
BACKWARD SEARCH 
FM-INDEX 

(FULL-TEXT INDEX IN MINUTE SPACE) 



¢  Combine Text compression with indexing 
 (discard original text). 

¢  Count and locate P by looking at only a small portion of 
the compressed text. 

¢  Do it efficiently: 
�  Time: O(p) 
�  Space: O(n Hk(T)) + o(n) 
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¢  Exploit the relationship between the Burrows-Wheeler 
Transform and the Suffix Array data structure. 

¢  Compressed suffix array that encapsulates both the 
compressed text and the full-text indexing information. 

¢  Supports two basic operations: 
�  Count – return number of occurrences of P in T. 
�  Locate – find all positions of P in T. 
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mississippi# 
ississippi#m 
ssissippi#mi  
sissippi#mis 

sippi#missis 
ippi#mississ 
ppi#mississi 
pi#mississip 
i#mississipp 
#mississippi 

ssippi#missi 
issippi#miss Sort the rows 

p  i#mississi  p 
p  pi#mississ  i 
s  ippi#missi  s 
s  issippi#mi  s 
s  sippi#miss  i 
s  sissippi#m  i 

i  ssippi#mis  s 

m  ississippi  # 
i  ssissippi#  m 

i  ppi#missis  s  
i  #mississip  p 
#  mississipp  i 

L F •  Every column is a permutation of T. 

•  Given row i, char L[i] precedes F[i] in 

original T. 

•  Consecutive char’s in L are adjacent 

to similar strings in T. 

•  Therefore – L usually contains long 

runs of identical char’s. 
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1.  Find F by sorting L   
2.  First char of T?  

      m 

3.  Find m in L 
4.  L[i] precedes F[i] in T. Therefore we get 

 mi 
5.  How do we choose the correct i in L? 

�  The i’s are in the same order in L and F 
�  As are the rest of the char’s 

6.  i is followed by s:  mis 
7.  And so on…. 
 

F 

Reminder:  Recovering T from L 

# 
I 
I 
I 
I 
m 
p 
p 
s 
s 
s 
s 

 

I 
P 
s 
s 
m 
# 
p 
I 
s 
s 
I 
I 

 

L 
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¢  Backward-search algorithm 
¢  Uses only L (output of BWT) 
¢  Relies on 2 structures: 

�  C[1,…,|Σ|] :    C[c] contains  the total number of text chars in T which are 
alphabetically smaller than c  (including repetitions of chars) 

�  Occ(c,q): number of occurrences of char c in prefix L[1,q] 
 

Example 
 
•  C[ ] for T = mississippi# 

•  occ(s, 5) = 2 
•  occ(s,12) = 4 
 

     
         Occ     Rank 

8 6 5 1 

≡

i    m    p    s  
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¢  Works in p iterations,  from p down to 1 

¢  Remember that the BWT matrix rows = sorted suffixes of T 
�  All suffixes prefixed by pattern P, occupy a continuous set of rows 
�  This set of rows has starting position First 
�  and ending position Last 
�  So, (Last – First +1) gives total pattern occurrences 

¢  At the end of the i-th phase,  First points to the first row prefixed by P[i,p], 
and Last points to the last row prefiex by P[i,p]. 

c = ‘m’ 
i = 1 

P = msi msi i = 3 
c = ‘i’ 

i = 2 
c = ‘s’ msi msi 
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fr 
occ=2 
[lr-fr+1] 

SUBSTRING SEARCH IN T  (COUNT THE PATTERN OCCURRENCES) 

#mississipp 
i#mississip 
ippi#missis 
issippi#mis 
ississippi# 
mississippi 
pi#mississi 
ppi#mississ 
sippi#missi 
sissippi#mi 
ssippi#miss 
ssissippi#m 

i 
p 
s 
s 
m 
# 
p 
i 
s 
s 
i 
i 

L 

mississippi 

# 0 
i 1 
m 5 
p 6 
S 8 

C 
P = si 

First step 

fr 

lr    Inductive step: Given fr,lr for P[j+1,p] 

❴  Take c=P[j] 

P[ j ]  

Find the first c in L[fr, lr] 

          Find the last c in L[fr, lr] 

�  L-to-F mapping of these chars 

} 
lr 

rows prefixed 
by char “i” s 

s 

unknown 

Occ() is enough 8 



8 6 5 1 
i    m    p    s  

C[ ] =  

¢  P = pssi 
 

�  i  =  

�  c =  

�  First = 

�  Last =  

�  (Last – First + 1) =   

4 

‘i’ 

C[‘i’] + 1 = 2  

C[‘i’ + 1] = C[‘m’] = 5  

4 

First 

Last 
‘s’ 

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9  

C[‘s’] + Occ(‘s’,5)  = 8+2 = 10 

2 

3 

9 
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8 6 5 1 
i    m    p    s  

C[ ] =  

¢  P = pssi 
 

�  i  =  

�  c =  

�  First = 

�  Last =  

�  (Last – First + 1) =   

First 
Last 

‘s’ 

C[‘s’] + Occ(‘s’,1) +1 = 8+0+1 = 9  

C[‘s’] + Occ(‘s’,5)  = 8+2 = 10 

2 

3 

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11  

C[‘s’] + Occ(‘s’,10)  = 8+4 = 12 

2 

10 
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8 6 5 1 
i    m    p    s  

C[ ] =  

¢  P = pssi 
 

�  i  =  

�  c =  

�  First = 

�  Last =  

�  (Last – First + 1) =   First 
Last 

‘s’ 

2 

C[‘s’] + Occ(‘s’,8) +1 = 8+2+1 = 11  

C[‘s’] + Occ(‘s’,10)  = 8+4 = 12 

2 

‘p’ 

C[‘p’] + Occ(‘p’,10) +1 = 6+2+1 = 9  

C[‘p’] + Occ(‘p’,12)  = 6+2 = 8 

0 

1 
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ASSIGNMENT 2 
¢ Create a simple search program that implements

 BWT backward search, which can efficiently
 search a BWT encoded file.  

¢ The program also has the capability to encode a
 text file to a BWT-coded file 

¢ The program also has the capability to decode
 the BWT encoded file back to its original file in
 a lossless manner.  

¢ Text is delimited by new lines. 
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ASSIGNMENT 2 
¢ Your C/C++ program, called bwtsearch 

�  Bwtsearch -e fileToBeEncoded outputFile 
�  Bwtsearch -d fileToBeDecoded  

¢ standard output 
�  Bwtsearch -s fileEncoded “queryString” 

¢ Output all the lines contain “queryString” 
¢ Highlight “queryString” if capable 
¢ The search results need to be sorted according to

 their line numbers.   
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ASSIGNMENT 2 
¢ The first four bytes (an int) of each given BWT encoded

 file are reserved for storing the position (zero-based) of
 the BWT array that contains the last character. As a
 result, a given BWT encoded file in this assignment is 4
 bytes larger than its original text file.  

¢ For example, if the original text file contains only
 banana$, then the BWT encoded file will be 11 bytes
 long. The first four bytes contain the integer 4 and the
 rest of the bytes contain annb$aa. i.e., The last character
 is at position 4 (= the fifth character since it is zero
-based).  
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ASSIGNMENT 2 
¢ Since each line is delimited by a newline

 character, your output will naturally be
 displayed as one line (ending with a '\n') for
 each match. No line will be output more than
 once, i.e., if there are multiple matches in one
 line, that line will only be output once.  
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ASSIGNMENT 2 
¢ Your solution can write out one external index file. 
¢ You may assume that the index file will not be deleted

 during all the tests for a given BWT file, and all the
 test BWT files are uniquely named. Therefore, to save
 time, you only need to generate the index file when it
 does not exist yet. 
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LECTURE 5 
¢  Compressed suffix array / BWT 



Slides modified from the original Makinen & Navarro’s 



A BIG PATRICIA TRIE / SUFFIX TRIE 

¢  Given a large text file; treat it as bit vector 
¢  Construct a trie with leaves pointing to unique locations in text

 that “match” path in trie (paths must start at character
 boundaries) 

¢  Skip the nodes where there is no branching 

1 0 0 0 1 1 

0 1 

0 

1 



ARBITRARY ORDERED TREES 
¢  Use parenthesis notation 
¢  Represent the tree 

¢  As the binary string (((())())((())()())): traverse tree as
 “(“ for node, then subtrees, then “)” 

¢  2 Bits per node 



SPACE FOR TREES 
¢ The space used by the tree structure  could be the

 dominating factor in some applications. 

�  Eg. More than half of the space used by   a standard
 suffix tree representation is used to store the tree
 structure. 

¢ Standard representations of trees support very few
 operations. To support other useful queries, they
 require a large amount of extra space. 



STANDARD REPRESENTATION 
Binary tree: each node has two 
pointers to its left and right children 
 
An n-node tree takes 
2n pointers or 2n lg n bits 
 
 
Supports finding left child or right child of a node (in

 constant time). 
 
For each extra operation (eg. parent, subtree size) we

 have to pay, roughly, an additional n lg n bits. 

x 

x x x x 

x x x x 



CAN WE IMPROVE THE SPACE
 BOUND? 
¢ There are less than 22n distinct binary trees on n

 nodes. 

¢  2n bits are enough to distinguish between any two
 different binary trees. 

¢ Can we represent an n node binary tree using 2n
 bits? 



HEAP-LIKE NOTATION FOR A BINARY
 TREE 
  1 

1 1 1 

1 1 

1 

1 

0 0 0 0 

0 0 0 0 

0 

Add external nodes 

Label internal nodes with a 1 
and external nodes with a 0 

Write the labels in level order 

1 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 0 

One can reconstruct the tree from this sequence 

An n node binary tree can be represented in 2n+1 bits. 

What about the operations? 



HEAP-LIKE NOTATION FOR A BINARY
 TREE 
  

1  1  1  1  0  1  1  0  1  0   0   1   0  0   0   0   0  

1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17  

8 

5 7 6 4 

3 2 

1 

9 

17 16 15 14 

13 12 11 10 

1 

8 7 

6 5 4 

3 2 

1  2  3  4      5  6      7           8                        

parent(x) = [⌊x/2⌋] 

left child(x) = [2x] 

right child(x) = [2x+1] 

x → x: # 1’s up to x 
 
x → x: position of x-th 1 



RANK/SELECT ON A BIT VECTOR 
Given a bit vector B 

rank1(i) = # 1’s up to position i in B 
 
select1(i) = position of the i-th 1 in B  

     (similarly rank0 and select0) 

    1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
B: 0  1  1  0  1  0  0  0  1  1   0  1   1   1   1   

rank1(5) = 3 
select1(4) = 9  
rank0(5) = 2 
select0(4) = 7  

Given a bit vector of length n, by storing 
an additional o(n)-bit structure, we can 
support all four operations in constant time. 

An important substructure in most succinct data structures. 
 
Have been implemented. 



BINARY TREE REPRESENTATION 
¢ A binary tree on n nodes can be represented using

 2n+o(n) bits to  support: 

�  parent 
�  left child 
�  right child  

     
     in constant time. 



¢ 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0  
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HEAP-LIKE NOTATION FOR A BINARY TREE 

 

Add external nodes 
Enumerate level by level 
 
 
 
 
 
                  
Store vector 1 1 1 1 0 1 1 1 0 0 1 0 00000 length2n+1 
            1 2 3 4  5 6 7 8 9 0 1 2 34567 

1 

1 1 

1 1 1 

1 
1 

0 0 

0 

0 

0 

0 

0 0 

0 

1  2 3 4     5  6  7        8 

1 

2 3 

4 5 6 

7 8 



ORDERED TREES 
A rooted ordered tree (on n nodes): 
 
Navigational operations: 
- parent(x) = a 
- first child(x) = b 
- next sibling(x) = c 
 
Other useful operations: 
- degree(x) = 2 
- subtree size(x) = 4 

x 

a 

b 

c 



ORDERED TREES 
¢ A binary tree representation taking 2n+o(n) bits that

 supports parent, left child and right child operations
 in constant time. 

¢ There is a one-to-one correspondence between
 binary trees (on n nodes) and rooted ordered trees
 (on n+1 nodes). 

¢ Gives an ordered tree representation taking
 2n+o(n) bits that supports first child, next sibling
 (but not parent) operations in constant time. 

¢ We will now consider ordered tree representations
 that support more operations. 



LEVEL-ORDER DEGREE SEQUENCE 
    

3  2  0  3  0  1  0  2  0  0  0  0 

But, this still requires n lg n bits 

    Solution: write them in unary                        
 
    1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0  
 
    Takes 2n-1 bits 

Write the degree sequence in level order 3 

2 0 3 

0 0 

0 0 0 

0 1 2 

A tree is uniquely determined by its degree sequence 



SUPPORTING OPERATIONS 
  

1 0 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 0 
1    2 3 4    5 6      7 8 9      10    11 12 

Add a dummy root so that each node has a corresponding 1      

1 

2 3 4 

5 6 7 8 9 

10 11 12 

parent(k) = # 0’s up to the k-th 1 

children of k are stored after the k-th 0 

supports: parent, i-th child, degree 
 
(using rank and select) 

node k corresponds to the  
k-th 1 in the bit sequence 



SIMPLE FM-INDEX 
¢ Construct the Burrows-Wheeler-transformed 

text bwt(T) [BW94]. 
¢ From bwt(T) it is possible to construct the 

suffix array sa(T) of T in linear time. 
¢ Instead of constructing the whole sa(T), one 

can add small data structures besides bwt(T) to 
simulate a search from sa(T).  



BURROWS-WHEELER 
TRANSFORMATION 
¢ Construct a matrix M that contains as rows 

all rotations of T. 
¢ Sort the rows in the lexicographic order. 
¢ Let L be the last column and F be the first 

column.  
¢ bwt(T)=L associated with the row number 

of T in the sorted M. 



EXAMPLE 

pos  123456789 
T  = kalevala# 

1:9 #kalevala 
2:8 a#kaleval 
3:6 ala#kalev 
4:2 alevala#k 
5:4 evala#kal 
6:1 kalevala# 
7:7 la#kaleva 
8:3 levala#ka 
9:5 vala#kale 

==> 
L = alvkl#aae, row 6 

Exercise: Given L and the row  
number, we know how to compute T. 
What about sa(T)? 

sa M L F 



1 a 
2 l 
3 v 
4 k 
5 l 
6 # 
7 a 
8 a 
9 e 

# 
a 
a  
a  
e 
k 
l  
l  
v 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

# 

9 

a 

8 

l 

7 

a 

6 

v 

5 

e 

4 

l 

3 

a 

2 

1 

k 

sort 
sa(T) 

T-1= 

L F 

… 

a 
l 
v 
k 
l 
# 
a 
a 
e 

M 
L 

LF[i]  2 7 9 6 8  1 3 4 5 
i    1 2 3 4 5 6 7 8 9 

a l e v a  l  a 

k a l e v a  l   
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IMPLICIT LF[I] 
¢ Ferragina and Manzini (2000) noticed the 

following connection: 
¢ LF[i]=CT[L[i]]+rankL[i](L,i) 
� CT[c] : 

¢ amount of letters 0,1,...,c-1 in L=bwt(T) 
� rankc(L,i) :  

¢ amount of letters c in the prefix L[1,i] 



RANK/SELECT 

001001001101 
001112223445 rank1(L,i) 

L 

select1(L,j) 3 6 9 10 12 



LF[i]  2 7 9 6 8  1 3 4 5 
i    1 2 3 4 5 6 7 8 9 LF[7]=CT[a]+ranka(L,7) 

        =1+2=3 

1 a 
2 l 
3 v 
4 k 
5 l 
6 # 
7 a 
8 a 
9 e 

# 
a 
a  
a  
e 
k 
l  
l  
v 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

# 

9 

a 

8 

l 

7 

a 

6 

v 

5 

e 

4 

l 

3 

a 

2 

1 

k 

sort 
sa(T) 

T-1= 

L F 

… 

a 
l 
v 
k 
l 
# 
a 
a 
e 

M 
L 
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RECALL: BACKWARD SEARCH ON 
BWT(T) 

¢ Observation: If [i,j] is the range of rows of M 
that start with string X, then the range [i’,j’] 
containing cX can be computed as 
 
     i’ := CT[c]+rankc(L,i-1)+1, 
     j’ := CT[c]+rankc(L,j). 

 



BACKWARD SEARCH ON 
BWT(T)... 
¢ Array CT[1,σ] takes O(σ log |T|) bits. 
¢ L=Bwt(T) takes O(|T| log σ) bits. 
¢ Assuming rankc(L,i) can be computed in 

constant time for each (c,i), the algorithm takes 
O(|P|) time to count the occurrences of P in T. 



RUN-LENGTH FM-INDEX 

¢ We make the following changes to the previous FM-
index variant: 
- L=Bwt(T) is replaced by a sequence S[1,n’] and 
two bit-vectors B[1,|T|] and B’[1,|T|], 
- Cumulative array CT[1,c] is replaced by  
  CS[1,c], 
- wavelet tree is build on S, and 
- some formulas are changed. 



RUN-LENGTH FM-INDEX... 

c 
c 
c 
a 
a 
g 
g 
a 
t 
t 

L 
1 
0 
0 
1 
0 
1 
0 
1 
1 
0 

B 
c 
a 
g 
a 
t 

S 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 

B’ 
a 
a 
a 
c 
c 
c 
g 
g 
t 
t 

F 
c 
c 
c 
a 
a 
g 
g 
a 
t 
t 

L 



CHANGES TO FORMULAS 

¢ Recall that we need to compute  
CT[c]+rankc(L,i) in the backward search.  

¢ Theorem: C[c]+rankc(L,i) is equivalent to  
�  select1(B’,CS[c]+1+rankc(S,rank1(B,i)))-1, 

when L[i] ≠ c,  
�  select1(B’,CS[c]+rankc(S,rank1(B,i)))+ 

i-select1(B,rank1(B,i)), otherwise 



EXAMPLE, L[I]=C 

c 
c 
c 
a 
a 
g 
g 
a 
t 
t 

L 
a 
a 
a 
c 
c 
c 
g 
g 
t 
t 

F LF[8]= select1(B’,CS[a]+ranka(S,rank1(B,8)))+ 
       8-select1(B,rank1(B,8))  
 1 

0 
0 
1 
0 
1 
0 
1 
1 
0 

B 
c 
a 
g 
a 
t 

S 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 

B’ 
= select1(B’,0+ranka(S,4))+8-select1(B,4) 
 = select1(B’,0+2)+8-8 
 = 3 



¢  For more detail, read the original paper 



EXERCISE 
¢  ipsm$pisi 
¢  111011111010 



WHAT IS B’ 
B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 
 



USUALLY B’ IS GIVEN TO SAVE 
COMPUTATIONS 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 
 



REVERSE BWT FROM ROW 6 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 
 



REVERSE BWT 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S[rank1(B, 6)]= $ 
S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 
 



REVERSE BWT 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 

S[rank1(B, 6)]= $ 

LF[6]  

= select1(B’, CS[$] + rank$(S, rank1(B, 6))) + 6 – 
select1(B, rank1(B, 6))) 

= select1(B’, 0 + rank$(S, 5)) + 6 – select1(B 5) 

= 1 + 6 – 6 = 1 

 

 

 



REVERSE BWT 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S[rank1(B, 1)]= i 

LF[1]  

= select1(B’, CS[i] + ranki(S, rank1(B, 1))) + 1  

– select1(B, rank1(B, 1))) 

= select1(B’, 1 + ranki(S, 1)) + 1 – select1(B, 1) 

= 2 + 1 – 1 = 2 

 

 

 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 



REVERSE BWT 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

S[rank1(B, 1)]= i 

LF[1]  

= select1(B’, CS[i] + ranki(S, rank1(B, 1))) + 1  

– select1(B, rank1(B, 1))) 

= select1(B’, 1 + ranki(S, 1)) + 1 – select1(B, 1) 

= 2 + 1 – 1 = 2 

You can also construct the SA in this way: 

12, 11, …. 

12,11,8,5,2,1,10,9,7,4,6,3 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 



BACKWARD SEARCH 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

Suppose search for si: 

c = i, First = 2, Last = 5 

c = s 

First = C[c] + Occ(c, First – 1) + 1 

Last = C[c] + Occ(c, Last) 

S 
i 
p 
s 
 
m
$ 
p 
i 
s 
 
i 



BACKWARD SEARCH 

B
1 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 

i 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

B’ 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
0 

c = i, First = 2, Last = 5 

c = s 

First = select1(B’, CS[s]+1+ranks(S, rank1(B,
2-1))) -1 + 1 

=select1(B’,7+1+ranks(S,1)) 

=select1(B’, 8) = 9 

Last = select1(B’, CS[s]+1+ranks(S, rank1(B,5))) 
-1  

=select1(B’,7+1+ranks(S,4)) – 1 

=select1(B’, 9) -1 = 11 – 1 = 10 
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