
Analysis Of Binomial Heaps

Binomial heaps  Leftist 
trees Actual Amortized 

Insert O(log n) O(1) O(1) 

Remove min (or 
max) 

O(log n) O(n) O(log n) 

Meld O(log n) O(1) O(1) 
 

 



Operations
• Insert

§ Add a new min tree to top-level circular list.
• Meld

§ Combine two circular lists.
• Remove min

§ Pairwise combine min trees whose roots have 
equal degree.

§ O(MaxDegree + s), where s is number of min trees 
following removal of min element but before 
pairwise combining.



Binomial Trees
• Bk , k > 0, is two Bk-1s.
• One of these is a subtree of the other.
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All Trees In Binomial Heap Are 
Binomial Trees

• Initially, all trees in system are Binomial trees (actually, 
there are no trees initially).

• Assume true before an operation, show true after the 
operation.

• Insert creates a B0.
• Meld does not create new trees.
• Remove Min

§ Reinserted subtrees are binomial trees.
§ Pairwise combine takes two trees of equal degree 

and makes one a subtree of the other.



Complexity of Remove Min

• Let n be the number of operations performed.
§ Number of inserts is at most n.
§ No binomial tree has more than n elements.
§ MaxDegree <= log2n.
§ Complexity of remove min is O(log n + s) = O(n).



Aggregate Method

• Get a good bound on the cost of every 
sequence of operations and divide by the 
number of operations.

• Results in same amortized cost for each 
operation, regardless of operation type.

• Can’t use this method, because we want to 
show a different amortized cost for remove 
mins than for inserts and melds.



Aggregate Method – Alternative

• Get a good bound on the cost of every sequence 
of remove mins and divide by the number of 
remove mins.

• Consider the sequence insert, insert, …, insert, 
remove min.
§ The cost of the remove min is O(n), where n is the 

number of operations in the sequence. 
§ So, amortized cost of a remove min is O(n/1) = O(n).



Accounting Method

• Guess the amortized cost.
§ Insert => 2.
§ Meld => 1.
§ Remove min => 3log2n.

• Show that P(i) – P(0) >= 0 for all i.



Potential Function

• P(i) = amortizedCost(i) – actualCost(i) + P(i – 1)
• P(i) – P(0) is the amount by which the first i operations 

have been over charged.
• We shall use a credit scheme to keep track of (some of) 

the over charge.
• There will be 1 credit on each min tree.
• Initially, #trees = 0 and so total credits and P(0) = 0.
• Since number of trees cannot be <0, the total credits is 

always >= 0 and hence P(i) >= 0 for all i.



Insert

• Guessed amortized cost = 2.
• Use 1 unit to pay for the actual cost of the insert.
• Keep the remaining 1 unit as a credit.
• Keep this credit with the min tree that is created 

by the insert operation.
• Potential increases by 1, because there is an

overcharge of 1.



Meld

• Guessed amortized cost = 1.
• Use 1 unit to pay for the actual cost of the meld.
• Potential is unchanged, because actual and 

amortized costs are the same.



Remove Min

• Let MinTrees be the set of min trees in the 
binomial heap just before remove min.

• Let u be the degree of min tree whose root is 
removed.

• Let s be the number of min trees in binomial heap 
just before pairwise combining.
§ s = #MinTrees + u – 1

• Actual cost of remove min is <= MaxDegree + s
<= 2log2n –1+ #MinTrees.



Remove Min
• Guessed amortized cost = 3log2n.
• Actual cost <= 2log2n – 1 + #MinTrees.
• Allocation of amortized cost.

§ Use up to 2log2n – 1 to pay part of actual cost.
§ Keep some or all of the remaining amortized cost as 

a credit.
§ Put 1 unit of credit on each of the at most log2n + 1

min trees left behind by the remove min operation.
§ Discard the remainder (if any).



Paying Actual Cost Of A Remove Min

• Actual cost <= 2log2n – 1  + #MinTrees

• How is it paid for?
§ 2log2n –1 comes from amortized cost of this 

remove min operation.
§ #MinTrees comes from the min trees themselves, at 

the rate of 1 unit per min tree, using up their credits.
§ Potential may increase or decrease but remains 

nonnegative as each remaining tree has a credit.



Potential Method

• Guess a suitable potential function for 
which P(i) – P(0) >= 0 for all i.

• Derive amortized cost of ith operation using 
DP  = P(i) – P(i – 1)

= amortized cost – actual cost
• amortized cost = actual cost + DP



Potential Function
• P(i) = S#MinTrees(j)

§ #MinTrees(j) is #MinTrees for binomial heap j. 
§ When binomial heaps A and B are melded, A and 

B are no longer included in the sum. 
• P(0) = 0
• P(i) >= 0 for all i.
• ith operation is an insert.

§ Actual cost of insert = 1
§ DP  = P(i) – P(i – 1) = 1
§ Amortized cost of insert = actual cost + DP

= 2



ith Operation Is A Meld

• Actual cost of meld = 1
• P(i) = S#MinTrees(j)
• DP  = P(i) – P(i – 1) = 0
• Amortized cost of meld = actual cost + DP

= 1



ith Operation Is A Remove Min

• old => value just before the remove min
• new => value just after the remove min.
• #MinTreesold(j) => value of #MinTrees in jth 

binomial heap just before this remove min.
• Assume remove min is done in kth binomial 

heap.



ith Operation Is A Remove Min

• Actual cost of remove min from binomial heap k
<= 2log2n – 1  + #MinTreesold(k)

• DP  = P(i) – P(i – 1) 
= S[#MinTreesnew(j) – #MinTreesold(j)]
= #MinTreesnew(k) – #MinTreesold(k).

• Amortized cost of remove min = actual cost + DP
<= 2log2n – 1 + #MinTreesnew (k) 
<= 3log2n.


