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What The Course Is About 

•  Study data structures for: 
§  External sorting 
§  Single and double ended priority queues 
§ Dictionaries 
§ Multidimensional search 
§  Computational geometry 
§  Image processing 
§  Packet routing and classification 
§ … 



What The Course Is About 

 
•  Concerned with: 

§ Worst-case complexity 
§ Average complexity 
§ Amortized complexity 
 



Prerequisites 

ü Asymptotic Complexity 
§  Big Oh, Theta, and Omega notations 

ü Undergraduate data structures 
§  Stacks and Queues 
§  Linked lists 
§  Trees 
§  Graphs 

ü C++ 



Kinds Of Complexity 

 
ü Worst-case complexity. 
ü Average complexity. 
•  Amortized complexity. 
 



Quick Sort 

•  Sort n distinct numbers. 
•  Worst-case time is (say) 10n2 microseconds on

 some computer. 
•  This means that for every n, there is a sequence

 of n numbers for which quick sort will take 10n2
 microseconds to complete. 

•  Also, there is no sequence of n numbers for
 which quick sort will take more than 10n2
 microseconds to complete. 



Quick Sort 
 
•  Average time is (say) 5n log2n microseconds on

 some computer. 
•  Consider any n, say n = 1000. 
•  Add up the time taken to sort each of the 1000!

 possible 1000 element sequences. 
•  Divide by 1000!. 
•  The result is 5000 log21000. 



Quick Sort 
 
•  What if we sort only 500 of these 1000!

 sequences? 
•  We can only conclude that the total time for

 these 500 sequences will be  
 <= 500*(worst-case time) 
   = 500*(10n2) 

•  We cannot conclude that the time will be
 500*(average time). 

 



Task Sequence 

•  Suppose that a sequence of n tasks is performed. 
•  The worst-case cost of a task is cwc. 
•  Let ci be the (actual) cost of the ith task in this

 sequence. 
•  So, ci <= cwc, 1 <= i <= n. 
•  n * cwc is an upper bound on the cost of the

 sequence. 
•  j * cwc is an upper bound on the cost of the first j

 tasks. 



Task Sequence 

 
•  Let cavg be the average cost of a task in this

 sequence. 
•  So, cavg = Σci/n. 
•  n * cavg is the cost of the sequence. 
•  j * cavg is not an upper bound on the cost of

 the first j tasks. 
•  Usually, determining cavg is quite hard. 



Task Sequence 

 
•  At times, a better upper bound than j * cwc

 or n * cwc on sequence cost is obtained
 using amortized complexity. 

 



Amortized Complexity 
•  The amortized complexity of a task is the

 amount you charge the task. 
•  The conventional way to bound the cost of doing

 a task n times is to use one of the expressions  
§   n*(worst-case cost of task) 
§  Σ(worst-case cost of task i) 

•  The amortized complexity way to bound the cost
 of doing a task n times is to use one of the
 expressions 
§  n*(amortized cost of task) 
§  Σ(amortized cost of task i) 



Amortized Complexity 
 
•  The amortized complexity/cost of individual

 tasks in any task sequence must satisfy: 
Σ(actual cost of task i) 
<= Σ(amortized cost of task i)

•  So, we can use 
     Σ(amortized cost of task i)
    as a bound on the actual complexity of the task

 sequence. 



Amortized Complexity 
 
•  The amortized complexity of a task may bear no

 direct relationship to the actual complexity of
 the task. 

 



Amortized Complexity 
 
•  In worst-case complexity analysis, each task is

 charged an amount that is >= its cost. 
Σ(actual cost of task i) 
<= Σ(worst-case cost of task i) 

•  In amortized analysis, some tasks may be
 charged an amount that is < their cost. 
Σ(actual cost of task i) 
<= Σ(amortized cost of task i) 



Arithmetic Statements 

•  Rewrite an arithmetic statement as a
 sequence of statements that do not use
 parentheses. 

•  a = x+((a+b)*c+d)+y; 
    is equivalent to the sequence: 
     z1 = a+b; 
     z2 = z1*c+d; 
       a = x+z2+y; 



Arithmetic Statements 

•  The rewriting is done using a stack and a
 method processNextSymbol. 

•  create an empty stack; 
    for (int i = 1; i <= n; i++) 
        // n is number of symbols in statement  
        processNextSymbol(); 

a = x+((a+b)*c+d)+y; 



Arithmetic Statements 

•  processNextSymbol extracts the next
 symbol from the input statement. 

•  Symbols other than ) and ; are simply
 pushed on to the stack. 

a = x+((a+b)*c+d)+y; 

 a = 
x 
+ 
( 
( 
a 
+ 
b 



Arithmetic Statements 

•  If the next symbol is ), symbols are
 popped from the stack up to and
 including the first (, an assignment
 statement is generated, and the left
 hand symbol is added to the stack. 

a = x+((a+b)*c+d)+y; 

 a = 
x 
+ 
( 
( 
a 
+ 
b 

z1 = a+b; 



Arithmetic Statements 
a = x+((a+b)*c+d)+y; 

 a = 
x 
+ 
( 
z1 

z1 = a+b; 

* 
c 
+ 
d 

z2 = z1*c+d; 

•  If the next symbol is ), symbols are
 popped from the stack up to and
 including the first (, an assignment
 statement is generated, and the left
 hand symbol is added to the stack. 



Arithmetic Statements 
a = x+((a+b)*c+d)+y; 

 a = 
x 
+ 
z2 z1 = a+b; 

z2 = z1*c+d; 

+ 
y 

•  If the next symbol is ), symbols are
 popped from the stack up to and
 including the first (, an assignment
 statement is generated, and the left
 hand symbol is added to the stack. 



Arithmetic Statements 

•  If the next symbol is ;, symbols are
 popped from the stack until the
 stack becomes empty. The final
 assignment statement                      
 a = x+z2+y;                                                 
 is generated. 

a = x+((a+b)*c+d)+y; 

z1 = a+b; 

 a = 
x 
+ 
z2 
+ 
y 

z2 = z1*c+d; 



Complexity Of processNextSymbol 

•  O(number of symbols that get popped from
 stack) 

•  O(i), where i is for loop index. 
 

a = x+((a+b)*c+d)+y; 



Overall Complexity (Conventional Analysis) 

•  So, overall complexity is O(Σi) = O(n2). 
•  Alternatively, O(n*n) = O(n2). 
•  Although correct, a more careful analysis permits

 us to conclude that the complexity is O(n). 

   create an empty stack; 

    for (int i = 1; i <= n; i++) 

        // n is number of symbols in statement  

        processNextSymbol(); 



Ways To Determine Amortized
 Complexity 

•  Aggregate method. 
•  Accounting method. 
•  Potential function method. 



Aggregate Method 
•  Somehow obtain a good upper bound on the

 actual cost of the n invocations of
 processNextSymbol() 

•  Divide this bound by n to get the amortized
 cost of one invocation of
 processNextSymbol() 

•  Easy to see that 
Σ(actual cost) <= Σ(amortized cost)



Aggregate Method 
•  The actual cost of the n invocations of

 processNextSymbol() 
   equals number of stack pop and push operations.
•  The n invocations cause at most n symbols to be

 pushed on to the stack. 
•  This count includes the symbols for new variables,

 because each new variable is the result of a ) being
 processed. Note that no )s get pushed on to the
 stack. 



Aggregate Method 
•  The actual cost of the n invocations of

 processNextSymbol()                                               
 is at most 2n.  

•  So, using 2n/n = 2 as the amortized cost of
 processNextSymbol()                                               
 is OK, because this cost results in                   
 Σ(actual cost) <= Σ(amortized cost) 

•  Since the amortized cost of  processNextSymbol()  
 is 2, the actual cost of all n invocations is at most
 2n. 



Aggregate Method 
•  The aggregate method isn’t very useful, because to

 figure out the amortized cost we must first obtain a
 good bound on the aggregate cost of a sequence of
 invocations. 

•  Since our objective was to use amortized complexity
 to get a better bound on the cost of a sequence of
 invocations, if we can obtain this better bound
 through other techniques, we can omit dividing the
 bound by n to obtain the amortized cost. 

 


