Huffman
coding is described by Vitter (1987) and called
algorithm V

14	

An important question

•  Better exploiting locality, adaptive Huffman
coding is sometimes able to do better than
static Huffman coding, i.e., for some messages,
it can have a greater compression

•  ... but we’ve assessed optimality of static
Huffman coding, in the sense of minimal
redundancy

There is a contradiction?

15	

Algorithm FGK - I

•  The basis for algorithm FGK is the Sibling Property
(Gallager 1978)

–  A binary code tree with nonnegative weights has the sibling
property if each node (except the root) has a sibling and if
the nodes can be numbered in order of nondecreasing
weight with each node adjacent to its sibling.

–  Moreover the parent of a node is higher in the numbering

•  A binary prefix code is a Huffman code if and only if
the code tree has the sibling property

16	

Algorithm FGK - II

•  Note that node numbering corresponds to the order in which the nodes are combined by
Huffman’s algorithm, first nodes 1 and 2, then nodes 3 and 4 ...

2	
a	

3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	

21	

11	10	

5	

1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	

17	

Algorithm FGK - III

•  In algorithm FGK, both encoder and decoder
maintain dynamically changing Huffman code trees.
For each symbol the encoder sends the codeword for
that symbol in current tree and then update the tree
–  The problem is to change quickly the tree optimal after t

symbols (not necessarily distinct) into the tree optimal for
t+1 symbols

–  If we simply increment the weight of the t+1-th symbols
and of all its ancestors, the sibling property may no longer
be valid à we must rebuild the tree

18	

Algorithm FGK - IV

•  Suppose next symbol
is “b”

•  if we update the
weigths...

•  ... sibling property is
violated!!

•  This is no more a
Huffman tree 2	

a	
3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	

21	

11	10	

5	

1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	 b	

4	

6	

11	

22	

33	

no	more	ordered	by	
nondecreasing	weight	

19	

Algorithm FGK - V

•  The solution can be described as a two-phase
process
–  first phase: original tree is transformed into

another valid Huffman tree for the first t symbols,
that has the property that simple increment
process can be applied succesfully (How?)

– second phase: increment process, as described
previously

20	

Algorithm FGK - V

•  The first phase starts at the leaf of the t+1-th
symbol

•  We swap this node and all its subtree, but not its
numbering, with the highest numbered node of
the same weight

•  New current node is
– the parent of this latter node

•  The process is repeated until we reach the root

21	

Algorithm FGK - VI

•  First phase
–  Node 2: nothing to

be done
–  Node 4: to be

swapped with node
5

–  Node 8: to be
swapped with node
9

–  Root reached: stop!

•  Second phase

2	
a	

3	
b	

5	
d	

6	
e	

5	
c	

11	
f	

32	

21	

11	10	

5	

1	 2	

3	 4	 5	 6	

7	 8	

9	 10	

11	 b	

4	

6

12	
33	

22	

Why FGK works?

•  The two phase procedure builds a valid
Huffman tree for t+1 symbols, as the sibling
properties is satisfied
–  In fact, we swap each node which weight is to be

increased with the highest numbered node with the
same weight

– After the increasing process there is no node with
previous weight that is higher numbered

23	

The Not Yet Seen problem - I

•  When the algorithm starts and sometimes during
the encoding we encounter a symbol that has not
been seen before.
 How do we face this problem?

24	

The Not Yet Seen problem - I
•  We use a single 0-node (with weight 0) that

represents all the unseen symbols. When a new
symbol appears we send the code for the 0-node
and some bits to discern which is the new
symbol.
– As each time we send logn bits to discern the

symbol, total overhead is nlogn bits
–  It is possible to do better, sending only the index of

the symbol in the list of the current unseen symbols.
 In this way we can save some bit, on average

25	

The Not Yet Seen problem - II

•  Then the 0-node is splitted into two leaves, that
are sibling, one for the new symbol, with
weight 1, and a new 0-node

•  Then the tree is recomputed as seen before in
order to satisfy the sibling property

26	

Algorithm FGK - summary

•  The algorithm starts with only one leaf node,
the 0-node. As the symbols arrive, new leaves
are created and each time the tree is
recomputed

•  Each symbol is coded with its codeword in the
current tree, and then the tree is updated

•  Unseen symbols are coded with 0-node
codeword and some other bits are needed to
specify the symbol

27	

Algorithm FGK - VII
•  Algorithm FGK compares favourably with static

Huffman code, if we consider also overhead
costs (it is used in the Unix utility compact)

•  Exercise
–  Construct the static Huffman tree and the FGK tree for the

message e eae de eabe eae dcf and evaluate the number of
bits needed for the coding with both the algorithms, ignoring
the overhead for Huffman

28	

Algorithm FGK - VIII

•  if T=“total number of bits transmitted by algorithm FGK for a
message of length t containing n distinct symbols“, then

 where S is the performance of the static Huffman (Vitter 1987)

•  So the performance of algorithm FGK is never much worse than
twice optimal

1 2 4 2S n T S t n− + ≤ ≤ + − +

29	

Algorithm V - I

•  Vitter in his work of the 1987 introduces two
improvements over algorithm FGK, calling the new
scheme algorithm

•  As a tribute to his work, the algorithm is become
famous... with the letter flipped upside-down...
algorithm

Λ

V

30	

The key ideas - I

•  swapping of nodes during encoding and decoding is
onerous
–  In FGK algorithm the number of swapping (considering a

double cost for the updates that move a swapped node two
levels higher) is bounded by , where is the length
of the added symbol in the old tree (this bound require
some effort to be proved and is due to the work of Vitter)

–  In algorithm V, the number of swapping is bounded by 1

2td⎡ ⎤⎢ ⎥ td

31	

The key ideas - II

•  Moreover algorithm V, not only minimize as
Huffman and FGK, but also ,i.e. the height of the tree,
and , i.e. is better suited to code next symbol, given it
could be represented by any of the leaves of the tree

•  This two objectives are reached through a new numbering
scheme, called implicit numbering

i i
i
w l∑

max il
i

i
l∑

32	

Implicit numbering

•  The nodes of the tree are numbered in increasing
order by level; nodes on one level are numbered
lower than the nodes on the next higher level

•  Nodes on the same level are numbered in increasing
order from left to right

•  If this numbering is satisfied (and in FGK it is not
always satisfied), certain types of updates cannot
occur

33	

An invariant

•  The key to minimize the other kind of interchanges is
to maintain the following invariant

–  for each weight w, all leaves of weight w precede (in the
implicit numbering) all internal nodes of weight w

•  The interchanges, in the algorithm V, are designed to
restore implicit numbering, when a new symbol is read,
and to preserve the invariant

34	

Algorithm V - II
•  if T=“total number of bits transmitted by algorithm V

for a message of length t containing n distinct symbols“,
then

•  At worst then, Vitter's adaptive method may transmit
one more bit per codeword than the static Huffman
method

•  Empirically, algorithm V slightly outperforms algorithm
FGK

1 2 2 1S n T S t n− + ≤ ≤ + − +

13
Modified from Wikipedia

a: 01100001
b: 01100010

	Adaptive Huffman
				
abbbbba: 01100001011000100110001001100010011000100110001001100001
abbbbba: 011000010011000100111101

14

252: W=3

	d
251: W=2

	c
250: W=2

	b
249: W=2

	a
248: W=1

	More example
				

	 	256: W=17
		
254: W=7

	 	 	 	 	e
	 	 	 	255: W=10

			
	 	 	253: W=4

			
	 	 	 	 	 	More aaaa…. coming

15

252: W=4

	d
251: W=2

	c
250: W=2

	b
249: W=2

	a
248: W=2

	More example
				

	 	256: W=18
		
254: W=8

	 	 	 	 	e
	 	 	 	255: W=10

			
	 	 	253: W=4

16

252: W=4

	a
251: W=3

	c
250: W=2

	b
249: W=2

	d
248: W=2

	More example
				

	 	256: W=19
		
254: W=9

	 	 	 	 	e
	 	 	 	255: W=10

			
	 	 	253: W=5

17

253: W=6
252: W=4

	a
251: W=4

	c
250: W=2

	b
249: W=2

	d
248: W=2

	More example
				

	 	256: W=20
		
254: W=10

	 	 	 	e
	 	 	255: W=10

18

253: W=6
252: W=4

	a
251: W=4

	c
250: W=2

	b
249: W=2

	d
248: W=2

	More example
				

	 	256: W=20
		
254: W=10

	 	 	 	e
	 	 	255: W=10

19

256: W=20

	e
255: W=10

253: W=6
	a

252: W=5

251: W=4

	c
250: W=2

	b
249: W=2

	d
248: W=2

More example

254: W=10
	+1

+1

20

	e
254: W=10

253: W=6
	a

252: W=5

251: W=4

	c
250: W=2

	b
249: W=2

	d
248: W=2

	More example
					
256: W=21 					

	 	255: W=11

22

Compared with Static Huffman

• Dynamic and can offer better compression
(cf. Vitter’s experiments)
– i.e., the tree can be smaller (hence shorter

the code) before the whole bitstream is
received.

• Works when prior stat is unavailable
• Saves symbol table overhead (cf. Vitter’s

expt)

Assignment 1

•  Size Determination of Huffman & LZW
Encoded File
– Your task in this assignment is to implement a C

program that determines the size of a Huffman
encoded (static & adaptive) file or LZW encoded
file when a UTF-8 encoded file is given as input to
your program.

– You should detail the sizes
•  i.e. code + tree

–  It is in bytes. When the total size is not an integral
number of bytes, round the remaining bits up to a byte.

– Your submitted file should be called csize.c/csize.cpp
– Your program should accept the commandline

argument –sh, -ah, or -l to determine if Static Huffman,
Adaptive Huffman or LZW, respectively, should be
used.

– When -l is given, a number between 9 and 20
(inclusively) is expected from the commandline to
specify the fixed width (in bits) of the codes. Finally,
the input filename is given as the last argument in the
commandline.	

Assignment 1

•  Your solution should read the input file as
read-only (because you might not have write
permission to the file) and should not write out
any external files.

•  Any solution that fails to compile on a MS C/
C++ Compiler, fails to read a read-only file, or
writes out external files, will receive zero
points for the entire assignment.

Assignment 1

25

	Recall from Lecture 1’s RLE and
	 	BWT example

	

rabcabcababaabacabcabcabcababaa$
					

aabbbbccacccrcbaaaaaaaaaabbbbba$
					

aab4ccac3rcba10b5a$

26

	A simple example
			

Input:
#BANANAS

Excerpted from Wikipedia

27

All rotations
			

	#BANANAS
	S#BANANA
	AS#BANAN
	NAS#BANA
	ANAS#BAN
	NANAS#BA
	ANANAS#B
	BANANAS#

28

Sort the rows
			

	#BANANAS
	ANANAS#B
	ANAS#BAN
	AS#BANAN
	BANANAS#
	NANAS#BA
	NAS#BANA
	S#BANANA

29

	Output
			

#BANANAS
ANANAS#B
ANAS#BAN
AS#BANAN
BANANAS#
NANAS#BA
NAS#BANA
S#BANANA

30

	Exercise: you can try the example
				

rabcabcababaabacabcabcabcababaa$
					

aabbbbccacccrcbaaaaaaaaaabbbbba$

Now the inverse…

Input:
S
B
N
N

A
A
A
					

	31

32

First add

S
B
N
N

A
A
A

33

Then sort

A
A
A
B
N
N
S

34

Add again

S#
BA
NA
NA
#B
AN
AN
AS

35

Then sort

#B
AN
AN
AS
BA
NA
NA
S#

36

Then add

S#B
BAN
NAN
NAS
#BA
ANA
ANA
AS#

37

Then sort

#BA
ANA
ANA
AS#
BAN
NAN
NAS
S#B

38

Then add

S#BA
BANA
NANA
NAS#
#BAN
ANAN
ANAS
AS#B

39

Then sort

#BAN
ANAN
ANAS
AS#B
BANA
NANA
NAS#
S#BA

40

Then add
			

	S#BAN
	BANAN
	NANAS
	NAS#B
	#BANA
	ANANA
	ANAS#
	AS#BA

41

Then sort
			

	#BANA
	ANANA
	ANAS#
	AS#BA
	BANAN
	NANAS
	NAS#B
	S#BAN

42

Then add
			

	S#BANA
	BANANA
	NANAS#
	NAS#BA
	#BANAN
	ANANAS
	ANAS#B
	AS#BAN

43

Then sort
			

	#BANAN
	ANANAS
	ANAS#B
	AS#BAN
	BANANA
	NANAS#
	NAS#BA
	S#BANA

44

Then add
			

	S#BANAN
	BANANAS
	NANAS#B
	NAS#BAN
	#BANANA
	ANANAS#
	ANAS#BA
	AS#BANA

45

Then sort
			

	#BANANA
	ANANAS#
	ANAS#BA
	AS#BANA
	BANANAS
	NANAS#B
	NAS#BAN
	S#BANAN

46

Then add
			

	S#BANANA
	BANANAS#
	NANAS#BA
	NAS#BANA
	#BANANAS
	ANANAS#B
	ANAS#BAN
	AS#BANAN

47

Then sort (?)
			

	#BANANAS
	ANANAS#B
	ANAS#BAN
	AS#BANAN
	BANANAS#
	NANAS#BA
	NAS#BANA
	S#BANANA

49

	 	 	BWT(S)
			

function BWT (string s)
	create a table, rows are all possible
	 	rotations of s
	sort rows alphabetically
	return (last column of the table)

50

InverseBWT(S)
function inverseBWT (string s)

create empty table

repeat length(s) times
insert s as a column of table before first

	column of the table // first insert creates
																																																																			first column

sort rows of the table alphabetically
return (row that ends with the 'EOF' character)

BW0	
The	Main	Burrows-Wheeler	Compression	
Algorithm:	

Compressed
String S’

String S BWT
Burrows-
Wheeler
Transfor

m

MTF
Move-to-

front

Order-0
Encoding

Text	with	
local	
uniformity	

Text	in	English	
(similar	
contexts	->	
similar	
character)	

Integer	string	
with	many	
small	
numbers	

The	BWT	

string with context-regularity

BWT

string with spikes (close repetitions)

s

ŝ

mississippi

ipssmpissii

p i#mississi p
p pi#mississ i
s ippi#missi s
s issippi#mi s
s sippi#miss i
s sissippi#m i

i ssippi#mis s

m ississippi #
i ssissippi# m

The	BWT	
T = mississippi#

mississippi#
ississippi#m
ssissippi#mi
sissippi#mis

sippi#missis
ippi#mississ
ppi#mississi
pi#mississip
i#mississipp
#mississippi

ssippi#missi
issippi#miss Sort the rows

mississipp i
i #mississip p
i ppi#missis s

F L=BWT(T)

T

BWT sorts the characters by their post-context

51

	 	 	Move to Front (MTF)
			

• Reduce entropy based on local frequency
	correlation

• Usually used for BWT before an entropy-
	encoding step

• Author and detail:
						– http://www.arturocampos.com/ac_mtf.html

Move	To	Front	

•  By	Bentley,	Sleator,	Tarjan	and	Wei		(’86)	
	
 string with spikes (close repetitions)

ipssmpissii

integer string with small numbers
0,0,0,0,0,2,4,3,0,1,0

move-to-front

ŝ

's

Move	to	Front	

a,b,r,c,d	abracadabra	

Move	to	Front	

a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

a,c,r,b,d	0,1,2,2,3,1	abracadabra	
c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

Move	to	Front	

0,1,2,2,3,1,4,1,4,4,2	abracadabra	
a,c,r,b,d	0,1,2,2,3,1	abracadabra	
c,a,r,b,d	0,1,2,2,3	abracadabra	
a,r,b,c,d	0,1,2,2	abracadabra	
r,b,a,c,d	0,1,2	abracadabra	
b,a,r,c,d	0,1	abracadabra	
a,b,r,c,d	0	abracadabra	
a,b,r,c,d	abracadabra	

ATer	MTF	
•  Now	we	have	a	string	with	small	numbers:	
lots	of	0s,	many	1s,	…	

•  Skewed	frequencies:	Run	ArithmeZc!	
	

Character
frequencies

Symbol Code List
a 0 abcde…..
b 1 bacde…..
a 1 abcde…..
a 0 abcde…..
b 1 bacde…..
a 1 abcde…..
c 2 cabde…..
a 1 acbde…..
d 3 dacbe…..

52

Example: abaabacad
				

	To transform a general
	file, the list has 256
	ASCII symbols.

53

BWT compressor vs ZIP

From http://marknelson.us/1996/09/01/bwt/

BWT+RLE+MTF+AC ZIP (i.e., LZW based)

54

Other ways to reverse BWT

Consider L=BWT(S) is composed of the
symbols V0 … VN-1, the transformed string
may be parsed to obtain:

– The number of symbols in the substring V0 …
Vi-1 that are identical to Vi.

– For each unique symbol, Vi, in L, the number
of symbols that are lexicographically less than
that symbol.

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

55

Example

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

56

???????]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

57

??????A]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

58

?????NA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

59

????ANA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

60

???NANA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

61

??ANANA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

62

?BANANA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

63

[BANANA]

Position Symbol #Matching
0 B 0
1 N 0
2 N 1
3 [0
4 A 0
5 A 1
6] 0
7 A 2

Symbol #LessThan

A 0

B 3

N 4

[6

] 7

64

[BANANA]

Occ / Rank
C[]

65

A
A
A
B
N
N
[
]
				
	First

An illustration
			

	 	B
	 	N
	 	N
	 	[
	 	A
	 	A
]
	 	A

						
	Last

If	we	know:	
	
	 ‘[‘		is	the	first	char	

65

A
A
A
B
N
N
[
]
				
	First

]
			

	 	B
	 	N
	 	N
	 	[
	 	A
	 	A
]
	 	A

						
	Last

Or	:	#[BANANA]	
		
	#	is	smaller	than	others	

65

A
A
A
B
N
N
[
]
				
	First

]
			

	 	B
	 	N
	 	N
	 	[
	 	A
	 	A
]
	 	A

						
	Last

Why？ 66

A
A
A
B
N
N
[
]

A]
			

	B
	N
	N
	[
	A
	A
]
	A

Why？

67

A
A
A
B
N
N
[
]

NA]
			

	B
	N
	N
	[
	A
	A
]
	A

How？	
	 2	info	
Why?

68

A
A
A
B
N
N
[
]

ANA]
			

	B
	N
	N
	[
	A
	A
]
	A

69

A
A
A
B
N
N
[
]

NANA]
			

	B
	N
	N
	[
	A
	A
]
	A

70

A
A
A
B
N
N
[
]

ANANA]
			

	B
	N
	N
	[
	A
	A
]
	A

71

A
A
A
B
N
N
[
]

BANANA]
			

	B
	N
	N
	[
	A
	A
]
	A

72

A
A
A
B
N
N
[
]

[BANANA]
			

	B
	N
	N
	[
	A
	A
]
	A

73

	 	Dynamic BWT ?
			

Instead of reconstructing BWT, local reordering from the
	original BWT.

Details:
				
Salson M, Lecroq T, Léonard M and Mouchard L (2009).

	"A Four-Stage Algorithm for Updating a Burrows–
	Wheeler Transform". Theoretical Computer Science 410
	(43): 4350.

