Analysis Of Binomial Heaps

Leftist Binomial heaps

trees Actual] Amortized
Insert O(log n) O(1) |O(1)
Remove min (or O(log n) O(n) |O(log n)

max)

Meld O(logn) |O(1) |O(1)

Operations

 Insert

* Add a new min tree to top-level circular list.

 Meld

= Combine two circular lists.

e Remove min

= Pairwise combine min trees whose roots have
equal degree.

= O(MaxDegree + s), where s 1s number of min trees
following removal of min element but before
pairwise combining.

Binomial Trees

e B, ,k>0,1s two B_s.
* One of these 1s a subtree of the other.

All Trees In Binomial Heap Are
Binomial Trees

Initially, all trees in system are Binomial trees (actually,
there are no trees 1nitially).

Assume true before an operation, show true after the
operation.

Insert creates a B,,.
Meld does not create new trees.
Remove Min
= Reinserted subtrees are binomial trees.

= Pairwise combine takes two trees of equal degree
and makes one a subtree of the other.

Complexity of Remove Min

* Let n be the number of operations performed.
* Number of inserts 1s at most n.
= No binomial tree has more than n elements.
= MaxDegree <= log,n.
= Complexity of remove min 1s O(log n + s) = O(n).

Aggregate Method

* Get a good bound on the cost of every
sequence of operations and divide by the
number of operations.

e Results in same amortized cost for each
operation, regardless of operation type.

e Can’t use this method, because we want to
show a different amortized cost for remove
mins than for inserts and melds.

Aggregate Method — Alternative

* Get a good bound on the cost of every sequence
of remove mins and divide by the number of
remove mins.

* Consider the sequence insert, insert, ..., nsert,
remove min.

= The cost of the remove min 1s O(n), where n 1s the
number of operations in the sequence.

= So, amortized cost of a remove min 1s O(n/1) = O(n).

Accounting Method

* (uess the amortized cost.
= Insert => 2.
= Meld => 1.

= Remove min => 3log,n.

* Show that P(1) — P(0) >= 0 for all 1.

Potential Function

P(1) = amortizedCost(1) — actualCost(1) + P(1 — 1)
P(1) — P(0) 1s the amount by which the first 1 operations
have been over charged.

We shall use a credit scheme to keep track of (some of)
the over charge.

There will be 1 credit on each min tree.
Initially, #trees = 0 and so total credits and P(0) = 0.

Since number of trees cannot be <0, the total credits 1s
always >= 0 and hence P(1) >= 0 for all 1.

Insert {(}\ ' I{x

* Guessed amortized cost =
* Use | unit to pay for the actual cost of the insert.
» Keep the remaining | unit as a credit.

» Keep this credit with the min tree that 1s created
by the 1nsert operation.

 Potential increases by 1, because there 1s an
overcharge of 1.

Meld {Q\I O‘ I{\}

* Guessed amortized cost = 1.
* Use 1 unit to pay for the actual cost of the meld.

 Potential 1s unchanged, because actual and
amortized costs are the same.

Remove Min {(}\ : O I{x

* Let MinTrees be the set of min trees in the
binomial heap just before remove min.

* Let u be the degree of min tree whose root 1s
removed.

 Let s be the number of min trees in binomial heap
just before pairwise combining.

" s =#MinTrees +u— 1
* Actual cost of remove min 1s <= MaxDegree + s
<= 2log,n —1+ #MinTrees.

Remove Min {(}\

* Guessed amortized cost = 3log,n.
* Actual cost <= 2log,n — | + #MinTrees.

* Allocation of amortized cost.

= Use up to 2log,n — 1 to pay part of actual cost.

= Keep some or all of the remaining amortized cost as
a credit.

= Put | unit of credit on each of the at most log,n + 1
min trees left behind by the remove min operation.

= Discard the remainder (if any).

Paying Actual Cost Of A Remove Min

* Actual cost <= 2log,n — I + #MinTrees

* How 1s 1t paid for?
= 2log,n —1 comes from amortized cost of this
remove min operation.

= #MinTrees comes from the min trees themselves, at
the rate of 1 unit per min tree, using up their credits.

= Potential may increase or decrease but remains
nonnegative as each remaining tree has a credit.

Potential Method

* (Guess a suitable potential function for
which P(1) — P(0) >= 0 for all 1.
* Derive amortized cost of ith operation using
AP =P(1)—-P@1-1)
= amortized cost — actual cost

 amortized cost = actual cost + AP

Potential Function

P(1) = X#MinTrees())
= #MinTrees()) 1s #MinTrees for binomial heap ;.

* When binomial heaps A and B are melded, A and
B are no longer included 1n the sum.

P(0) =0
P(1) >= 0 for all 1.
1ith operation 1s an 1nsert.
= Actual cost of insert = 1
= AP =P1)—-Pli-1)=1
* Amortized cost of insert = actual cost + AP
=2

1ith Operation Is A Meld

Actual cost of meld = 1

P(1) = 2#MinTrees())

AP =P1)—P1-1)=0

Amortized cost of meld = actual cost + AP
=1

ith Operation Is A Remove Min

old => value just before the remove min

new => value just after the remove min.

#MinTreesd(j) => value of #MinTrees in jth
binomial heap just before this remove min.

Assume remove min 1s done 1n kth binomaial
heap.

ith Operation Is A Remove Min

 Actual cost of remove min from binomial heap k
<= 2log,n — 1 + #MinTrees°d(k)
e« AP =P1)—-P@1-1)
= X[#MinTrees™"(j) — #MinTrees°d(j)]
= #MinTrees"V(k) — #MinTrees°d(k).
* Amortized cost of remove min = actual cost + AP
<=2log,n — 1 + #MinTrees™¥ (k)

<=3log,n.

