Fibonacci Heaps

Actual Amortized
Insert O(1) O(1)
Remove min (or max)|O(n) O(log n)
Meld O(1) O(1)
Remove O(n) O(log n)
Decrease key (or O(n) O(1)
Increase)

Analysis

* FibonacciAnalysis.ppt
* Video

= www.cise.ufl.edu/~sahni/cop5536; Internet
Lectures; not registered

= COP5536 FHA.rm

Single Source All Destinations

Shortest Paths
a 2 N 3 L)
3
16 Q\@ 1
6 7 4 10
(2/ 5 & 3 U

14

Greedy Single Source All Destinations

Known as Dijkstra’s algorithm.

Let d(1) be the length of a shortest one edge
extension of an already generated shortest path,
the one edge extension ends at vertex 1.

The next shortest path 1s to an as yet unreached
vertex for which the d() value 1s least.

After the next shortest path 1s generated, some
d() values are updated (decreased).

Greedy Single Source All Destinations

.
>

8
2
O . ©\3© 1
T 4 10
o= 0 >

Operations On d()

Remove min.

= Done O(n) times, where n 1s the number of vertices in
the graph.

Decrease d().

= Done O(e) times, where ¢ 1s the number of edges 1n
the graph.

Array.

= O(n?) overall complexity.
Min heap.

" O(nlog n + elog n) overall complexity.
Fibonacci heap.

* O(nlog n + ¢) overall complexity.

Prim’s Min-Cost Spanning Tree
Algorithm

o Array.

= O(n?) overall complexity.
* Min heap.

" O(nlog n + elog n) overall complexity.
 Fibonacci heap.

* O(nlog n + e) overall complexity.

Min Fibonacci Heap

e Collection of min trees.
 The min trees need not be Binomial trees.

Node Structure cfe—en—m—m—uh

Degree, Child, Data

Left and Right Sibling
= Used for circular doubly linked list of siblings.

Parent
= Pointer to parent node.

ChildCut

= True 1f node has lost a child since 1t became a child
of 1ts current parent.

= Set to false by remove min, which is the only
operation that makes one node a child of another.

= Undefined for a root node.

A

Fibonacci Heap Representatiy

<1

lllllllllllllllll

4
. G 7
L
Em Em &
L 4
L
L4 4
L 4
L 4 0.
llllllll
..... S .
L 4 L 4
L L 4
'S
Z LN ' € e
?
0' &
*
v III" ' “
‘0
*
*
b,y
]
7 "
[4 L 4
LN NN .‘ *
["
", Sppgunut®
« K
&
. "
Sgpunt®

* Degree, Parent and ChildCut fields not shown.

Remove(theNode)

 theNode points to the Fibonacci heap node
that contains the element that 1s to be
removed.

» theNode points to min element => do a
remove min.

* In this case, complexity 1s the same as that for
remove min.

Remove(theNode)

» theNode points to an element other than the min
clement.
= Remove theNode from its doubly linked sibling list.
= Change parent’s child pointer 1f necessary.
= Set parent field of theNode’s children to null.

= Combine top-level list and children list of theNode; do not
pairwise combine equal degree trees.

= Free theNode.

 In this case, actual complexity 1s O(log n) (assuming
theNode has O(log n) children).

Remove(theNode)

oK
[o

Remove theNode from 1ts doubly linked sibling list.

Remove(theNode)

O,

:

Combine top-level list and children of theNode setting
parent pointers of the children of theNode to null.

L

DecreaseKey(theNode, theAmount)

oK
[o

If theNode 1s not a root and new key < parent
key, remove subtree rooted at theNode from 1ts
doubly linked sibling list.

Insert into top-level list.

DecreaseKey(theNode theAmount

Update heap pointer if necessary

Cascading Cut

When theNode 1s cut out of its sibling list in a
remove or decrease key operation, follow path
from parent of theNode to the root.

Encountered nodes (other than root) with
ChildCut = true are cut from their sibling lists
and 1nserted into top-level list.

Stop at first node with ChildCut = false.
For this node, set ChildCut = true.

Cascading Cut Example

theNode

Cascading Cut Example

(z\% eeeﬂ
o 0 o

o

Cascading Cut Example

4N ¢
&eeé
<

/ﬁ

Actual complexity of cascading cut 1s O(h) = O(n).

