Advanced Data Structures

Medians and Order Statistics

Order Statistics

® The ith order statistic 1n a set of n elements 1s
the ith smallest element

® The minimum 1s thus the 1st order statistic

® The maximum 1s the nth order statistic

® The median 1s the n/2 order statistic

m If n 1s even, there are 2 medians
® How can we calculate order statistics?

® What is the running time?

Order Statistics

® How many comparisons are needed to find the
minimum element in a set? The maximum?

® Can we find the minimum and maximum with
less than twice the cost?

® Yes:
m Walk through elements by pairs

¢ Compare each element in pair to the other

¢ Compare the largest to maximum, smallest to minimum

m Total cost: 3 comparisons per 2 elements = O(3n
/2)

Finding Order Statistics:
The Selection Problem

® A more interesting problem 1s selection:
finding the ith smallest element of a set

® We will show:

m A practical randomized algorithm with O(n)
expected running time

m A cool algorithm of theoretical interest only with
O(n) worst-case running time

Randomized Selection

® Key i1dea: use partition() from quicksort
m But, only need to examine one subarray

m This savings shows up in running time: O(n)

q = RandomizedPartition(A, p, 1)

Randomized Selection

RandomizedSelect (A, p, r, 1)
if (p == r) then return A[p];
q = RandomizedPartition (A, p, r)
k=q-p+1;
if (i == k) then return A[q];
if (1 < k) then
return RandomizedSelect(A, p, g-1, 1i);

else
return RandomizedSelect(A, g+l1l, r, i-k);

< k B>

< Alq] ‘

= Alq]

Randomized Selection

® Analyzing RandomizedSelect ()

m Worst case: partition always 0:n-1
T(n) =T(n-1)+ O(n) =222
= 0(n?) (arithmetic series)
¢ No better than sorting!
m “Best” case: suppose a 9:1 partition
T(n) =TOn/10)+0(n) =222
= (O(n) (Master Theorem, case 3)

¢ Better than sorting!
o What if this had been a 99:1 split?

Randomized Selection

® Average case

m For upper bound, assume ith element always falls
in larger side of partition:

T(n) < %2T(max(k,n—k—1))+@(n)

IA
|

~
—

N‘
~—

+

©,
—~

S
~"

What happened here?

m Let” s show that T(n) = O(n) by substitution

Randomized Selection

O Assume T(n) < cn for sufficiently large c:

T (n) < E T(k) + @) The recurrence we started with
n <o
n-1
< % E ck + @(n) Substitute T(n) < cn for T(k)
n S

n/2-1
(Zk Z)) “Split” the recurrence

— 20 (n l)n — l n_ 11— | + @(n) Expand arithmetic series
ni2 212 2

- c(n—l)—%(g—l) +O(n) Multiply it out

Randomized Selection

® Assume T(n) < cn for sufficiently large c:

T'(n)

IA

c(n_l)_ﬁ(ﬁ_1)+@(n)

2\ 2

cn (if c1s big enough)

The recurrence so far

Multiply it out

Subtract ¢/2

Rearrange the arithmetic

What we set out to prove

Worst-Case Linear-Time Selection

® Randomized algorithm works well in practice

® What follows 1s a worst-case linear time
algorithm, really of theoretical interest only
® Basic 1dea:
m Generate a good partitioning element

m Call this element x

Worst-Case Linear-Time Selection

® The algorithm 1n words:

1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the |n/5 |
medians

4. Partition the n elements around x. Let k& = rank(x)
5. if (1==Kk) then return x

if (1 <k) then use Select() recursively to find ith smallest
element in first partition

else (1 > k) use Select() recursively to find (i-k)th smallest
element 1n last partition

Worst-Case Linear-Time Selection

® [How many of the 5-element medians are <x?
m At least 1/2 of the medians = ||n/5]| /2] = [n/10]

® How many elements are <x?
m At least 3 [n/10 | elements

® For large n, 3 |n/10 |=n/4 (How large?)
® So at least n/4 elements < x

® Similarly: at least n/4 elements = x

Worst-Case Linear-Time Selection

® Thus after partitioning around x, step 5 will
call Select() on at most 3n/4 elements

® The recurrence is theretfore:
T(n) < T(_n/SJ)+ 7(3n/4)+ ©(n)

< T(n/5)+ T(3n/4)+ @(n) [n/5] =n/5
< cn/5+3cn/4 + O(n) Substitute T(n) = cn
=19¢n/20 + O(n) Combine fractions

= Cn — (cn / 20 — @(n)) Express in desired form

<cn 1fcisbi g enough What we set out to prove

Worst-Case Linear-Time Selection

® Intuitively:

m Work at each level 1s a constant fraction (19/20)
smaller

¢ Geometric progression!

m Thus the O(n) work at the root dominates

Linear-Time Median Selection

b

® Givena “black box” O(n) median
algorithm, what can we do?

m ith order statistic:
¢ Find median x
¢ Partition input around x
¢ 1f (i = (n+1)/2) recursively find ith element of first half
¢ clse find (i - (n+1)/2)th element in second half
¢ T(n) =T(1n/2) + O(n) = O(n)

Linear-Time Median Selection

® Worst-case O(n Ig n) quicksort
m Find median x and partition around it

m Recursively quicksort two halves
mT(n)=2T1n/2)+ Om)=0(nlgn)

Dynamic Order Statistics

e We've seen algorithms for finding the ith
element of an unordered set in O(n) time

e Next, a structure to support finding the ith
element of a dynamic set in O(lg n) time

m What operations do dynamic sets usually support?
m What structure works well for these?

m How could we use this structure for order
statistics?

m How might we augment it to support efficient
extraction of order statistics?

Order Statistic Trees

e OS Trees augment red-black trees:
m Associate a size field with each node 1n the tree

m X->size records the size of subtree rooted at x,
including x 1tself:

Selection On OS Trees

How can we use this property
to select the 1th element of the set?

0S-Select

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (1 < r)
return 0OS-Select (x->left, 1i);
else
return OS-Select (x->right, i-r);

OS-Select Example

e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);

OS-Select Example

e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);

OS-Select Example

e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);

OS-Select Example

e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);

OS-Select Example

e Example: show OS-Select(root, 5):

OS-Select(x, 1)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->1left, i),
else

return OS-Select (x->right, i-r);

OS-Select: A Subtlety

OS-Select(x, 1)

{ Oops...
r = x->left->sjze + 1; ¢ ———=—==—==—= === === I
if (1 == r) I
return x; '
else if (i < r) :
return OS-Select (x->left, 1i); I
else '
return 0OS-Select (x->right, i-r); :
|
I

}
o What happens at the leaves? ==~~~ ==~ -

o How can we deal elegantly with this?

0S-Select

OS-Select(x, 1i)
{
r = x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return OS-Select (x->left, 1i);
else
return 0OS-Select (x->right, i-r);

}
o What will be the running time?

Determining The
Rank Of An Element

What is the rank of this element?

Determining The
Rank Of An Element

Determining The
Rank Of An Element

\ Of the root? What's the pattern here?

Determining The
Rank Of An Element

What about the rank of this element?

Determining The
Rank Of An Element

This one? What’ s the pattern here?

0OS-Rank

OS-Rank (T, x)
{
r = x->left->size + 1;
y = X,
while (y !'= T->root)
if (y == y->p->right)
r =r + y->p->left->size + 1;
Y = Y-°P/
return r;

}
o What will be the running time?

Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Determining The
Rank Of An Element

Example 2:
find rank of element with key P

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Determining The
Rank Of An Element

Example 2: .
find rank of element with key P8 r=l+5+1=7

OS-Rank (T, x)
N % [A
r = x->left->size + 1;
vyv=x;, 1Dl |4,
while (y != T->root)
if (y == y->p->right)
r = r + y->p->left->size + 1;
Y = Y-°P;
return r;

Maintaining Subtree Sizes

e So by keeping subtree sizes, order statistic
operations can be done 1n O(Ig n) time

e Maintain sizes during Insert() and Delete()
operations

m Insert(): Increment size fields of nodes traversed
during search down the tree

m Delete(): Decrement sizes along a path from the
deleted node to the root

m Both: Update sizes correctly during rotations

Maintaining Size Through Rotation

rightRotate (y)

‘leftRotate(x)

e Salient point: rotation invalidates only x and y

e Can recalculate their sizes 1n constant time
m Why?

Augmenting Data Structures:
Methodology

Choose underlying data structure
m E.g., red-black trees

Determine additional information to maintain

m E.g., subtree sizes

Verify that information can be maintained for
operations that modify the structure

m E.g, Insert(), Delete() (don't forget rotations!)
Develop new operations
m E.g., OS-Rank(), OS-Select()

Advanced Data Structures

Augmenting Data Structures:
Interval Trees

Review: Methodology For
Augmenting Data Structures

Choose underlying data structure
Determine additional information to maintain

Verify that information can be maintained for
operations that modify the structure

Develop new operations

Interval Trees

e The problem: maintain a set of intervals

m E.g., time intervals for a scheduling program:
7 E——e10 S = [7.10]: i —low = 7: i—high = 10

Se * 11 17e—19

4e *3 1518 2123

Interval Trees

e The problem: maintain a set of intervals
m E.g., time intervals for a scheduling program:

7 10— i =[7,10]; i —low = 7; i—high = 10
5e *11 17e—19
40 8 15 18 21+——23

m Query: find an interval 1n the set that overlaps a
given query interval

o [14,16] — [15,18]

5 [16,19] — [15,18] or [17,19]

o [12,14] = NULL

Interval Trees

e Following the methodology:
m Pick underlying data structure

m Decide what additional information to store
m Figure out how to maintain the information

m Develop the desired new operations

Interval Trees

e Following the methodology:

m Pick underlying data structure

o Red-black trees will store intervals, keyed on i—/ow
m Decide what additional information to store

m Figure out how to maintain the information

m Develop the desired new operations

Interval Trees

e Following the methodology:

m Pick underlying data structure
o Red-black trees will store intervals, keyed on i—/ow

m Decide what additional information to store

o We will store max, the maximum endpoint in the
subtree rooted at i

m Figure out how to maintain the information

m Develop the desired new operations

Interval Trees

What are the max fields?

Interval Trees

Note that: x — high

X — max = max] x — left — max

X — right — max

Interval Trees

e Following the methodology:
m Pick underlying data structure

o Red-black trees will store intervals, keyed on i—/ow

m Decide what additional information to store

o Store the maximum endpoint in the subtree rooted at i

m Figure out how to maintain the information

o How would we maintain max field for a BST?
o What's different?

m Develop the desired new operations

Interval Trees

[11,35]
35

rightRotate(y)

<
<

leftRotate (x)

o What are the new max values for the subtrees?

Interval Trees

[11,35]
35 rightRotate(y)

leftRotate (x)

o What are the new max values for the subtrees?
e A: Unchanged

o What are the new max values for x and y?

Interval Trees

[11,35]
35 rightRotate(y)

leftRotate (x)

o What are the new max values for the subtrees?
e A: Unchanged

o What are the new max values for x and y?

e A: root value unchanged, recompute other

Interval Trees

e Following the methodology:

m Pick underlying data structure
o Red-black trees will store intervals, keyed on i—/ow

m Decide what additional information to store

o Store the maximum endpoint in the subtree rooted at i

m Figure out how to maintain the information
o Insert: update max on way down, during rotations

o Delete: similar

m Develop the desired new operations

Searching Interval Trees

IntervalSearch (T, 1)

{

x = T->root;

while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max = i->low)
x = x->left;
else
x = x->right;

return x

}
o What will be the running time?

IntervalSearch() Example

o Fxample: search for interval % -
overlapping [14,16]

IntervalSearch (T, 1)
{
x = T->root;
while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max = i->low)
x = x->left;
else
X = x->right;

return x

IntervalSearch() Example

o Fxample: search for interval % -
overlapping [12,14]

IntervalSearch (T, 1)
{
x = T->root;
while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max = i->low)
x = x->left;
else
X = x->right;

return x

Correctness of IntervalSearch()

e Key idea: need to check only 1 of node’s 2
children
m Case 1: search goes right
o Show that 3 overlap in right subtree, or no overlap at all

m Case 2: search goes left

o Show that 3 overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

e Case 1: if search goes right, 4 overlap in the right
subtree or no overlap in either subtree

m If 3 overlap in right subtree, we're done

m Otherwise:
o x—left =NULL, or x — left = max < 1 — low (Why?)

o Thus, no overlap in left subtree!

while (x != NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max = i->low)
x = x->left;
else
X = x->right;

return x;

Correctness of IntervalSearch()

e Case 2: if search goes left, 4 overlap in the left
subtree or no overlap in either subtree

m If Jd overlap in left subtree, we're done
m Otherwise:

o 1 —>low = x —left =max, by branch condition
o X —left =max =y —high for some y in left subtree
o Since i1 and y don’t overlap and i —low =< y —high,
1 —=high <y —low
o Since tree is sorted by low’s, i —high < any low in right subtree

o Thus, no overlap in right subtree

while (x '= NULL && 'overlap(i, x->interval))
if (x->left '= NULL && x->left->max = i->low)
x = x->left;
else
X = x->right;
return x;

