
1

DATA STRUCTURES AND ALGORITHMS

Textbook:
Fundamentals of Data Structure in C++,
second edition, Silicon Press
Instructor:
吕建华, COSE
Email: lujianhua@seu.edu.cn
地 址：计算机楼230

2

Teaching assistants:

 刘明瑶 ：1298639127@qq.com
 吴景贤 ：79039140@qq.com

3

Total class hours: 64
week 1-16
Total lab. Hours: 16

Every Wednesday Evening of Week 4, 7, 11,
14, 6:00 – 9:30, Room 268(60), 235(?),262(?)

4

Assignments and Projects:

•  Should be handed to teaching assistants.

•  Deadline: In TWO weeks after assignments.

5

Evaluation:

Course Attendance: 10%,

Exercises and Projects: 20％，

Final Examination (Textbook and Course
Notes allowed): 70％

6

References:

1 ⾦金金远平, 数据结构(C++描述), 清华⼤大学出
版社, 2005

2 T. A. Standish, Data Structures,
Algorithms & Software Principles in C,
Addison-Wesley Publishing Company,
1994

Tips

7

■  Make good use of your time in class
■  Listening
■  Thinking
■  Taking notes

■  Utilize your free time
■  Go over
■  Programing

■  Take a pen and some paper with you
■  Notes
■  Exercises

8

Prerequisites:

Programming Language: C, C++

 Pointer in C & C++

9

In Computer science, a data structure
 is a particular way of storing and
 organizing data in a computer so that it
 can be used efficiently.

10

物有本末，事有终始。
知所先后，则近道矣。

Sorting
■  Rearrange a[0], a[1], …, a[n-1] into

 ascending order. When done, a[0] <=
 a[1] <= … <= a[n-1]

■  8, 6, 9, 4, 3 => 3, 4, 6, 8, 9

Sort Methods
■  Insertion Sort
■  Bubble Sort
■  Selection Sort
■  Counting Sort
■  Shell Sort
■  Heap Sort
■  Merge Sort
■  Quick Sort
■  ……

Insert An Element
■  Given a sorted list/sequence, insert a

 new element
■  Given 3, 6, 9, 14
■  Insert 5
■  Result 3, 5, 6, 9, 14

Insert an Element
■  3, 6, 9, 14 insert 5
■  Compare new element (5) and last one (14)
■  Shift 14 right to get 3, 6, 9, , 14
■  Shift 9 right to get 3, 6, , 9, 14
■  Shift 6 right to get 3, , 6, 9, 14
■  Insert 5 to get 3, 5, 6, 9, 14

Insert An Element
// insert t into a[0:i-1]
int j;
for (j = i - 1; j >= 0 && t < a[j]; j--)
 a[j + 1] = a[j];
a[j + 1] = t;

Insertion Sort
■  Start with a sequence of size 1
■  Repeatedly insert remaining elements

Insertion Sort
■  Sort 7, 3, 5, 6, 1
■  Start with 7 and insert 3 => 3, 7
■  Insert 5 => 3, 5, 7
■  Insert 6 => 3, 5, 6, 7
■  Insert 1 => 1, 3, 5, 6, 7

Insertion Sort
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
 // code to insert comes here
}

Insertion Sort
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
 int t = a[i];
 int j;
 for (j = i - 1; j >= 0 && t < a[j]; j--)
 a[j + 1] = a[j];
 a[j + 1] = t;
}

Insertion Sort
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
 int t = a[i];
 int j;
 for (j = i - 1; j >= 0 && t < a[j]; j--)
 a[j + 1] = a[j];
 a[j + 1] = t;
}

Basic Concepts
Purpose:
Provide the tools and techniques necessary to
design and implement large-scale software
systems, including:
■  Data abstraction and encapsulation
■  Algorithm specification and design
■  Performance analysis and measurement
■  Recursive programming

(1) Requirements
 specifications of purpose
 input

 output

(2) Analysis

 break the problem into manageable pieces

 bottom-up
 top-down

Overview: System Life Cycle

23

(3) Design
 a SYSTEM? (from the designer’s angle)
 data objects
 operations on them

 TO DO
 abstract data type
 algorithm specification and design

 Example: scheduling system of university
 ??

 ??

Overview: System Life Cycle

(4) Refinement and coding
 representations for data object

 algorithms for operations
 components reuse

(5) Verification and maintenance

 correctness proofs
 testing
 error removal
 update

Data Encapsulation or information Hiding is the
concealing of the implementation details of a data
object from the outside world.

Data Abstraction is the separation between the
specification of a data object and its implementation.

DVD example.

Data Abstraction and Encapsulation

26

A Data Type is a collection of objects and a set of
operations that act on those objects.

predefined and user-defined:

 char, int, arrays, structs, classes.

An Abstract Data Type (ADT) is a data type with the
specification of the objects and the specification of the
operations on the objects being separated from the
representation of the objects and the implementation
of the operations.

27

(1) Simplification of software development
 Applicaton : data types A, B, C & Code Glue
 (a) a team of 4 programmers
 (b) a single programmer

Benefits of data abstraction and data encapsulation:

28

Testing and debugging

A

C

B

Glue

Code with data abstraction

Unshaded areas represent code to be searched for bugs.

Code without data abstraction

29

(3) Reusability
 data structures implemented as distinct entities
of a software system

(4) Modifications to the representation of a data type
 a change in the internal implementation of a
data type will not affect the rest of the program as
long as its interface does not change.

30

 An algorithm is finite set of instructions that, if
followed, accomplishes a particular task.

Algorithm Specification

31

Must satisfy the following criteria:

(1) Input Zero or more quantities externally
supplied.

(2) Output At least one quantity is produced.

(3) Definiteness Clear and unambiguous.

(4) Finiteness Terminates after a finite number of
steps.

(5) Effectiveness Basic enough, feasible

Compare: algorithms and programs

 Finiteness

Recursion

32

33

Exercises: P32-2，P33-14

34

Definition:
The Space complexity of a program is the amount of
memory it needs to run to completion.
The Time complexity of a program is the amount of
computer time it needs to run to completion.

(1)   Priori estimates --- Performance analysis
(2) Posteriori testing--- Performance measurement

Performance Analysis and
 Measurement

35

Space complexity

The space requirement of program P:
 S(P)=c+SP(instance characteristics)
We concentrate solely on SP.

Performance Analysis

36

Example 1.10
float Rsum (float *a, const int n) //compute
recursively
{
 if (n <=0) return 0;
 else return (Rsum(a,n-1)+a[n-1]);
}

Performance Analysis

∑
−

=

1

0

][
n

i
ia

37

The instances are characterized by

 n

each call requires 4 words (n, a, return value,return
address)

the depth of recursion is

 n+1

Srsum(n) =

 4(n+1)

38

 Run time of a program P:

 T(P)=c + tP(instance characteristics)

A program step is loosely defined as a syntactically
or semantically meaningful segment of a program that
has an execution time that is independent of instance
characteristics.

In P41-43 of the textbook, there is an detailed
assignment of step counts to statements in C++.

Time complexity

Step Count
A step is an amount of computing that does

 not depend on the instance characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step

40

Our main concern:

 how many steps are needed by a program to
solve a particular problem instance?

 2 ways:

(1)   count

(2) table

41

Example 1.12

count=0;
float Rsum (float *a, const int n)
{
 count++; // for if

 if (n <=0) {
 count++; // for return
 return 0;
 }
 else {
 count++; // for return
 return (Rsum(a,n-1)+a[n-1]);
 }
}

 tRsum(0) = 2,
 tRsum(n) = 2+ tRsum(n-1)

 = 2+2+ tRsum(n-2)
 .
 .
 .
 = 2n+ tRsum(0)

 =2n+2

42

Example 1.14 Fibonnaci numbers
1 void Fibonnaci (int n)
2 { // compute the Fibonnaci number Fn

3 if (n <=1) cout << n<< endl; { // F0=0 and F1 =1
4 else { // compute Fn
5 int fn; int fnm2=0; int fnm1=1;
6 for (int i=2; i<=n; i++)
7 {
8 fn=fnm1+fnm2;
9 fnm2=fnm1;
10 fnm1=fn;
11 } //end of for
12 cout <<fn<<endl;
13 } //end of else
14 }

Let us use a table to count its total steps.

Line s/e frequency total steps
1 0 1 0
2 0 1 0
3 1 (n >1) 1 1
4 0 1 0
5 2 1 2
6 1 n n
7 0 n-1 0
8 1 n-1 n-1
9 1 n-1 n-1

43

10 1 n-1 n-1
11 0 n-1 0
12 1 1 1
13 0 1 0
14 0 1 0

So
for n>1, tFibonnci(n)=4n+1,
for n=0 or 1, tfibonnci(n) =2

44

Sometime, the instance characteristics is related
with the content of the input data set.

e.g., BinarySearch.

Hence:

■  best-case

■  worst-case,

■  average-case.

45

Because of the inexactness of what a step stands for, we
are mainly concerned with the magnitude of the
number of steps.

Definition [O]: f(n)=O(g(n)) iff there exist positive
constants c and n0 such that f(n) ≤ c g(n) for all n, n>n0.

Example 1.13: 3n+2=O(n), 6*2n+n2=O(2n),…

Asymptotic Notation

46

Note g(n) is an upper bound.

n=O(n2), n= O(2n), …,

for f(n)=O(g(n)) to be informative, g(n) should be

 as small as possible.
In practice, the coefficient of g(n) should be 1. We never
say O(3n).

47

Theory 1.2: if f(n)=amnm+…+ a1n+a0, then f(n)=O(nm).

When the complexity of an algorithm is actually, say,
O(log n), but we can only show that it is O(n) due to the
limitation of our knowledge, it is OK to say so. This is
one benefit of O notation as upper bound.

Self-study:
Ω --- low bound
Θ --- equal bound

A Few Comparisons
Function #1

n3 + 2n2
n0.1
n + 100n0.1
5n5
n-152n/100
82log n

Function #2

100n2 + 1000
log n
2n + 10 log n
n!
1000n15
3n7 + 7n

Race I
n3 + 2n2 100n2 + 1000 vs.

Race II
n0.1 log n vs.

Race III
n + 100n0.1 2n + 10 log n vs.

Race IV
5n5 n! vs.

Race V
n-152n/100 1000n15 vs.

Race VI
82log(n) 3n7 + 7n vs.

The Losers Win
Function #1

n3 + 2n2
n0.1
n + 100n0.1
5n5
n-152n/100
82log n

Function #2

100n2 + 1000
log n
2n + 10 log n
n!
1000n15
3n7 + 7n

Better algorithm!

O(n2)
O(log n)
TIE O(n)
O(n5)
O(n15)
O(n6)

Common Names
constant: O(1)
logarithmic: O(log n)
linear: O(n)
log-linear: O(n log n)
quadratic: O(n2)
polynomial: O(nk) (k is a constant)
exponential: O(cn) (c is a constant > 1)

1
100000
1E+10
1E+15
1E+20
1E+25
1E+30
1E+35
1E+40
1E+45
1E+50
1E+55
1E+60

1 10 100 1000

2^N
1.2^N
N 5̂
N 3̂
5N

Ultimate
 Laptop,

1 year
1 second

1000 MIPS,
since Big Bang

1000 MIPS,
 1 day

Practical Complexity

How the various functions grow with n?

58

Table 1.8: Times on a 1-billion-steps-per-second computer

n f(n)=n f(n)=nlog2n f(n)=n2 f(n)=n4 f(n)=n10 f(n)=2n

10
20
30
40
50

100

.01µs
.02 µs
.03 µs
.04 µs
.05 µs
.1 µs

.03 µs

.09 µs

.15 µs

.21 µs

.28 µs

.66 µs

 .1 µs
.4 µs
.9 µs

1.6 µs
2.5 µs
10 µs

10 µs
160 µs
810 µs

2.56ms
6.25ms
100 ms

10s
2.84h
6.83d
121d
3.1y

3171y

1 µs
1 ms

1 s
18m
13 d

4*1013y
103 1 µs 9.66 µs 1ms 16.67m
104 10 µs 130 µs 100ms 115.7d
105 100 µs 1.66ms 10s 3171y

59

Performance Measurement

Performance measurement is concerned with
 obtaining the actual space and time requirements of a
 program.

To time a short event it is necessary to repeat it several
 times and divide the total time for the event by the
 number of repetitions.

60

Let us look at the following program:

int SequentialSearch (int *a, const int n, const int x)
{ // Search a[0:n-1].
 int i;
 for (i=0; i < n && a[i] != x; i++;)
 if (i == n) return -1;
 else return i;
}

61

void TimeSearch ()
{
 int a[1000], n[20];
 const long r[20] = {300000, 300000, 200000, 200000,
 100000, 100000, 100000, 80000, 80000, 50000, 50000,
 25000, 15000, 15000, 10000, 7500, 7000, 6000, 5000,
 5000 };

 for (int j=0; j<1000; j++) a[j] = j+1; //initialize a
 for (j=0; j<10; j++) { //values of n
 n[j] = 10*j; n[j+10] = 100*(j+1);
 }

 cout << “ n total runTime” << endl;

62

 for (j=0; j<20; j++) {
 long start, stop;
 time (&start); // start timer
 for (long b=1; b<=r[j]; b++)

 int k = seqsearch(a, n[j], 0); //unsuccessful search
 time (&stop); // stop timer
 long totalTime = stop - start;
 float runTime = (float) (totalTime) / (float)(r[j]);
 cout << " " << n[j] << " " << totalTime << " " << runTime

 << endl;
 }
}

The results of running TimeSearch are as in the next
 slide.

63

n total runTime n total runTime

0
10
20
30
40
50
60
70
80
90

241
533
582
736
467
565
659
604
681
472

0.0008
0.0018
0.0029
0.0037
0.0047
0.0056
0.0066
0.0075
0.0085
0.0094

100
200
300
400
500
600
700
800
900

1000

527
505
451
593
494
439
484
467
434
484

0.0105
0.0202
0.0301
0.0395
0.0494
0.0585
0.0691
0.0778
0.0868
0.0968

Times in hundredths of a second, the plot of
 the data can be found in Fig. 1.7.

64

Issues to be addressed:
(1)   Accuracy of the clock
(2)   Repetition factor
(3)   Suitable test data for worst-case or average
 performance
(4)   Purpose: comparing or predicting?
(5)   Fit a curve through points

Exercises:
P72-10

