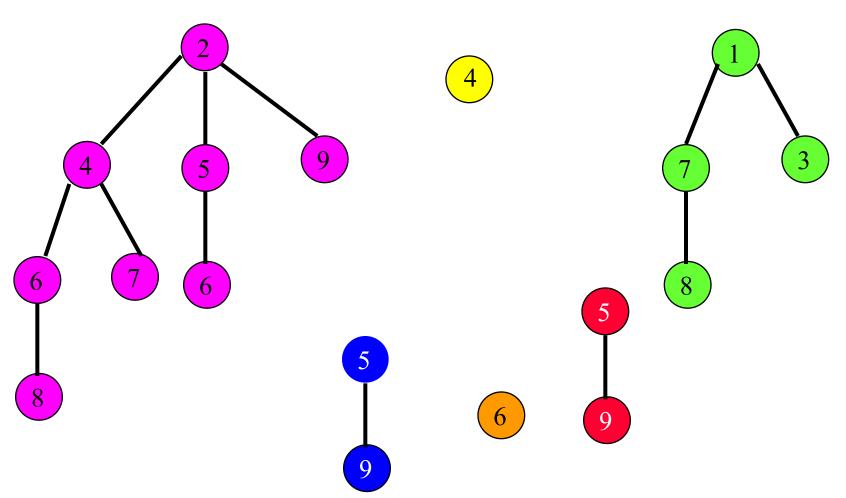
Binomial Heaps

	Leftist	Binomial heaps	
	trees	Actual	Amortized
Insert	O(log n)	O(1)	O(1)
Remove min (or max)	O(log n)	O(n)	O(log n)
Meld	O(log n)	O(1)	O(1)

Min Binomial Heap

• Collection of min trees.



Node Structure

- Degree
 - Number of children.
- Child
 - Pointer to one of the node's children.
 - Null iff node has no child.
- Sibling
 - Used for circular linked list of siblings.
- Data

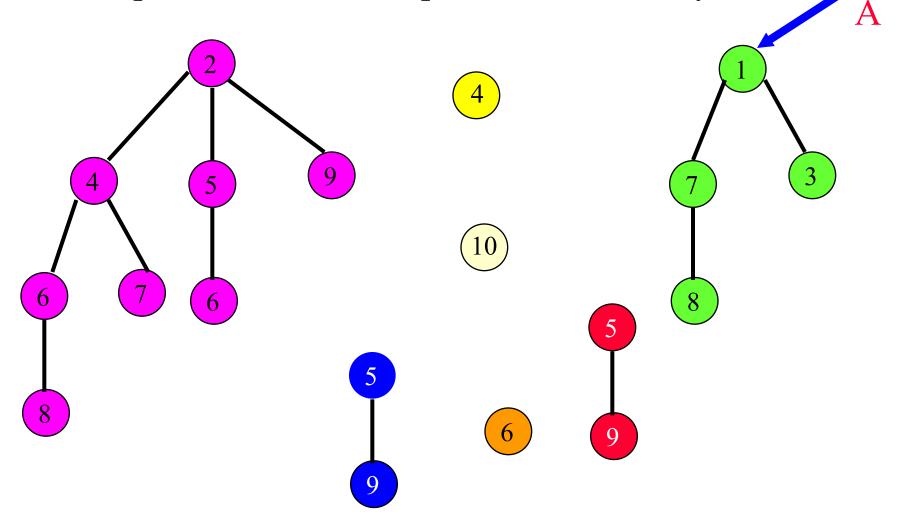
Binomial Heap Representation

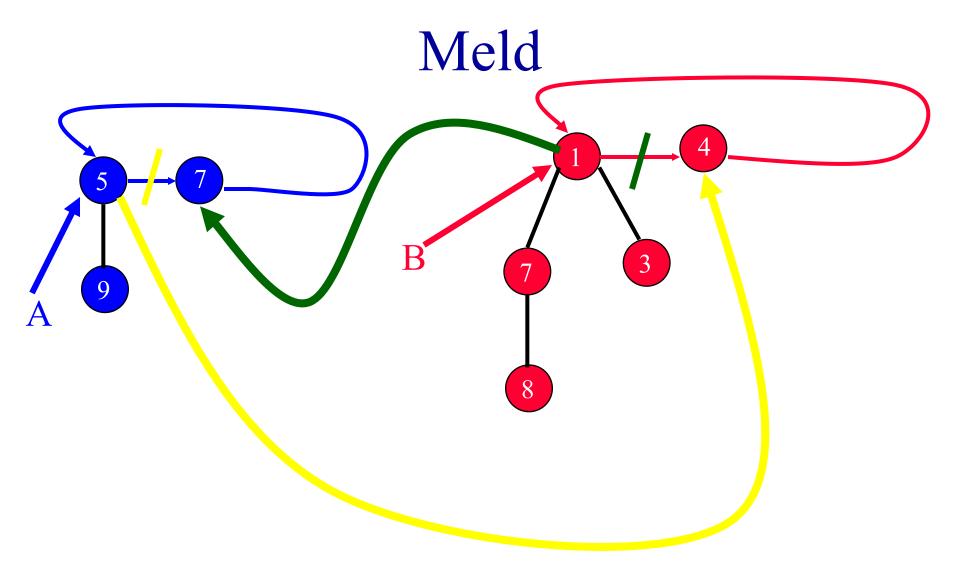


Insert 10

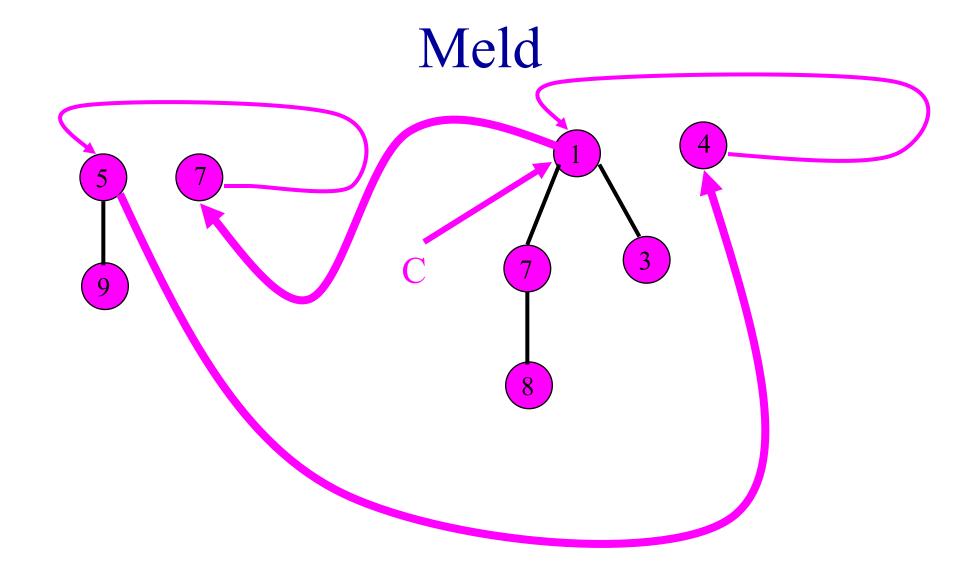
• Add a new single-node min tree to the collection.

• Update min-element pointer if necessary.





- Combine the 2 top-level circular lists.
- Set min-element pointer.

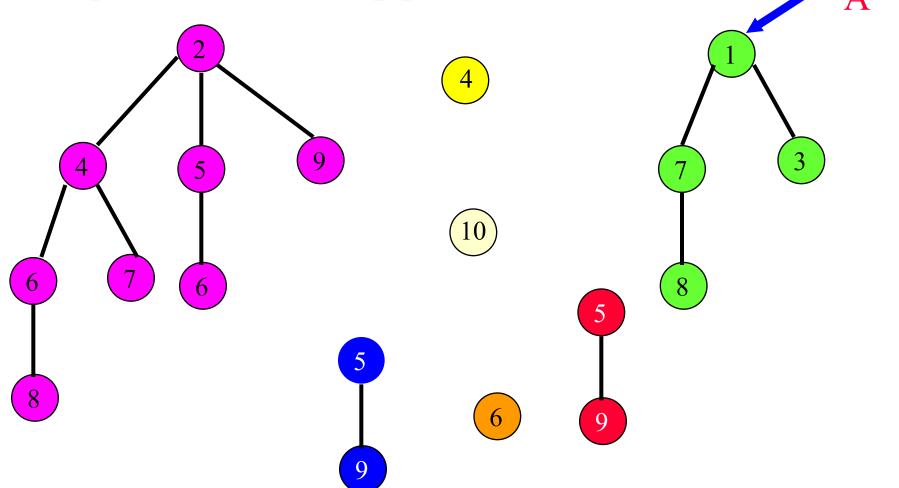


Remove Min

• Empty binomial heap => fail.

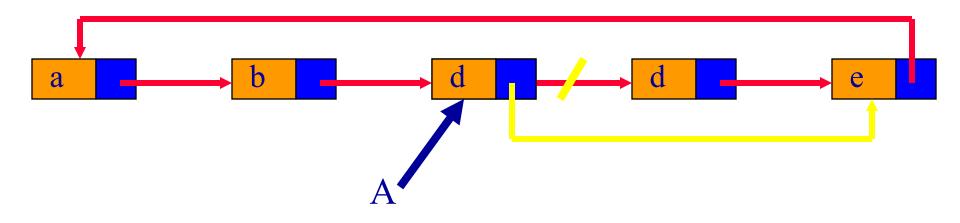
Nonempty Binomial Heap

- Remove a min tree.
- Reinsert subtrees of removed min tree.
- Update binomial heap pointer.



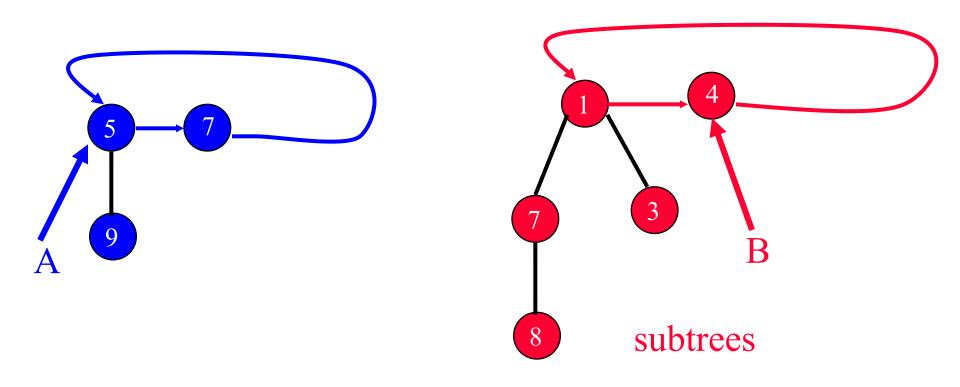
Remove Min Tree

• Same as remove a node from a circular list.



- No next node => empty after remove.
- Otherwise, copy next-node data and remove next node.

Reinsert Subtrees



- Combine the 2 top-level circular lists.
 - Same as in meld operation.

Update Binomial Heap Pointer

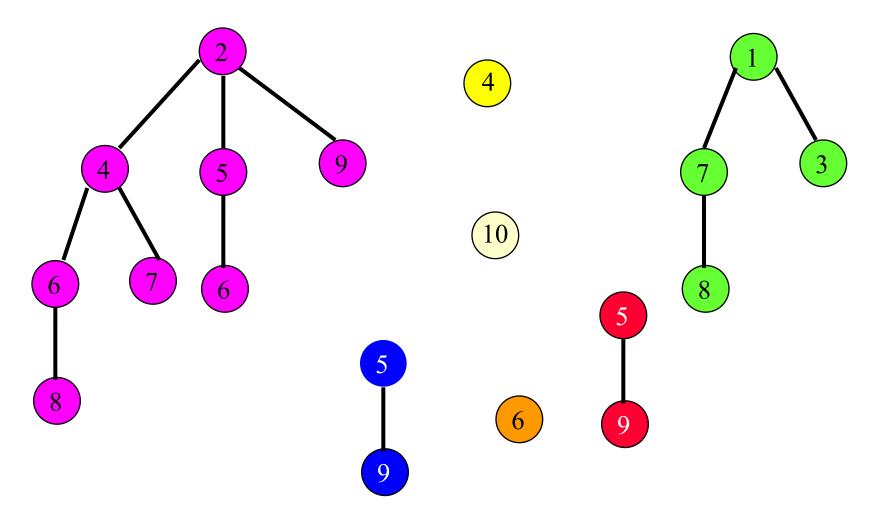
• Must examine roots of all min trees to determine the min value.

Complexity Of Remove Min

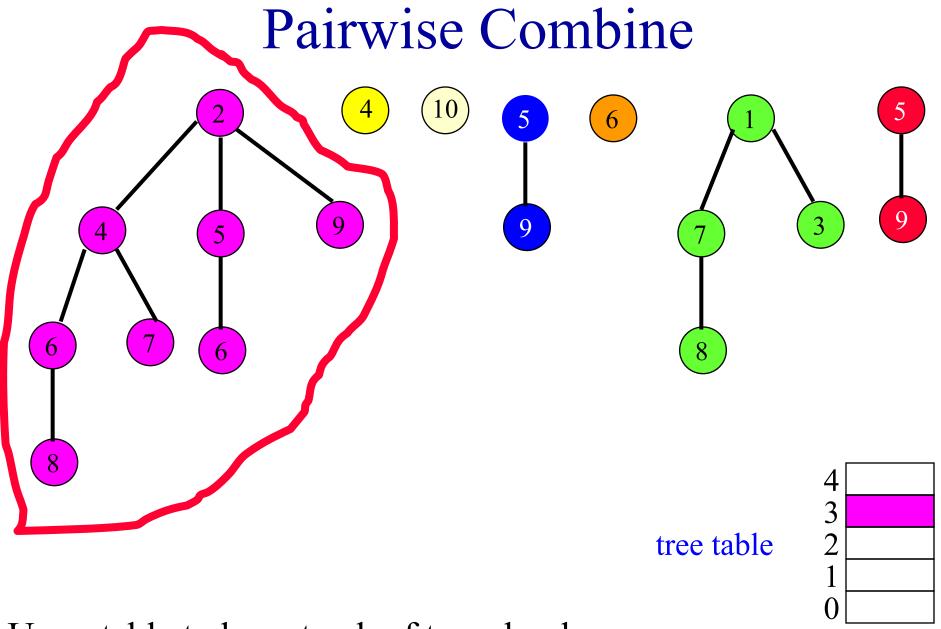
- Remove a min tree.
 - O(1).
- Reinsert subtrees.
 - O(1).
- Update binomial heap pointer.
 - O(s), where s is the number of min trees in final top-level circular list.
 - s = O(n).
- Overall complexity of remove min is O(n).

Enhanced Remove Min

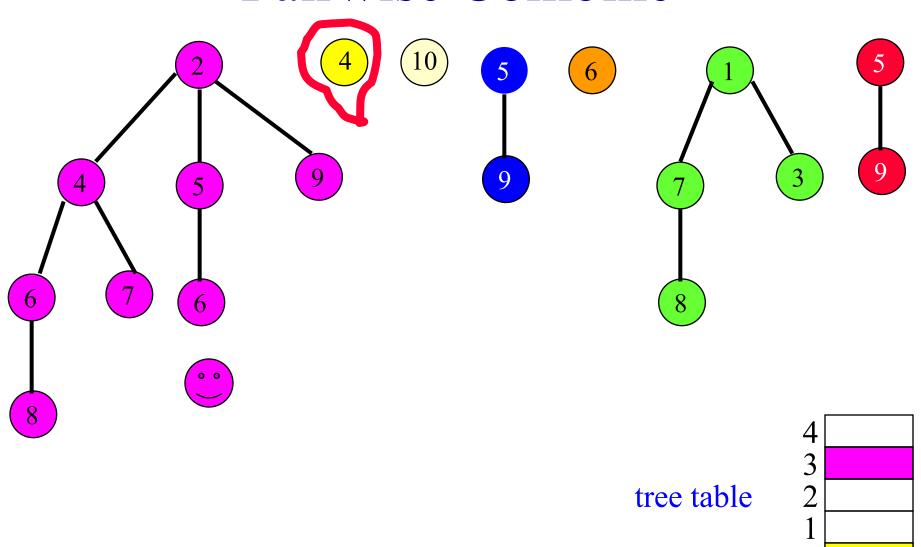
• During reinsert of subtrees, pairwise combine min trees whose roots have equal degree.

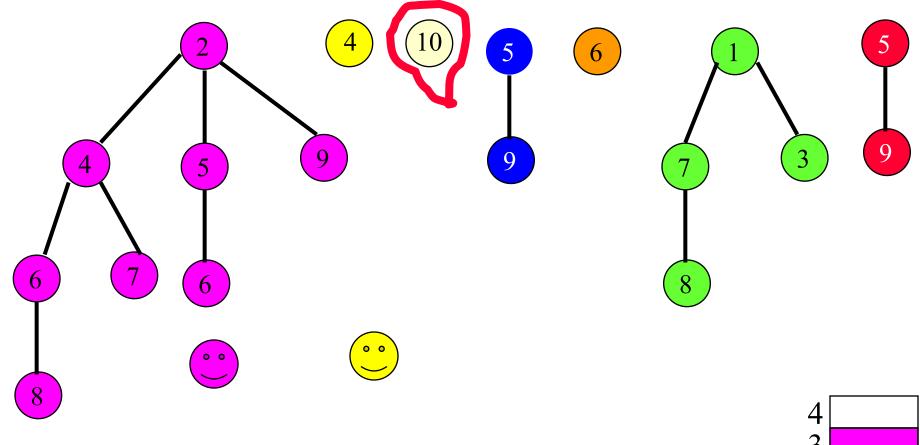


Examine the s = 7 trees in some order. Determined by the 2 top-level circular lists.



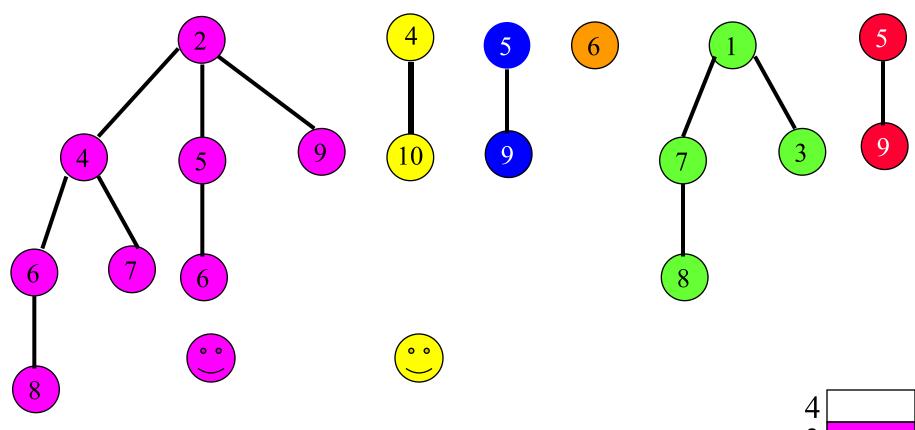
Use a table to keep track of trees by degree.



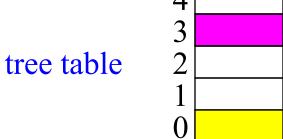


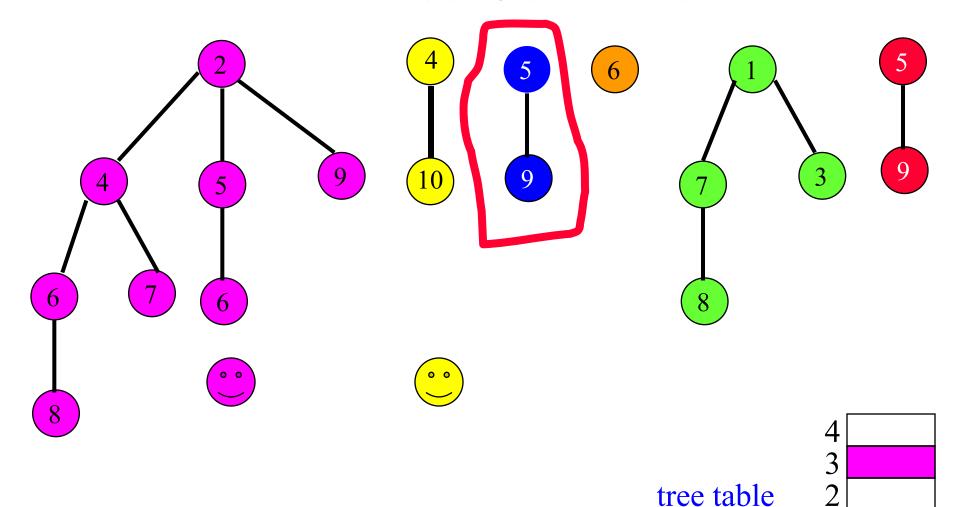
Combine 2 min trees of degree 0.

Make the one with larger root a subtree of other.



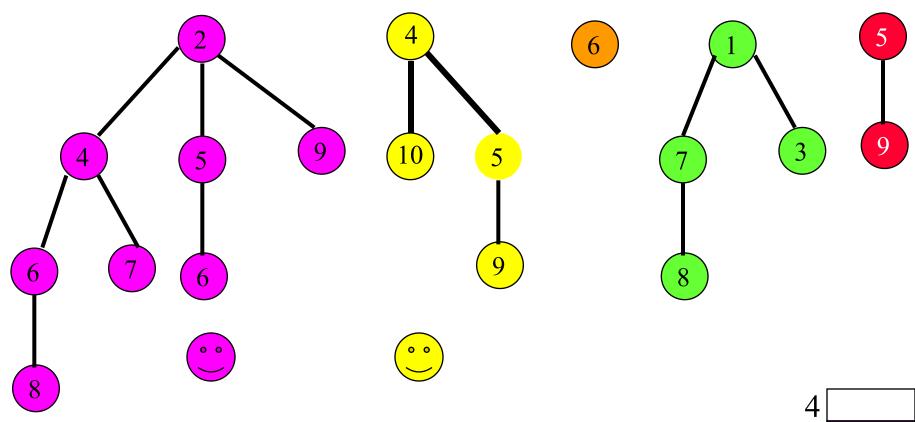
Update tree table.



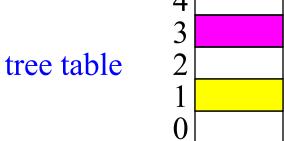


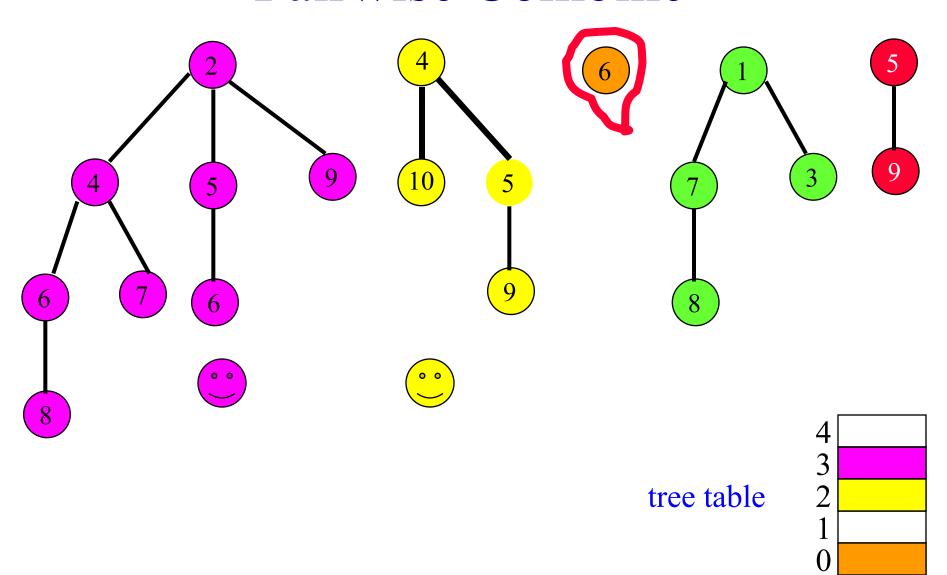
Combine 2 min trees of degree 1.

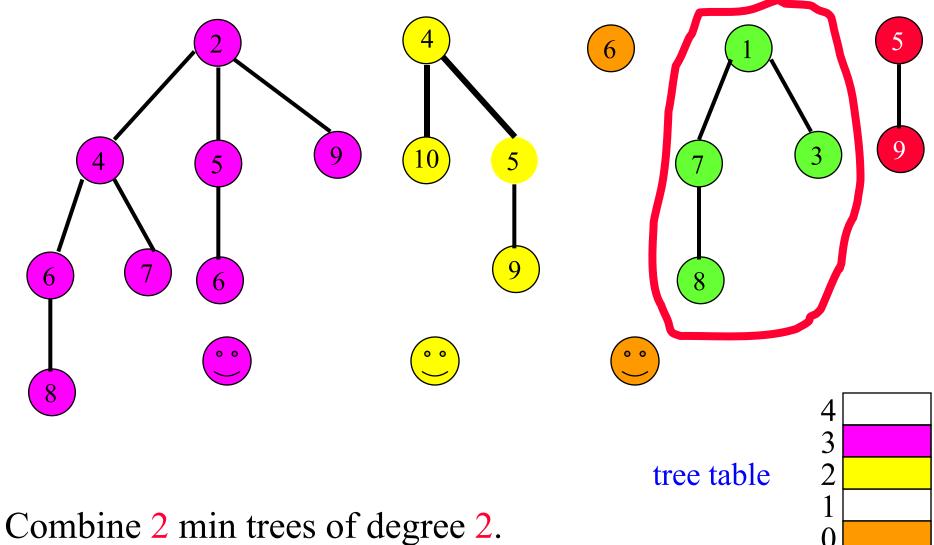
Make the one with larger root a subtree of other.



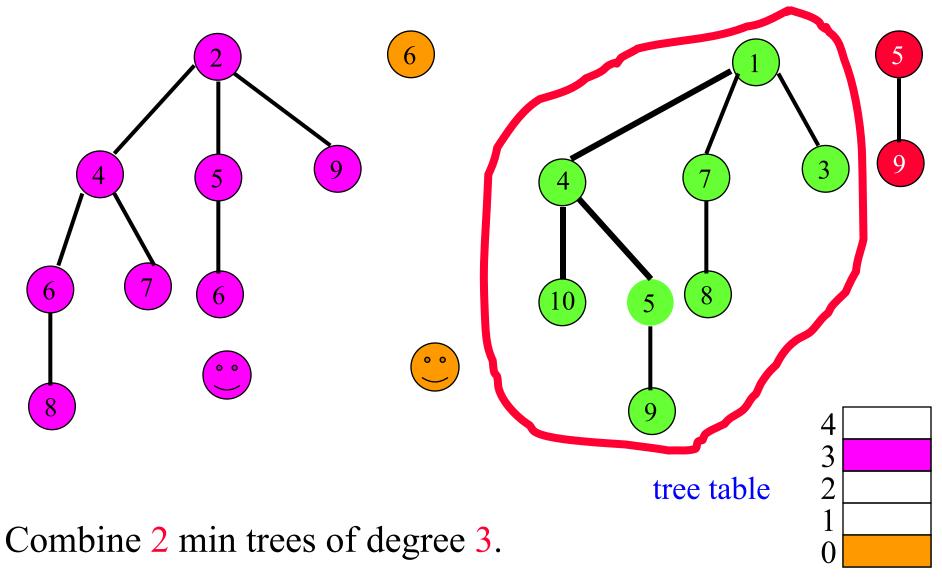
Update tree table.







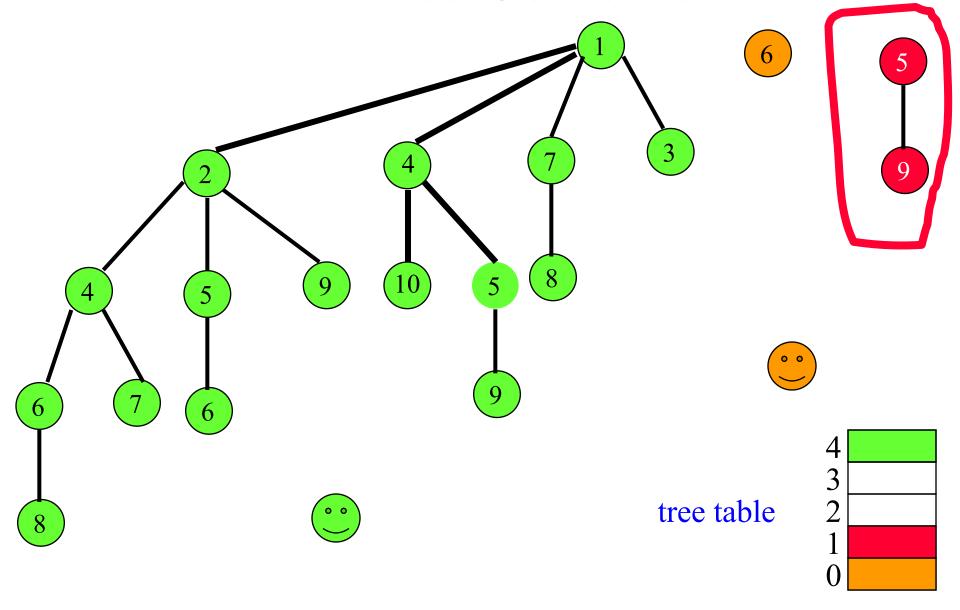
Make the one with larger root a subtree of other.

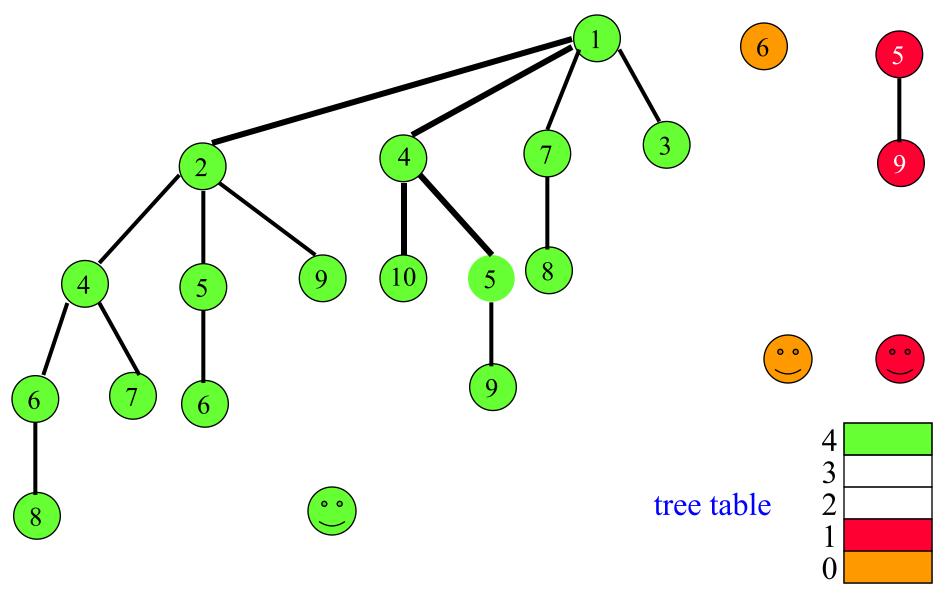


Make the one with larger root a subtree of other.

Pairwise Combine tree table

Update tree table.





Create circular list of remaining trees.

Complexity Of Remove Min

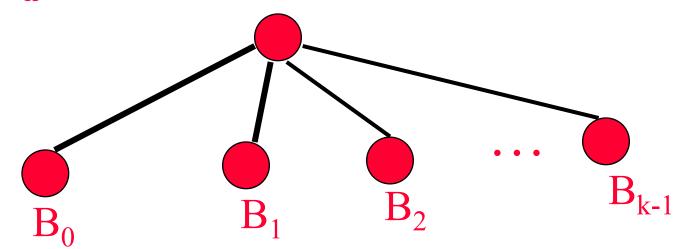
- Create and initialize tree table.
 - O(MaxDegree).
 - Done once only.
- Examine s min trees and pairwise combine.
 - O(s).
- Collect remaining trees from tree table, reset table entries to null, and set binomial heap pointer.
 - O(MaxDegree).
- Overall complexity of remove min.
 - O(MaxDegree + s).

Binomial Trees

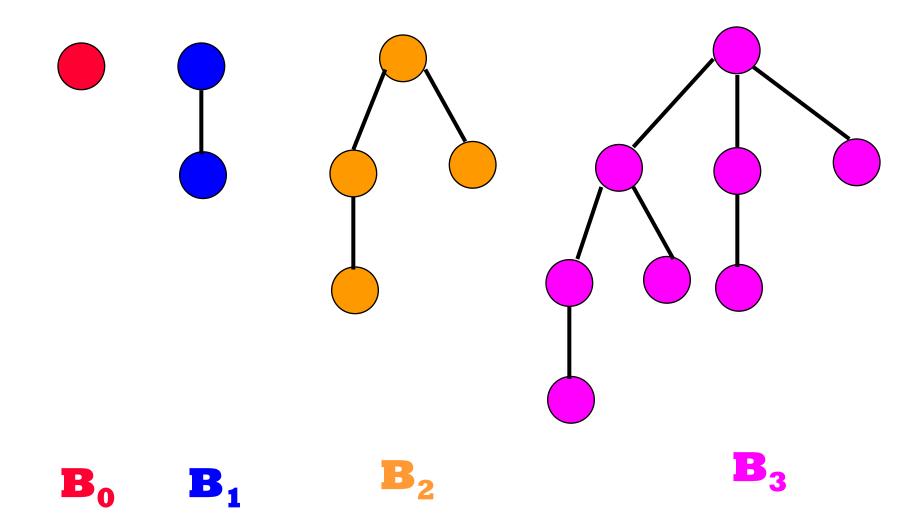
• B_k is degree k binomial tree.

$$B_0$$

• B_k , k > 0, is:



Examples

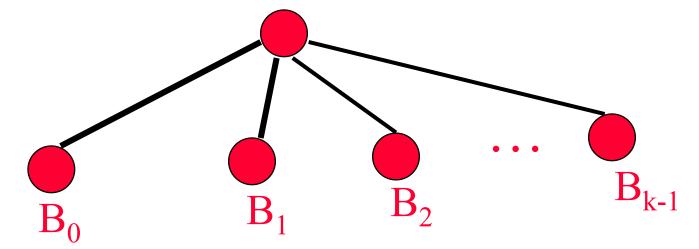


Number Of Nodes In B_k

• N_k = number of nodes in B_k .

$$B_0 = 1$$

• B_k , k > 0, is:

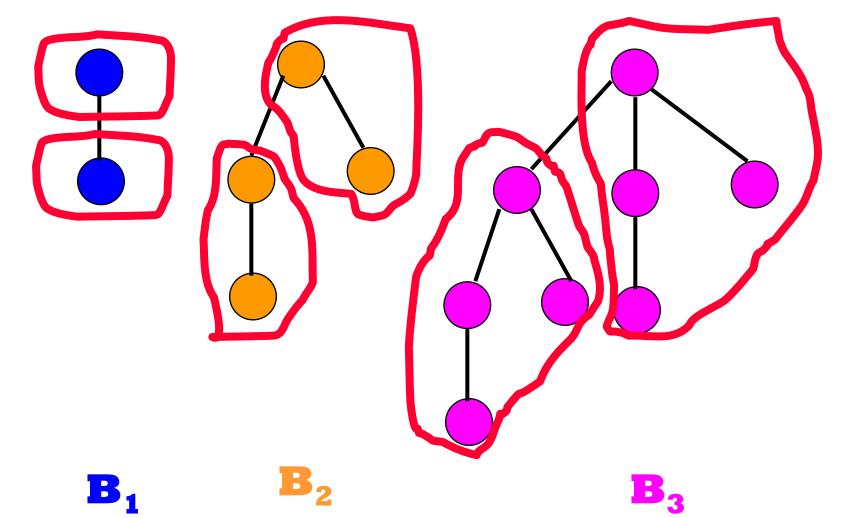


•
$$N_k = N_0 + N_1 + N_2 + ... + N_{k-1} + 1$$

= 2^k .

Equivalent Definition

- B_k , k > 0, is two B_{k-1} s.
- One of these is a subtree of the other.



N_k And MaxDegree

- $N_0 = 1$
- $N_k = 2N_{k-1}$ $= 2^k.$
- If we start with zero elements and perform operations as described, then all trees in all binomial heaps are binomial trees.
- So, MaxDegree = O(log n).