Pairing Heaps

Fibonacci |Pairing
Insert O(1) O(1)
Remove min (or max)|O(n) O(n)
Meld O(1) O(1)
Remove O(n) O(n)
Decrease kev (or O(n) O(1)
Increase)

Actual @@M[@U@E@ﬁ@y

Pairing Heaps

Fibonacci |Pairing

Insert O(1) O(log n)

Remove min (or max)|O(log n) [|O(log n)

Meld O(1) O(log n)
Remove O(logn) |O(log n)
Decrease kev (or O(1) O(log n)
Increase)

Amortized Complesxity

Pairing Heaps

* Experimental results suggest that pairing
heaps are actually faster than Fibonacci
heaps.

= Simpler to implement.
= Smaller runtime overheads.

" Less space per node.

Definition

* A min (max) pairing heap is a min (max) tree in
which operations are done 1n a specified manner.

(V)
¥ @ o /
O OO
(D

Node Structure

Child

= Pointer to first node of children list.

Left and Right Sibling

= Used for doubly linked linked list (not circular)
of siblings.

= Left pointer of first node 1s to parent.
= x 18 first node 1n list iff x.left.child = x.

Data

Note: No Parent, Degree, or ChildCut
fields.

Meld — Max Pairing Heap

* Compare-Link Operation
= Compare roots.
" Tree with smaller root becomes leftmost subtree.

*Actual cost = O(1).

Insert

e Create 1-element max tree with new item
and meld with existing max pairing heap.

é PY + insert(2) = o 0

Insert

e Create 1-element max tree with new item
and meld with existing max pairing heap.

(92
/ + insert(14) = /
® © & ® @
(6) (3) *Actual cost = O(l). 5 3)

Worst-Case Degree

e Insert9, 8, 7, ..., 1, 1n this order.

ee b

*Worst-case degree =n —1.

Worst-Case Height

e Insert I, 2, 3, ..., n, 1n this order.

*Worst-case height = n.

e

IncreaseKey(theNode, theAmount)

* Since nodes do not have parent fields, we
cannot easily check whether the key 1n
theNode becomes larger than that in its
parent.

* So, detach theNode from sibling doubly-
linked list and meld.

IncreaseKey(theNode, the Amount)

Y

If theNode 1s not the root, remove subtree
rooted at theNode from its sibling list.

theNode

IncreaseKey(theNode, the Amount)

[\

I Meld subtree with remaining tree.

IncreaseKey(theNode, heAmount)

*Actual cost = O(1).

Remove Max

* If empty => fail.

* Otherwise, remove tree root and meld
subtrees 1nto a single max tree.

e How to meld subtrees?

* Good way => O(log n) amortized complexity
for remove max.

= Bad way => O(n) amortized complexity.

Bad Way To Meld Subtrees

e currentTree = first subtree.
 for (each of the remaining trees)
currentTree = compareLink(currentTree,

nextTree);

Example

e Remove max.

©POOOOOOO@

 Meld into one tree. 9

Example

 Actual cost of insert 1s 1.

» Actual cost of remove max 1s degree of root.
* n/2 mserts (9,7,5,3,1, 2,4, 6, 8) followed by
n/2 remove maxs.
= Cost of 1nserts 1s n/2.
= Costof remove maxsis 1 +2 + ... +n/2 —1=0(n?).

= If amortized cost of an insert 1s O(1), amortized cost
of a remove max must be ®(n).

Good Ways To Meld Subtrees

Two-pass scheme.
Multipass scheme.
Both have same asymptotic complexity.

Two-pass scheme gives better observed
performance.

Two-Pass Scheme

e Pass 1.
= Examine subtrees from left to right.

= Meld pairs of subtrees, reducing the number of
subtrees to half the original number.

= [f # subtrees was odd, meld remaining original
subtree with last newly generated subtree.

 Pass 2.

= Start with rightmost subtree of Pass 1. Call this
the working tree.

* Meld remaining subtrees, one at a time, from
right to left, into the working tree.

Two-Pass Scheme — Example

Pass 1

Two-Pass Scheme — Example

sl A A A A

R1

R2

R3

Multipass Scheme

» Place the subtrees into a FIFO queue.
* Repeat until 1 tree remains.

= Remove 2 subtrees from the queue.
= Meld them.
= Put the resulting tree onto the queue.

Multipass Scheme — Example

AbAAAA AA
AAAA AA A
AA AA A\ A

AA A A A

Multipass Scheme--Example

AA A\ A A
A\ A A A
A A A
A A

Multipass Scheme--Example

A A

A

*Actual cost = O(n).

Remove Nonroot Element

 Remove theNode from its sibling list.

* Meld children of theNode using either 2-pass
or multipass scheme.

* Meld resulting tree with what’s left of
original tree.

Remove(theNode)

b

theNode

!

Remove theNode from its doubly-linked sibling list.

Remove(theNode)

I Meld children of theNode.

Remove(theNode)

{';

Meld with what’s left of original tree.

Remove(theNode)

*Actual cost = O(n).

