
Pairing Heaps

 Fibonacci Pairing
Insert O(1) O(1)

Remove min (or max) O(n) O(n)

Meld O(1) O(1)

Remove O(n) O(n)

Decrease key (or
increase)

O(n) O(1)

Pairing Heaps

 Fibonacci Pairing
Insert O(1) O(log n)

Remove min (or max) O(log n) O(log n)

Meld O(1) O(log n)

Remove O(log n) O(log n)

Decrease key (or
increase)

O(1) O(log n)

Pairing Heaps

• Experimental results suggest that pairing
heaps are actually faster than Fibonacci
heaps.
§ Simpler to implement.
§ Smaller runtime overheads.
§ Less space per node.

Definition
• A min (max) pairing heap is a min (max) tree in

which operations are done in a specified manner.

3

5 3

8

1

2 1

4

1

4 5

6

2

3

Node Structure
• Child

§ Pointer to first node of children list.
• Left and Right Sibling

§ Used for doubly linked linked list (not circular)
of siblings.

§ Left pointer of first node is to parent.
§ x is first node in list iff x.left.child = x.

• Data
• Note: No Parent, Degree, or ChildCut

fields.

Meld – Max Pairing Heap
• Compare-Link Operation

§ Compare roots.
§ Tree with smaller root becomes leftmost subtree.

6

7

3

6 7

9

+ =

3

6 7

9

6

7

•Actual cost = O(1).

Insert
• Create 1-element max tree with new item

and meld with existing max pairing heap.

3

6 7

9

6

7
+ insert(2) =

3

6 7

9

6

72

Insert
• Create 1-element max tree with new item

and meld with existing max pairing heap.

3

6 7

9

6

7
+ insert(14)=

3

6 7

9

6

7

14

•Actual cost = O(1).

Worst-Case Degree

• Insert 9, 8, 7, …, 1, in this order.

9

871 …

•Worst-case degree = n –1.

Worst-Case Height

• Insert 1, 2, 3, …, n, in this order.

1

2

•Worst-case height = n.
3

4

5

IncreaseKey(theNode, theAmount)

• Since nodes do not have parent fields, we
cannot easily check whether the key in
theNode becomes larger than that in its
parent.

• So, detach theNode from sibling doubly-
linked list and meld.

IncreaseKey(theNode, theAmount)

If theNode is not the root, remove subtree
rooted at theNode from its sibling list.

1

2 6

9

4

5 1

6

1

3 2

4 2

4

3

3

theNode

IncreaseKey(theNode, theAmount)

Meld subtree with remaining tree.

1

2 6

9

4

5 1

6

1

3 2

4

2

18

3

3

IncreaseKey(theNode, theAmount)

1

2 6

9

4

5 1

6

1

3 2

4

2

18

3

3

•Actual cost = O(1).

Remove Max

• If empty => fail.
• Otherwise, remove tree root and meld

subtrees into a single max tree.
• How to meld subtrees?

§ Good way => O(log n) amortized complexity
for remove max.

§ Bad way => O(n) amortized complexity.

Bad Way To Meld Subtrees

• currentTree = first subtree.
• for (each of the remaining trees)

currentTree = compareLink(currentTree,
nextTree);

Example

• Remove max.
75268 4 1 3

• Meld into one tree.

9

75268 4 1 3

8

6157 3 2 4

Example

• Actual cost of insert is 1.
• Actual cost of remove max is degree of root.
• n/2 inserts (9, 7, 5, 3, 1, 2, 4, 6, 8) followed by

n/2 remove maxs.
§ Cost of inserts is n/2.
§ Cost of remove maxs is 1 + 2 + … + n/2 – 1 = Q(n2).
§ If amortized cost of an insert is O(1), amortized cost

of a remove max must be Q(n).

Good Ways To Meld Subtrees

• Two-pass scheme.
• Multipass scheme.
• Both have same asymptotic complexity.
• Two-pass scheme gives better observed

performance.

Two-Pass Scheme
• Pass 1.

§ Examine subtrees from left to right.
§ Meld pairs of subtrees, reducing the number of

subtrees to half the original number.
§ If # subtrees was odd, meld remaining original

subtree with last newly generated subtree.
• Pass 2.

§ Start with rightmost subtree of Pass 1. Call this
the working tree.

§ Meld remaining subtrees, one at a time, from
right to left, into the working tree.

Two-Pass Scheme – Example

T2 T3 T4T1 T6 T7 T8T5

S1 S2 S3 S4

Two-Pass Scheme – Example

S1 S2 S3 S4

R1

R2

R3

Multipass Scheme

• Place the subtrees into a FIFO queue.
• Repeat until 1 tree remains.

§ Remove 2 subtrees from the queue.
§ Meld them.
§ Put the resulting tree onto the queue.

Multipass Scheme – Example

T2T1 T3 T4 T6 T7 T8T5

S2S1T6 T7 T8T5

S1T3 T4 T6 T7 T8T5

S3S2S1T7 T8

Multipass Scheme--Example

S3S2S1T7 T8

S4S3S2S1

S4S3 R1

R1 R2

Multipass Scheme--Example

R1 R2

Q1

•Actual cost = O(n).

Remove Nonroot Element

• Remove theNode from its sibling list.
• Meld children of theNode using either 2-pass

or multipass scheme.
• Meld resulting tree with what’s left of

original tree.

Remove(theNode)

Remove theNode from its doubly-linked sibling list.

1

2 6

9

4

5 1

6

1

3 2

4 2

4

3

3

theNode

Remove(theNode)

Meld children of theNode.

2

4

3

3

1

2 6

9

4

5 1

6

1

3 2

4

Remove(theNode)

Meld with what’s left of original tree.

1

2 6

9

4

5 1

6

1

3 2

4

2 3

3

Remove(theNode)

1

2 6

9

4

5 1

6

1

3 2

42 3

3

•Actual cost = O(n).

