
Fibonacci Heaps

 Actual  Amortized 
Insert  O(1) O(1) 

Remove min (or max) O(n) O(log n) 

Meld O(1) O(1) 

Remove O(n) O(log n) 

Decrease key (or 
increase) 

O(n) O(1) 
 

 



Analysis

• FibonacciAnalysis.ppt
• Video

§ www.cise.ufl.edu/~sahni/cop5536; Internet 
Lectures; not registered

§ COP5536_FHA.rm
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Greedy Single Source All Destinations

• Known as Dijkstra’s algorithm.
• Let d(i) be the length of a shortest one edge 

extension of an already generated shortest path, 
the one edge extension ends at vertex i.

• The next shortest path is to an as yet unreached 
vertex for which the d() value is least.

• After the next shortest path is generated, some 
d() values are updated (decreased).



Greedy Single Source All Destinations
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Operations On d()
• Remove min.

§ Done O(n) times, where n is the number of vertices in 
the graph.

• Decrease d().
§ Done O(e) times, where e is the number of edges in 

the graph.
• Array.

§ O(n2) overall complexity.
• Min heap.

§ O(nlog n + elog n) overall complexity.
• Fibonacci heap.

§ O(nlog n + e) overall complexity.



Prim’s Min-Cost Spanning Tree 
Algorithm

• Array.
§ O(n2) overall complexity.

• Min heap.
§ O(nlog n + elog n) overall complexity.

• Fibonacci heap.
§ O(nlog n + e) overall complexity.



Min Fibonacci Heap

• Collection of min trees.
• The min trees need not be Binomial trees.



Node Structure
• Degree, Child, Data
• Left and Right Sibling

§ Used for circular doubly linked list of siblings.
• Parent

§ Pointer to parent node.
• ChildCut

§ True if node has lost a child since it became a child 
of its current parent.

§ Set to false by remove min, which is the only 
operation that makes one node a child of another.

§ Undefined for a root node.



Fibonacci Heap Representation

• Degree, Parent and ChildCut fields not shown. 
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Remove(theNode)

• theNode points to the Fibonacci heap node 
that contains the element that is to be 
removed.

• theNode points to min element => do a 
remove min.
§ In this case, complexity is the same as that for 

remove min. 



Remove(theNode)

• theNode points to an element other than the min 
element. 
§ Remove theNode from its doubly linked sibling list.
§ Change parent’s child pointer if necessary.
§ Set parent field of theNode’s children to null.
§ Combine top-level list and children list of theNode; do not 

pairwise combine equal degree trees.
§ Free theNode.

• In this case, actual complexity is O(log n) (assuming 
theNode has O(log n) children).



Remove(theNode)

Remove theNode from its doubly linked sibling list.
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Remove(theNode)

Combine top-level list and children of theNode setting 
parent pointers of the children of theNode to null.
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Remove(theNode)

8

7 3

1

6

5 9

2

8

6 7

4

10

9

5 6

9

5



DecreaseKey(theNode, theAmount)

If theNode is not a root and new key < parent 
key, remove subtree rooted at theNode from its 
doubly linked sibling list.

Insert into top-level list.
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DecreaseKey(theNode, theAmount)
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Cascading Cut

• When theNode is cut out of its sibling list in a 
remove or decrease key operation, follow path 
from parent of theNode to the root.

• Encountered nodes (other than root) with 
ChildCut = true are cut from their sibling lists 
and inserted into top-level list.

• Stop at first node with ChildCut = false.
• For this node, set ChildCut = true.



Cascading Cut Example
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Cascading Cut Example
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Cascading Cut Example

8

7 3

1

6

5 9

2

6

7

4

6

9

9 8

T

F



Cascading Cut Example
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Cascading Cut Example
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Actual complexity of cascading cut is O(h) = O(n).


