Advanced Data Structures

Succinct Data Structures

Arbitrary Ordered Trees

Use parenthesis notation
Represent the tree

As the binary string g«())())((())oo»

traverse tree as “(“ for node, then subtrees,
then 14) o4

2 Bits per node

Space for trees

* The space used by the tree structure could be
the dominating factor in some applications.

— Eg. More than half of the space used by a standard
suffix tree representation is used to store the tree
structure.

* Standard representations of trees support very
few operations. To support other useful queries,
they require a large amount of extra space.

Standard representation

Binary tree: each node has two /
pointers to its left and right children

/ | X / |\
An n-node tree takes x |\ < | x L
2n pointers or 2n Ig n bits

X | X X | X

Supports finding left child or right child of a node (in constant
time).

For each extra operation (eg. parent, subtree size) we have to
pay, roughly, an additional n Ig n bits.

Can we improve the space bound?

* There are less than 22" distinct binary trees on
n nodes.

* 2n bits are enough to distinguish between any
two different binary trees.

 Can we represent an n node binary tree using
2n bits?

Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1
and external nodes witha 0

Write the labels in level order

11110110100100000 [L]

One can reconstruct the tree from this sequence
An n node binary tree can be represented in 2n+1 bits.

What about the operations?

Heap-like notation for a binary tree

left child(x) = [2x]
right child(x) = [2x+1]

parent(x) = [x/2 |]

X — x:#1’s up to x

X — x: position of x-th 1 14 15 16 17

1234 56 7 8

1111011010010 0O0O0O

1234567891011121314151617

Rank/Select on a bit vector

Given a bit vector B 12345
B:01101

rank,(i) = # 1’s up to positioniin B

select,(i) = position of the i-th 1in B
(similarly rank, and select,)

rank,(5) =3
Given a bit vector of length n, by storing select,(4) =9
an additional o(n)-bit structure, we can rank,(5) = 2
support all four operations in constant time. selecty(4) =7

An important substructure in most succinct data structures.

Have been implemented.

Binary tree representation

* A binary tree on n nodes can be represented
using 2n+o(n) bits to support:

— parent
— left child
— right child

In constant time.

*11110111001000000

10

Heap-like Notation for a Binary Tree

Add external nodes

Enumerate level by level 2

1234 567 8
Storevector11110111001 000000 length2n+1

123456789012 34567

Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:

- parent(x) = a X
- first child(x) = b

- next sibling(x) = c

Other useful operations:
- degree(x) = 2
- subtree size(x) = 4

Ordered trees

A binary tree representation taking 2n+o(n) bits that supports
parent, left child and right child operations in constant time.

There is a one-to-one correspondence between binary trees
and rooted ordered trees

Gives an ordered tree representation taking 2n+o(n) bits that
supports first child, next sibling (but not parent) operations in
constant time.

We will now consider ordered tree representations that
support more operations.

Level-order degree sequence

Write the degree sequence in level order

320301020000

But, this still requires n Ig n bits

Solution: write them in unary

11101100111001001100000

Takes 2n-1 bits

A tree is uniquely determined by its degree sequence

Supporting operations

Add a dummy root so that each node has a corresponding 1

10111011001110010012100000
1 234 56 /789 10 1112

node k corresponds to the
k-th 1 in the bit sequence

parent(k) = # 0’s up to the k-th 1

children of k are stored after the k-th O

supports: parent, i-th child, degree

(using rank and select)

10 11 12

