B-Trees

» Large degree B-trees used to represent very
large dictionaries that reside on disk.

* Smaller degree B-trees used for internal-
memory dictionaries to overcome cache-miss
penalties.

B-Trees

Main Secondary
Memory Memory
(RAM) (disks)

X <— a pomter to some object

DISK - READ(x)
operations that access and/or modify the fields of x

DISK - WRITE(x)
others operations that access but do not modify the fields of x

AVL Trees

n = 2°Y= 10" (approx).
30 <= height <=43.

When the AVL tree resides on a disk, up to
43 disk access are made for a search.

This takes up to (approx) 4 seconds.
Not acceptable.

Red-Black Trees

n = 2"= 10" (approx).
30 <= height <= 60.

When the red-black tree resides on a disk,
up to 60 disk access are made for a search.

This takes up to (approx) 6 seconds.
Not acceptable.

A Disk Page

an AVL node

I

A Search Tree Node

m-way Search Trees

* Each node has up to m — | pairs and m children.

 m = 2 => binary search tree.

4-Way Search Tree

\4 v

k<10 10 < k < 30 30 <k <35 k> 35

Maximum # Of Pairs

Happens when all internal nodes are m-nodes.
Full degree m tree.
#ofnodes=1+m+m?>+m’+ ... +mh!

= (m"—1)/(m—1).

Each node has m — 1 pairs.

So, # of pairs = m" — 1.

Capacity Of m-Way Search Tree

8 *10°- 1

31 32%10" -1

127 1.28 * 10°- 1

Definition Of B-Tree

* Definition assumes external nodes
(extended m-way search tree).

* B-tree of order m.
" m-way search tree.
= Not empty => root has at least 2 children.

* Remaining internal nodes (if any) have at least
ce1l(m/2) children.

= External (or failure) nodes on same level.

2-3 And 2-3-4 Trees

* B-tree of order m.
" m-way search tree.
= Not empty => root has at least 2 children.

= Remaining internal nodes (if any) have at least
ce1l(m/2) children.

= External (or failure) nodes on same level.

e 2-3 tree 1s B-tree of order 3.
e 2-3-4 tree 1s B-tree of order 4.

B-Trees Of Order 5 And 2

* B-tree of order m.
" m-way search tree.
= Not empty => root has at least 2 children.

= Remaining internal nodes (if any) have at least
ce1l(m/2) children.

= External (or failure) nodes on same level.

» B-tree of order 5 1s 3-4-5 tree (root may be
2-node though).

» B-tree of order 2 1s full binary tree.

Minimum # Of Pairs

* n = # of pairs.
e # of external nodes = n + 1.

* Height = h => external nodes on level h + 1.

level # of nodes
| 1
2 >=2
3 >= 2*cel|
h+1 >= 2*cel

(m/2)
(m/2)b-1

n+ 1>=2*ceil(m/2)™!, h>=1

Minimum # Of Pairs

n+ 1>=2*ceil(m/2)™!, h>=1

« m=200.
height # of pairs
9 >= 199
3 >= 19,999
4 >=2*100-1
5 >=2*10%—1

h <=10g ceijm) [(n+1)/2] + 1

Choice Of m

e Worst-case search time.

= (time to fetch a node + time to search node) * height

search
time

50 400

* convention -
= Root of the B-tree 1s always in main memory.
= Any nodes that are passed as parameters must
already have had a DISK READ operation
performed on them.
* Operations :
= Searching a B-Tree.
= Creating an empty B-tree.
= Splitting a node 1n a B-tree.
* Inserting a key into a B-tree.

= Deleting a key from a B-tree.

Node Structure
ncyk,c,k,c,...k c,

* C.1s a pointer to a subtree.

* k.1s a dictionary pair(KEY).

Search
BT Search(x, k)
i<—0
while i<n and k> &k, [x]
do i<—i+1
if i<n and k=k_[x]
then return(x,i +1)
if leaf[x] then return NULL
else DISK-READ(C\[x])
return B-Tree-Search(C.[x],k)

* B-Tree-Created(T) :
= Algorithm
B-Tree-Create(T)
{ x < Allocate — Node()
Leaf[x] < TRUE
n(x] <0
DISK - WRITE(x)

root[T] «— x

J
= {ime - 0Q)

Insert

Insert 10?

Insert 18?7
15 20

Insertion into a full leaf triggers bottom-up node
splitting pass.

Split An Overtull Node

mcyk,c k,¢c,...k ¢
* C.1s a pointer to a subtree.

* k.1s a dictionary pair(KEY).

cell(m/2)-1 coky ¢, Ky €5 ... Keciim)-1 Ceeitmrz)-1

m-ce1l(m/2) € jim2) Keeitmzy+1 Ceeit(my+1 -+ - Kin €

* K.iimn) Plus pointer to new node is inserted in
parent.

Insert

N

e Insert a pair with key = 2.

* New pair goes into a 3-node.

Insert Into A Leaf 3-node

* Insert new pair so that the 3 keys are 1n
ascending order.

Q29

« Split overtflowed node around middle key.

B

O C)

 Insert middle key and pointer to new node
into parent.

Insert

N

- Insert a pair with key = 2.

e Insert a pair with key = 2 plus a pointer into parent.

N

- Now, insert a pair with key = 18.

Insert Into A Leaf 3-node

* Insert new pair so that the 3 keys are in
ascending order.

 Split the overflowed node.

 Insert middle key and pointer to new node
into parent.

* Insert a pair with key = 18.

* Insert a pair with key = 17 plus a pointer into parent.

* Insert a pair with key = 17 plus a pointer into parent.

* Now, insert a pair with key = 7.

* Insert a pair with key = 6 plus a pointer into parent.

* Insert a pair with key = 4 plus a pointer into parent.

Insert

B

G0_40

* Insert a pair with key = 8 plus a pointer into parent.

 There 1s no parent. So, create a new root.

Insert

b6 d0

* Height increases by 1.

G0_40

» Btree::InsertNode(Key k, Element ¢)
{
bool overflow = Insert(root, k, €);
if (overflow)
<Key, Node*> newpair= split(root);
root = new Node(root, newpair);

return;

* Bool Insert(node* x, Key k, Element ¢)
{
if (leaf(x))
insertLeaf(x, k, e);
if (s1ze(x) > m-1) return true;
else return false;:
1dx = keySearch(x, k);
bool overflow = Insert(x->C[1dx], k, €);

if (overtlow)
<Key, Node*> newpair = split(x->C[1dx]);
InsertPair(x, newpair);
1f(size(x) > m-1)
return true;

else return false;

 Exercises: P609-3

