Web Data Compression and Search

Search, index construction and
compression

Slides modified from Hinrich Schiitze and Christina Lioma slides



Inverted Index

For each term t, we store a list of all documents that contain t.

BruTus —s | 1 2 4 11 | 31|45 | 173 | 174
CAESAR —s | 1 2 4 5 6| 16 57 | 132
CALPURNIA | — | 2| 31|54 | 101
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Inverted index construction

@ Collect the documents to be indexed:

Friends, Romans, countrymen. || So let it be with Caesar| ...

@ Tokenize the text, turning each document into a list of tokens:

Friends || Romans || countrymen ||So] ...

© Do linguistic preprocessing, producing a list of normalized
tokens, which are the indexing terms: |friend || roman

countryman [|so|. ..

@O Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.



Tokenizing and preprocessing

Doc 1. | did enact Julius Caesar: |
was killed i' the Capitol; Brutus killed
me.

Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

Doc 1. i did enact julius caesar i was
killed i" the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious



Generate posting

Doc 1. i did enact julius caesar i was

killed i’ the capitol brutus killed me

Doc 2. so let it be with caesar the ——p
noble brutus hath told you caesar was
ambitious

term  doclD
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Sort postings
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Create postings lists, determine document frequency

term  doclD

ambiticus 2
be - term doc. freq. — postings lists
brutus 1 ambitious I 1 o ?
brutus 2 I
capitol 1 ==
caesar 1 il 1
caesar 2 - [
caesar 2 - -2
did 1 — 4]
enact 1 — T
hath 1 — ?
i 1 . [l
| ! ~ [1
i 1 B ?
it 2 — et
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killed 1 killed 1 - A
killed 1 - 2]
let 2 — |1
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noble 2 — 2
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the 2 Y
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Split the result into dictionary and postings file

BruTuUs —s | 1 2 4 11 | 31|45 | 173 | 174
CAESAR — | 1 2 4 5 6| 16 57 | 132
CALPURNIA | — | 2| 31|54 | 101
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Simple conjunctive query (two terms)

= Consider the query: BRUTUS AND CALPURNIA
= To find all matching documents using inverted index:
@ Locate BRUTUS in the dictionary
@ Retrieve its postings list from the postings file
@) Locate CALPURNIA in the dictionary
O Retrieve its postings list from the postings file
© Intersect the two postings lists

@ Return intersection to user



Intersecting two posting lists

BRruTUS — |12

o[ 11

131

| 45

173

174

CALPURNIA — |21—/31

[54

101

Intersection — |2 |31

= This is linear in the length of the postings lists.

= Note: This only works if postings lists are sorted.
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Intersecting two posting lists

INTERSECT(p1, p2)
1 answer — ()
2 while p; # NIL and p» # NIL
3 do if docID(p1) = doclD(p»)
4 then ApD(answer, doclD(p1))
5 p1 < next(p1)
6 p2 < next(py)
7 else if doclD(p1) < doclD(p2)
8 then p; < next(p;)
9 else p, < next(p,)
10 return answer
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Typical query optimization

= Example query: BRUTUS AND CALPURNIA AND CAESAR

= Simple and effective optimization: Process in order of
increasing frequency

= Start with the shortest postings list, then keep cutting further
" |n this example, first CAESAR, then CALPURNIA, then BRUTUS

BruTus — |1=2—4 =11 =31 |—=|45|—| 173 || 174
CALPURNIA — |2|—|31|—|54}—|101

CAESAR — |5 |—|31
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Optimized intersection algorithm for
conjunctive queries

INTERSECT((t1,...,t,))

1 terms «— SORTBYINCREASINGFREQUENCY((ty,...,t,))

result < postings(first(terms))

terms < rest(terms)

while terms # NIL and result # NIL

do result — INTERSECT(result, postings(first(terms)))
terms < rest(terms)

return result

~N O OB W
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Recall basic intersection algorithm

BRruTUS — 1

CALPURNIA — |2

Intersection — |2

= Linear in the length of the postings lists.

= Can we do better?

|2 | =4 |—|11 [—={ 31 |—=|45 =173 |—|174
5[ 31 |—[54 |—| 101
—{ 31

14



Skip pointers

= Skip pointers allow us to skip postings that will not figure in
the search results.

= This makes intersecting postings lists more efficient.

= Some postings lists contain several million entries — so
efficiency can be an issue even if basic intersection is linear.

= Where do we put skip pointers?

= How do we make sure intersection results are correct?
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Basic idea

BRuUTUS

CAESAR
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Skip lists: Larger example

72
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Intersection with skip pointers

INTERSECTWITHSKIPS(py, p2)

0O ~NO O & W=

answer «— ()
while p; # NIL and p, # NIL
do if docID(p1) = doclD(p2)
then ApD(answer, doclD(py))
p1 < next(p)

p2 < next(p2)
else if doclD(p,) < doclD(p>)

then if hasSkip(py) and (doclD(skip(p1)) < doclD(p>))
then while hasSkip(p1) and (doclD(skip(p1)) < doclD(p2))
do p; — skip(p1)
else p; — next(py)
else if hasSkip(p2) and (doclD(skip(p2)) < doclD(p1))
then while hasSkip(p2) and (doclD(skip(p2)) < doclD(py))
do p, — skip(p,)
else p> — next(p2)
return answer
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Where do we place skips?

= Tradeoff: number of items skipped vs. frequency skip can be
taken

= More skips: Each skip pointer skips only a few items, but we
can frequently use it.

= Fewer skips: Each skip pointer skips many items, but we can
not use it very often.
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Phrase queries

We want to answer a query such as [stanford university] — as
a phrase.

Thus The inventor Stanford Ovshinsky never went to
university should not be a match.

The concept of phrase query has proven easily understood by
users.

About 10% of web queries are phrase queries.

Consequence for inverted index: it no longer suffices to store
doclDs in postings lists.

Two ways of extending the inverted index:
= biword index

= positional index
20



Positional indexes

= Postings lists in a nonpositional index: each posting is just a
doclD

= Postings lists in a positional index: each posting is a docID and
a list of positions
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Positional indexes: Example

Query: “to, be, or; not, to. be,”
TO, 993427.

«1:¢7,18, 33,72, 86, 231,
2:<1,17, 74, 222, 255»;
4:<8, 16,190, 429, 433»;
5:¢363, 367>;
7:¢13,23,191»;...»

BE, 178239:

«1: <17, 25»;
4:<17,191, 291, 430, 434>,
5:¢14, 19, 101»;...> Document 4 is a match!
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Inverted index

For each term t, we store a list of all documents that contain t.
BruTUS — | 1 21 4 11 | 31 (45 | 173 | 174

CAESAR — | 1 2 4 5 6| 16 57 | 132

CALPURNIA | — | 2|1 31|54 | 101

\q’—/ \—,—/
dictionary postings



Dictionaries

= The dictionary is the data structure for storing the term
vocabulary.

= Term vocabulary: the data

= Dictionary: the data structure for storing the term vocabulary
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Dictionary as array of fixed-width entries

= For each term, we need to store a couple of items:

= document frequency
= pointer to postings list

= Assume for the time being that we can store this information
in a fixed-length entry.

= Assume that we store these entries in an array.
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Dictionary as array of fixed-width entries

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
space needed: 20 bytes 4 bytes 4 bytes

How do we look up a query term g;in this array at query time?
That is: which data structure do we use to locate the entry (row)
in the array where g;is stored?
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Data structures for looking up term

= Two main classes of data structures: hashes and trees
= Some IR systems use hashes, some use trees.
= Criteria for when to use hashes vs. trees:

= |s there a fixed number of terms or will it keep growing?

= What are the relative frequencies with which various keys will
be accessed?

= How many terms are we likely to have?
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Hashes

= Each vocabulary term is hashed into an integer.
= Try to avoid collisions

= At query time, do the following: hash query term, resolve
collisions, locate entry in fixed-width array

" Pros: Lookup in a hash is faster than lookup in a tree.

= Lookup time is constant.

Cons
= no way to find minor variants (resume vs. résumé)
= no prefix search (all terms starting with automat)

= need to rehash everything periodically if vocabulary keeps
growing
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Trees

" Trees solve the prefix problem (find all terms starting with
automat).

= Simplest tree: binary tree

= Search is slightly slower than in hashes: O(logM), where M is
the size of the vocabulary.

* O(logM) only holds for balanced trees.
= Rebalancing binary trees is expensive.
= B-trees mitigate the rebalancing problem.

= B-tree definition: every internal node has a number of
children in the interval [a, b] where a, b are appropriate
positive integers, e.g., [2, 4].
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Sort-based index construction

As we build index, we parse docs one at a time.
The final postings for any term are incomplete until the end.

Can we keep all postings in memory and then do the sort in-
memory at the end?

No, not for large collections

At 10-12 bytes per postings entry, we need a lot of space for
large collections.

But in-memory index construction does not scale for large
collections.

Thus: We need to store intermediate results on disk.
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Same algorithm for disk?

= Can we use the same index construction algorithm for larger
collections, but by using disk instead of memory?

= No: Sorting for example 100,000,000 records on disk is too
slow —too many disk seeks.

= We need an external sorting algorithm.
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“External” sorting algorithm
(using few disk seeks)

= We must sort 100,000,000 non-positional postings.

= Each posting has size 12 bytes (4+4+4: termID, docID, document
frequency).

= Define a block to consist of 10,000,000 such postings
= We can easily fit that many postings into memory.
= We will have 10 such blocks.

= Basic idea of algorithm:

= For each block: (i) accumulate postings, (ii) sort in memory, (iii)
write to disk

= Then merge the blocks into one long sorted order.

32



Merging two blocks

postings
to be merged
Block 1 Block 2
brutus d3 brutus d2
caesar d4 caesar dl
noble d3 julius  d1
with d4 killed d2

brutus
brutus
caesar
caesar
julius
killed
noble
with

d2
d3
dl
d4
dl
d2
d3
d4

/

disk

merged
postings
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Blocked Sort-Based Indexing

BSBINDEXCONSTRUCTION()

1 n—<20

2 while (all documents have not been processed)
3 don—n+1

4 block «— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRrITEBLOCKTODISK(block, f,,)

7 MERGEBLOCKS(f1,. .., fn; f merged)
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Problem with sort-based algorithm

= Qur assumption was: we can keep the dictionary in memory.

* We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

= Actually, we could work with term,doclID postings instead of
termID,doclID postings . ..

" ...butthen intermediate files become very large. (We would
end up with a scalable, but very slow index construction
method.)
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Single-pass in-memory indexing

= Abbreviation: SPIMI

= Key idea 1: Generate separate dictionaries for each block — no
need to maintain term-termID mapping across blocks.

= Keyidea 2: Don’t sort. Accumulate postings in postings lists as
they occur.

= With these two ideas we can generate a complete inverted
index for each block.

= These separate indexes can then be merged into one big
index.
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SPIMI-Invert

SPIMI-INVERT( token_stream)

1

O ~NO OB W

9
10
11
12
13

output_file « NEWFILE()
dictionary <« NEWHASH()
while (free memory available)
do token <« next(token_stream)
if term(token) ¢ dictionary
then postings_list < ADDToODICTIONARY(dictionary,term(token))
else postings_list < GETPOSTINGSLIST(dictionary,term(token))
if full(postingsist)
then postings_list < DOUBLEPOSTINGSLIST(dictionary,term(token)
AppToPosTINGSLIST(postings_list,doclD(token))
sorted_terms « SORTTERMS(dictionary)
WRITEBLOCKTODISK(sorted _terms,dictionary,output_file)
return output_file

Merging of blocks is analogous to BSBI.
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Why compression in information retrieval?

= First, we will consider space for dictionary

= Main motivation for dictionary compression: make it small
enough to keep in main memory

= Then for the postings file

= Motivation: reduce disk space needed, decrease time needed
to read from disk

= Note: Large search engines keep significant part of postings in
memory

= We will devise various compression schemes for dictionary
and postings.
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Dictionary compression

= The dictionary is small compared to the postings file.
= But we want to keep it in memory.

= Also: competition with other applications, cell phones,
onboard computers, fast startup time

= So compressing the dictionary is important.
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Recall: Dictionary as array of fixed-width entries

term document pointer to
frequency postings list
a 656,265 —

aachen 65 S

zulu 221 —_

Space needed: 20 bytes 4 bytes 4 bytes
for Reuters: (20+4+4)*400,000 = 11.2 MB
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Fixed-width entries are bad.

Most of the bytes in the term column are wasted.
= We allot 20 bytes for terms of length 1.

We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

= Average length of a term in English: 8 characters

= How can we use on average 8 characters per term?
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Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

freq. postings ptr. term ptr.

9
92
5
71
12

Ll

4 bytes 4 bytes 3 bytes
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Space for dictionary as a string

= 4 bytes per term for frequency
= 4 bytes per term for pointer to postings list
= 8 bytes (on average) for term in string

= 3 bytes per pointer into string (need log28 - 400000 < 24
bits to resolve 8 - 400,000 positions)

= Space: 400,000 X (4 +4 +3 + 8) = 7.6MB (compared to 11.2
MB for fixed-width array)
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Dictionary as a string with blocking

...7systile9syzygetic8syzygiale6syzygyllszaibelyite6szecin...

freq. postings ptr. term ptr.

0 —
02 —
o) —
71 —
12 -
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Space for dictionary as a string with blocking

= Example block size k =4

* Where we used 4 X 3 bytes for term pointers without
blocking . ..

= . ..we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

= We save 12 - (3 + 4) =5 bytes per block.
= Total savings: 400,000/4 * 5 = 0.5 MB

= This reduces the size of the dictionary from 7.6 MB to 7.1
MB.
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Lookup of a term without blocking




Lookup of a term with blocking: (slightly) slower

e——)
~( PIT - WIN
_/
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Front coding

One block in blocked compression (k=4) . ..

8automata8automate9automaticl0automation
U

... further compressed with front coding.
8automat*a l¢e 2¢ic3%ion
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Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
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Postings compression

= The postings file is much larger than the dictionary, factor
of at least 10.

= Key desideratum: store each posting compactly
= A posting for our purposes is a doclD.

= For Reuters (800,000 documents), we would use 32 bits per
docID when using 4-byte integers.

= Alternatively, we can use log, 800,000 = 19.6 < 20 bits per
doclD.

= Qur goal: use a lot less than 20 bits per doclD.
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Key idea: Store gaps instead of doclDs

= Each postings list is ordered in increasing order of doclID.

= Example postings list: COMPUTER: 283154, 283159, 283202, ...
It suffices to store gaps: 283159-283154=5, 283202-283154=43
= Example postings list using gaps : COMPUTER: 283154, 5, 43, . ..

Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.
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Gap encoding

encoding postings list

THE doclDs 283042 283043 283044 283045
gaps 1 1
COMPUTER doclDs 283047 283154 283159 283202
gaps 107 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100
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Variable length encoding

= Aim:
= For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
= For THE and other very frequent terms, we will use only a
few bits per gap (= posting).
= |n order to implement this, we need to devise some form
of variable length encoding.
= Variable length encoding uses few bits for small gaps and

many bits for large gaps.
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Variable byte (VB) code

= Used by many commercial/research systems

= Good low-tech blend of variable-length coding and
sensitivity to alignment matches (bit-level codes, see later).

= Dedicate 1 bit (high bit) to be a continuation bit c.

= |If the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

= Else: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

= At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).
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VB code examples

doclDs 824

gaps
VB code 00000110 10111000

829
5
10000101

215406
214577
00001101 00001100 10110001
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VB code encoding algorithm

VBENCODENUMBER(n) VBENCODE(numbers)

1 bytes — () 1 bytestream «— ()

2 while true 2 for each n < numbers

3 do PRrREPEND(bytes,n mod 128) 3 do bytes — VBENCODENUMBER(n)

4 if n < 128 4 bytestream «— EXTEND( bytestream, bytes)
5 then BREAK 5 return bytestream

6 n < n div 128

7 bytes|LENGTH(bytes)] += 128

8 return bytes
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VB code decoding algorithm

VBDECODE(bytestream)

O 0O ~NO O B WN =

numbers «— ()
n«— 0
for i — 1 to LENGTH(bytestream)
do if bytestream|i] < 128
then n < 128 x n + bytestreamli]
else n <« 128 x n + (bytestream[i] — 128)
APPEND(numbers, n)
n—20
return numbers
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Gamma codes for gap encoding

= You can get even more compression with another type of
variable length encoding: bitlevel code.

= Gamma code is the best known of these.

= First, we need unary code to be able to introduce gamma
code.

= Unary code
= Represent n as n 1s with a final O.
* Unary code for 3is 1110

* Unary code for 40 is
111111111211112111221112117121112111111111110

= Unary code for 70 is:
11111111111111111111111111111111111111111111111111111111111111111111110
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Gamma code

= Represent a gap G as a pair of length and offset.

= Offsetis the gap in binary, with the leading bit chopped off.
" For example 13 - 1101 - 101 = offset

= Length is the length of offset.

= For 13 (offset 101), the length is 3.

= Encode length in unary code: 1110.

= Gamma code of 13 is the concatenation of length and offset:
1110101.
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Gamma code examples

number unary code length offset v code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001
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Properties of gamma code

= Gamma code is prefix-free

= The length of offset is |log, G| bits.

= The length of length is |log, G| + 1 bits,

= So the length of the entire code is 2 x |log, G| + 1 bits.
= Y codes are always of odd length.

= Gamma codes are within a factor of 2 of the optimal
encoding length log, G.
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Gamma codes: Alignment

= Machines have word boundaries — 8, 16, 32 bits

= Compressing and manipulating at granularity of bits can be
slow.

= Variable byte encoding is aligned and thus potentially more
efficient.

= Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost.
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Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k=4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, gamma encoded 101.0
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