
Advanced Data Structures

Medians and Order Statistics

Order Statistics

● The ith order statistic in a set of n elements is
 the ith smallest element

● The minimum is thus the 1st order statistic
● The maximum is the nth order statistic
● The median is the n/2 order statistic

■  If n is even, there are 2 medians
● How can we calculate order statistics?
● What is the running time?

Order Statistics

● How many comparisons are needed to find the
 minimum element in a set? The maximum?

● Can we find the minimum and maximum with
 less than twice the cost?

● Yes:
■  Walk through elements by pairs

◆ Compare each element in pair to the other
◆ Compare the largest to maximum, smallest to minimum

■  Total cost: 3 comparisons per 2 elements = O(3n
/2)

Finding Order Statistics:
The Selection Problem

● A more interesting problem is selection:
 finding the ith smallest element of a set

● We will show:
■  A practical randomized algorithm with O(n)

 expected running time
■  A cool algorithm of theoretical interest only with

 O(n) worst-case running time

Randomized Selection

● Key idea: use partition() from quicksort
■  But, only need to examine one subarray
■  This savings shows up in running time: O(n)

q = RandomizedPartition(A, p, r)

≤ A[q] ≥ A[q]

q p r

Randomized Selection

RandomizedSelect(A, p, r, i)
 if (p == r) then return A[p];
 q = RandomizedPartition(A, p, r)
 k = q - p + 1;
 if (i == k) then return A[q];
 if (i < k) then
 return RandomizedSelect(A, p, q-1, i);
 else
 return RandomizedSelect(A, q+1, r, i-k);

≤ A[q] ≥ A[q]

k

q p r

Randomized Selection

● Analyzing RandomizedSelect()
■  Worst case: partition always 0:n-1

T(n) = T(n-1) + O(n) = ???
 = O(n2) (arithmetic series)
◆ No better than sorting!

■ “Best” case: suppose a 9:1 partition
T(n) = T(9n/10) + O(n) = ???
 = O(n) (Master Theorem, case 3)
◆ Better than sorting!
◆ What if this had been a 99:1 split?

Randomized Selection

● Average case
■  For upper bound, assume ith element always falls

 in larger side of partition:

■  Let’s show that T(n) = O(n) by substitution

() ()() ()

() ()∑

∑

−

=

−

=

Θ+≤

Θ+−−≤

1

2/

1

0

2

1,max1

n

nk

n

k

nkT
n

nknkT
n

nT

What happened here?

What happened here? “Split” the recurrence

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) ≤ cn for sufficiently large c:
()

()

()

() ()

() ()nncnc

nnnnn
n
c

nkk
n
c

nck
n

nkT
n

nT

n

k

n

k

n

nk

n

nk

Θ+⎟
⎠

⎞
⎜
⎝

⎛ −−−=

Θ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−−=

Θ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

Θ+≤

Θ+≤

∑∑

∑

∑

−

=

−

=

−

=

−

=

1
22

1

2
1

22
11

2
12

2

2

)(2)(

12

1

1

1

1

2/

1

2/

The recurrence we started with

Substitute T(n) ≤ cn for T(k)

Expand arithmetic series

Multiply it out

What happened here? Subtract c/2

What happened here?

What happened here?

What happened here?

Randomized Selection

● Assume T(n) ≤ cn for sufficiently large c:
The recurrence so far

Multiply it out

Rearrange the arithmetic

What we set out to prove

() ()

()

()

()

enough) big is c if(
24

24

24

1
22

1)(

cn

nccncn

nccncn

nccnccn

nncncnT

≤

⎟
⎠

⎞
⎜
⎝

⎛ Θ−+−=

Θ+−−=

Θ++−−=

Θ+⎟
⎠

⎞
⎜
⎝

⎛ −−−≤

Worst-Case Linear-Time Selection

● Randomized algorithm works well in practice
● What follows is a worst-case linear time

 algorithm, really of theoretical interest only
● Basic idea:

■  Generate a good partitioning element
■  Call this element x

Worst-Case Linear-Time Selection

● The algorithm in words:
1. Divide n elements into groups of 5
2. Find median of each group (How? How long?)
3. Use Select() recursively to find median x of the ⎣n/5⎦

 medians
4. Partition the n elements around x. Let k = rank(x)
5. if (i == k) then return x

 if (i < k) then use Select() recursively to find ith smallest
 element in first partition
 else (i > k) use Select() recursively to find (i-k)th smallest
 element in last partition

Worst-Case Linear-Time Selection

● How many of the 5-element medians are ≤ x?
■  At least 1/2 of the medians = ⎣⎣n/5⎦ / 2⎦ = ⎣n/10⎦

● How many elements are ≤ x?
■  At least 3 ⎣n/10 ⎦ elements

● For large n, 3 ⎣n/10 ⎦ ≥ n/4 (How large?)
● So at least n/4 elements ≤ x
● Similarly: at least n/4 elements ≥ x

Worst-Case Linear-Time Selection

● Thus after partitioning around x, step 5 will
 call Select() on at most 3n/4 elements

● The recurrence is therefore:
⎣ ⎦() () ()
() () ()

()()
enough big is if

20
)(2019

)(435
435

435)(

ccn
ncncn

ncn
ncncn

nnTnT
nnTnTnT

≤

Θ−−=

Θ+=

Θ++≤

Θ++≤

Θ++≤

???

???

???

???

???

 ⎣n/5 ⎦ ≤ n/5

Substitute T(n) = cn

Combine fractions

Express in desired form

What we set out to prove

Worst-Case Linear-Time Selection

●  Intuitively:
■  Work at each level is a constant fraction (19/20)

 smaller
◆ Geometric progression!

■  Thus the O(n) work at the root dominates

Linear-Time Median Selection

● Given a “black box” O(n) median
 algorithm, what can we do?
■  ith order statistic:

◆ Find median x
◆ Partition input around x
◆  if (i ≤ (n+1)/2) recursively find ith element of first half
◆  else find (i - (n+1)/2)th element in second half
◆ T(n) = T(n/2) + O(n) = O(n)

Linear-Time Median Selection

● Worst-case O(n lg n) quicksort
■  Find median x and partition around it
■  Recursively quicksort two halves
■  T(n) = 2T(n/2) + O(n) = O(n lg n)

Dynamic Order Statistics

●  We’ve seen algorithms for finding the ith
 element of an unordered set in O(n) time

●  Next, a structure to support finding the ith
 element of a dynamic set in O(lg n) time
■ What operations do dynamic sets usually support?
■ What structure works well for these?
■ How could we use this structure for order

 statistics?
■ How might we augment it to support efficient

 extraction of order statistics?

Order Statistic Trees

●  OS Trees augment red-black trees:
■ Associate a size field with each node in the tree
■ x->size records the size of subtree rooted at x,

 including x itself:
M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Selection On OS Trees

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

How can we use this property
to select the ith element of the set?

OS-Select

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

OS-Select Example

●  Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

OS-Select Example

●  Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

i = 5
r = 6

OS-Select Example

●  Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

i = 5
r = 6

i = 5
r = 2

OS-Select Example

●  Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

OS-Select Example

●  Example: show OS-Select(root, 5):

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

i = 5
r = 6

i = 5
r = 2

i = 3
r = 2

i = 1
r = 1

OS-Select: A Subtlety

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

●  What happens at the leaves?
●  How can we deal elegantly with this?

Oops…

OS-Select

OS-Select(x, i)
{
 r = x->left->size + 1;
 if (i == r)
 return x;
 else if (i < r)
 return OS-Select(x->left, i);
 else
 return OS-Select(x->right, i-r);
}

●  What will be the running time?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

What is the rank of this element?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Of this one? Why?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

Of the root? What’s the pattern here?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

What about the rank of this element?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

This one? What’s the pattern here?

OS-Rank

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

●  What will be the running time?

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 1:
find rank of element with key H

y
r = 1

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 1:
 find rank of element with key H

r = 1

y
r = 1+1+1 = 3

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 1:
find rank of element with key H

r = 1

r = 3

y
r = 3+1+1 = 5

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 1:
find rank of element with key H

r = 1

r = 3

r = 5

y
r = 5

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 2:
find rank of element with key P

y
r = 1

Determining The
Rank Of An Element

M
8

C
5

P
2

Q
1

A
1

F
3

D
1

H
1

OS-Rank(T, x)
{
 r = x->left->size + 1;
 y = x;
 while (y != T->root)
 if (y == y->p->right)
 r = r + y->p->left->size + 1;
 y = y->p;
 return r;
}

Example 2:
find rank of element with key P

r = 1

y
r = 1 + 5 + 1 = 7

Maintaining Subtree Sizes

●  So by keeping subtree sizes, order statistic
 operations can be done in O(lg n) time

●  Maintain sizes during Insert() and Delete()
 operations
■  Insert(): Increment size fields of nodes traversed

 during search down the tree
■ Delete(): Decrement sizes along a path from the

 deleted node to the root
■ Both: Update sizes correctly during rotations

Maintaining Size Through Rotation

●  Salient point: rotation invalidates only x and y
●  Can recalculate their sizes in constant time
■ Why?

y
19

x
11

x
19

y
12

rightRotate(y)

leftRotate(x)

6 4

7 6

4 7

Augmenting Data Structures:
 Methodology

●  Choose underlying data structure
■  E.g., red-black trees

●  Determine additional information to maintain
■  E.g., subtree sizes

●  Verify that information can be maintained for
 operations that modify the structure
■  E.g., Insert(), Delete() (don’t forget rotations!)

●  Develop new operations
■  E.g., OS-Rank(), OS-Select()

Advanced Data Structures

Augmenting Data Structures:
Interval Trees

Review: Methodology For
 Augmenting Data Structures

●  Choose underlying data structure
●  Determine additional information to maintain
●  Verify that information can be maintained for

 operations that modify the structure
●  Develop new operations

Interval Trees

●  The problem: maintain a set of intervals
■ E.g., time intervals for a scheduling program:

10 7

11 5

8 4 18 15 23 21

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees

●  The problem: maintain a set of intervals
■ E.g., time intervals for a scheduling program:

■ Query: find an interval in the set that overlaps a
 given query interval
○  [14,16] → [15,18]
○  [16,19] → [15,18] or [17,19]
○  [12,14] → NULL

10 7

11 5

8 4 18 15 23 21

17 19

i = [7,10]; i →low = 7; i→high = 10

Interval Trees

●  Following the methodology:
■  Pick underlying data structure
■ Decide what additional information to store
■  Figure out how to maintain the information
■ Develop the desired new operations

Interval Trees

●  Following the methodology:
■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store
■  Figure out how to maintain the information
■ Develop the desired new operations

Interval Trees

●  Following the methodology:
■  Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store
○ We will store max, the maximum endpoint in the

 subtree rooted at i
■  Figure out how to maintain the information
■ Develop the desired new operations

Interval Trees

[17,19]

[5,11]

[21,23]

[4,8]

[15,18]

[7,10]

int
max

What are the max fields?

⎪
⎩

⎪
⎨

⎧

→→

→→

→

=→

max
maxmaxmax

rightx
leftx
highx

x

Interval Trees

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

int
max

Note that:

Interval Trees

●  Following the methodology:
■  Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store
○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information
○ How would we maintain max field for a BST?
○ What’s different?

■ Develop the desired new operations

Interval Trees

●  What are the new max values for the subtrees?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)
…
14

…
19

…
30

…
 ???

…
 ???

…
 ???

Interval Trees

●  What are the new max values for the subtrees?
●  A: Unchanged
●  What are the new max values for x and y?

[11,35]
35

[6,20]
20

[6,20]
???

[11,35]
???

rightRotate(y)

leftRotate(x)
…
14

…
19

…
30

…
 14

…
 19

…
 30

Interval Trees

●  What are the new max values for the subtrees?
●  A: Unchanged
●  What are the new max values for x and y?
●  A: root value unchanged, recompute other

[11,35]
35

[6,20]
20

[6,20]
35

[11,35]
35

rightRotate(y)

leftRotate(x)
…
14

…
19

…
30

…
 14

…
 19

…
 30

Interval Trees

●  Following the methodology:
■  Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store
○ Store the maximum endpoint in the subtree rooted at i

■  Figure out how to maintain the information
○  Insert: update max on way down, during rotations
○ Delete: similar

■ Develop the desired new operations

Searching Interval Trees

IntervalSearch(T, i)
{
 x = T->root;
 while (x != NULL && !overlap(i, x->interval))
 if (x->left != NULL && x->left->max ≥ i->low)
 x = x->left;
 else
 x = x->right;
 return x
}

●  What will be the running time?

IntervalSearch() Example

●  Example: search for interval
overlapping [14,16]

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

IntervalSearch(T, i)

{

 x = T->root;

 while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max ≥ i->low)

 x = x->left;

 else

 x = x->right;

 return x

}

IntervalSearch() Example

●  Example: search for interval
overlapping [12,14]

[17,19]
23

[5,11]
18

[21,23]
23

[4,8]
8

[15,18]
18

[7,10]
10

IntervalSearch(T, i)

{

 x = T->root;

 while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max ≥ i->low)

 x = x->left;

 else

 x = x->right;

 return x

}

Correctness of IntervalSearch()

●  Key idea: need to check only 1 of node’s 2
 children
■ Case 1: search goes right

○ Show that ∃ overlap in right subtree, or no overlap at all
■ Case 2: search goes left

○ Show that ∃ overlap in left subtree, or no overlap at all

Correctness of IntervalSearch()

●  Case 1: if search goes right, ∃ overlap in the right
 subtree or no overlap in either subtree
■  If ∃ overlap in right subtree, we’re done
■  Otherwise:

○  x→left = NULL, or x → left → max < i → low (Why?)
○  Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

 if (x->left != NULL && x->left->max ≥ i->low)

 x = x->left;

 else

 x = x->right;

 return x;

Correctness of IntervalSearch()

●  Case 2: if search goes left, ∃ overlap in the left
 subtree or no overlap in either subtree
■  If ∃ overlap in left subtree, we’re done
■  Otherwise:

○  i →low ≤ x →left →max, by branch condition
○  x →left →max = y →high for some y in left subtree
○  Since i and y don’t overlap and i →low ≤ y →high,

i →high < y →low
○  Since tree is sorted by low’s, i →high < any low in right subtree
○  Thus, no overlap in right subtree

while (x != NULL && !overlap(i, x->interval))
 if (x->left != NULL && x->left->max ≥ i->low)
 x = x->left;
 else
 x = x->right;
 return x;

