Advanced Data Structures

Succinct Data Structures



Arbitrary Ordered Trees

Use parenthesis notation
Represent the tree

As the binary string g«())())((())oo»

traverse tree as “( “ for node, then subtrees,
then 14 ) o4

2 Bits per node



Space for trees

* The space used by the tree structure could be
the dominating factor in some applications.

— Eg. More than half of the space used by a standard
suffix tree representation is used to store the tree
structure.

* Standard representations of trees support very
few operations. To support other useful queries,
they require a large amount of extra space.



Standard representation

Binary tree: each node has two /
pointers to its left and right children

/ | X / |\
An n-node tree takes x |\ < | x L
2n pointers or 2n Ig n bits

X | X X | X

Supports finding left child or right child of a node (in constant
time).

For each extra operation (eg. parent, subtree size) we have to
pay, roughly, an additional n Ig n bits.



Can we improve the space bound?

* There are less than 22" distinct binary trees on
n nodes.

* 2n bits are enough to distinguish between any
two different binary trees.

 Can we represent an n node binary tree using
2n bits?



Heap-like notation for a binary tree

Add external nodes

Label internal nodes with a 1
and external nodes witha 0

Write the labels in level order

11110110100100000 [ L]

One can reconstruct the tree from this sequence
An n node binary tree can be represented in 2n+1 bits.

What about the operations?



Heap-like notation for a binary tree

left child(x) = [2x]
right child(x) = [2x+1]

parent(x) = [ x/2 |]

X — x:#1’s up to x

X — x: position of x-th 1 14 15 16 17

1234 56 7 8

1111011010010 0O0O0O

1234567891011121314151617



Rank/Select on a bit vector

Given a bit vector B 12345
B:01101

rank,(i) = # 1’s up to positioniin B

select,(i) = position of the i-th 1in B
(similarly rank, and select,)

rank,(5) =3
Given a bit vector of length n, by storing select,(4) =9
an additional o(n)-bit structure, we can rank,(5) = 2
support all four operations in constant time. selecty(4) =7

An important substructure in most succinct data structures.

Have been implemented.



Binary tree representation

* A binary tree on n nodes can be represented
using 2n+o(n) bits to support:

— parent
— left child
— right child

In constant time.



*11110111001000000

10



Heap-like Notation for a Binary Tree

Add external nodes

Enumerate level by level 2

1234 567 8
Storevector11110111001 000000 length2n+1

123456789012 34567



Ordered trees

A rooted ordered tree (on n nodes):

Navigational operations:

- parent(x) = a X
- first child(x) = b

- next sibling(x) = c

Other useful operations:
- degree(x) = 2
- subtree size(x) = 4




Ordered trees

A binary tree representation taking 2n+o(n) bits that supports
parent, left child and right child operations in constant time.

There is a one-to-one correspondence between binary trees
and rooted ordered trees

Gives an ordered tree representation taking 2n+o(n) bits that
supports first child, next sibling (but not parent) operations in
constant time.

We will now consider ordered tree representations that
support more operations.



Level-order degree sequence

Write the degree sequence in level order

320301020000

But, this still requires n Ig n bits

Solution: write them in unary

11101100111001001100000

Takes 2n-1 bits

A tree is uniquely determined by its degree sequence




Supporting operations

Add a dummy root so that each node has a corresponding 1

10111011001110010012100000
1 234 56 /789 10 1112

node k corresponds to the
k-th 1 in the bit sequence

parent(k) = # 0’s up to the k-th 1

children of k are stored after the k-th O

supports: parent, i-th child, degree

(using rank and select)

10 11 12



