
Advanced Data Structures 

Medians and Order Statistics 



Order Statistics 

● The ith order statistic in a set of n elements is
 the ith smallest element 

● The minimum is thus the 1st order statistic  
● The maximum is  the nth order statistic 
● The median is the n/2 order statistic 

■  If n is even, there are 2 medians 
● How can we calculate order statistics? 
● What is the running time? 



Order Statistics 

● How many comparisons are needed to find the
 minimum element in a set?  The maximum? 

● Can we find the minimum and maximum with
 less than twice the cost? 

● Yes: 
■  Walk through elements by pairs 

◆ Compare each element in pair to the other 
◆ Compare the largest to maximum, smallest to minimum 

■  Total cost: 3 comparisons per 2 elements = O(3n
/2) 



Finding Order Statistics:  
The Selection Problem 

● A more interesting problem is selection:
 finding the ith smallest element of a set  

● We will show: 
■  A practical randomized algorithm with O(n)

 expected running time 
■  A cool algorithm of theoretical interest only with

 O(n) worst-case running time 



Randomized Selection 

● Key idea: use partition() from quicksort 
■  But, only need to examine one subarray 
■  This savings shows up in running time: O(n) 
 
q = RandomizedPartition(A, p, r) 

≤ A[q] ≥ A[q] 

q p r 



Randomized Selection 

RandomizedSelect(A, p, r, i) 
    if (p == r) then return A[p]; 
    q = RandomizedPartition(A, p, r) 
    k = q - p + 1; 
    if (i == k) then return A[q];    
    if (i < k) then 
        return RandomizedSelect(A, p, q-1, i); 
    else 
        return RandomizedSelect(A, q+1, r, i-k); 
     

≤ A[q] ≥ A[q] 

k 

q p r 



Randomized Selection 

● Analyzing RandomizedSelect() 
■  Worst case: partition always 0:n-1 

T(n)  = T(n-1) + O(n)  = ??? 
   = O(n2)  (arithmetic series) 
◆ No better than sorting! 

■ “Best” case: suppose a 9:1 partition 
T(n)  = T(9n/10) + O(n)  = ??? 
   = O(n)  (Master Theorem, case 3) 
◆ Better than sorting! 
◆ What if this had been a 99:1 split? 



Randomized Selection 

● Average case 
■  For upper bound, assume ith element always falls

 in larger side of partition: 

■  Let’s show that T(n) = O(n) by substitution 
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What happened here? “Split” the recurrence 

What happened here? 

What happened here? 

What happened here? 

Randomized Selection 

● Assume T(n) ≤ cn for sufficiently large c: 
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The recurrence we started with 

Substitute T(n) ≤ cn  for T(k)  

Expand arithmetic series 

Multiply it out 



What happened here? Subtract c/2    

What happened here? 

What happened here? 

What happened here? 

Randomized Selection 

● Assume T(n) ≤ cn for sufficiently large c: 
The recurrence so far 

Multiply it out     

Rearrange the arithmetic   

What we set out to prove 
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Worst-Case Linear-Time Selection 

● Randomized algorithm works well in practice 
● What follows is a worst-case linear time

 algorithm, really of theoretical interest only 
● Basic idea:  

■  Generate a good partitioning element 
■  Call this element x 



Worst-Case Linear-Time Selection 

● The algorithm in words: 
1.  Divide n elements into groups of 5 
2.  Find median of each group (How?  How long?) 
3.  Use Select() recursively to find median x of the ⎣n/5⎦ 

 medians 
4.  Partition the n elements around x.  Let k = rank(x) 
5.  if (i == k) then return x 

  if (i < k) then use Select() recursively to find ith smallest 
  element in first partition 
 else (i > k) use Select() recursively to find (i-k)th smallest 
  element in last partition 



Worst-Case Linear-Time Selection 

● How many of the 5-element medians are ≤ x? 
■  At least 1/2 of the medians = ⎣⎣n/5⎦ / 2⎦ = ⎣n/10⎦ 

● How many elements are ≤ x? 
■  At least 3 ⎣n/10 ⎦ elements 

● For large n,    3 ⎣n/10 ⎦ ≥ n/4  (How large?) 
● So at least n/4 elements ≤ x 
● Similarly: at least n/4 elements ≥ x 



Worst-Case Linear-Time Selection 

● Thus after partitioning around x, step 5 will
 call Select() on at most 3n/4 elements 

● The recurrence is therefore:  
⎣ ⎦( ) ( ) ( )
( ) ( ) ( )

( )( )
enough big is  if

20
)(2019

)(435
435

435)(

ccn
ncncn

ncn
ncncn

nnTnT
nnTnTnT

≤

Θ−−=

Θ+=

Θ++≤

Θ++≤

Θ++≤

??? 

??? 

??? 

??? 

??? 

 ⎣n/5 ⎦  ≤ n/5 

Substitute T(n) = cn 

Combine fractions  

Express in desired form 

What we set out to prove 



Worst-Case Linear-Time Selection 

●  Intuitively: 
■  Work at each level is a constant fraction (19/20)

 smaller 
◆ Geometric progression! 

■  Thus the O(n) work at the root dominates 



Linear-Time Median Selection 

● Given a “black box” O(n) median
 algorithm, what can we do? 
■  ith order statistic:  

◆ Find median x 
◆ Partition input around x 
◆  if (i ≤ (n+1)/2)  recursively find ith element of first half 
◆  else find (i - (n+1)/2)th element in second half 
◆ T(n) = T(n/2) + O(n) = O(n) 



Linear-Time Median Selection 

● Worst-case O(n lg n) quicksort 
■  Find median x and partition around it 
■  Recursively quicksort two halves 
■  T(n) = 2T(n/2) + O(n) = O(n lg n) 



Dynamic Order Statistics 

●  We’ve seen algorithms for finding the ith
 element of an unordered set in O(n) time 

●  Next, a structure to support finding the ith
 element of a dynamic set in O(lg n) time 
■ What operations do dynamic sets usually support? 
■ What structure works well for these?  
■ How could we use this structure for order

 statistics? 
■ How might we augment it to support efficient

 extraction of order statistics? 



Order Statistic Trees 

●  OS Trees augment red-black trees:  
■ Associate a size field with each node in the tree 
■ x->size records the size of subtree rooted at x,

 including x itself: 
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Selection On OS Trees 
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How can we use this property  
to select the ith element of the set? 



OS-Select 

OS-Select(x, i) 
{ 
    r = x->left->size + 1; 
    if (i == r) 
        return x; 
    else if (i < r) 
        return OS-Select(x->left, i); 
    else    
        return OS-Select(x->right, i-r); 
} 



OS-Select Example 

●  Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
{ 
  r = x->left->size + 1; 
  if (i == r) 
    return x; 
  else if (i < r) 
    return OS-Select(x->left, i); 
  else    
    return OS-Select(x->right, i-r); 
} 



OS-Select Example 

●  Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
{ 
  r = x->left->size + 1; 
  if (i == r) 
    return x; 
  else if (i < r) 
    return OS-Select(x->left, i); 
  else    
    return OS-Select(x->right, i-r); 
} 

i = 5 
r = 6 



OS-Select Example 

●  Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
{ 
  r = x->left->size + 1; 
  if (i == r) 
    return x; 
  else if (i < r) 
    return OS-Select(x->left, i); 
  else    
    return OS-Select(x->right, i-r); 
} 

i = 5 
r = 6 

i = 5 
r = 2 



OS-Select Example 

●  Example: show OS-Select(root, 5): 

M 
8 

C 
5 

P 
2 

Q 
1 

A 
1 

F 
3 

D 
1 

H 
1 

OS-Select(x, i) 
{ 
  r = x->left->size + 1; 
  if (i == r) 
    return x; 
  else if (i < r) 
    return OS-Select(x->left, i); 
  else    
    return OS-Select(x->right, i-r); 
} 

i = 5 
r = 6 

i = 5 
r = 2 

i = 3 
r = 2 



OS-Select Example 

●  Example: show OS-Select(root, 5): 
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OS-Select(x, i) 
{ 
  r = x->left->size + 1; 
  if (i == r) 
    return x; 
  else if (i < r) 
    return OS-Select(x->left, i); 
  else    
    return OS-Select(x->right, i-r); 
} 

i = 5 
r = 6 

i = 5 
r = 2 

i = 3 
r = 2 

i = 1 
r = 1 



OS-Select: A Subtlety 

OS-Select(x, i) 
{ 
    r = x->left->size + 1; 
    if (i == r) 
        return x; 
    else if (i < r) 
        return OS-Select(x->left, i); 
    else    
        return OS-Select(x->right, i-r); 
} 

●  What happens at the leaves? 
●  How can we deal elegantly with this? 

Oops… 



OS-Select 

OS-Select(x, i) 
{ 
    r = x->left->size + 1; 
    if (i == r) 
        return x; 
    else if (i < r) 
        return OS-Select(x->left, i); 
    else    
        return OS-Select(x->right, i-r); 
} 

●  What will be the running time? 



Determining The  
Rank Of An Element 
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What is the rank of this element? 



Determining The  
Rank Of An Element 
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Of this one?  Why? 



Determining The  
Rank Of An Element 
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Of the root?  What’s the pattern here? 



Determining The  
Rank Of An Element 

M 
8 

C 
5 

P 
2 

Q 
1 

A 
1 

F 
3 

D 
1 

H 
1 

What about the rank of this element? 



Determining The  
Rank Of An Element 
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This one?  What’s the pattern here? 



OS-Rank 

OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

●  What will be the running time? 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 1:  
find rank of element with key H 

y 
r = 1 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 1: 
 find rank of element with key H 

 
r = 1 

y 
r = 1+1+1 = 3 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 1: 
find rank of element with key H 

 
r = 1 

 
r = 3 

y 
r = 3+1+1 = 5 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 1:  
find rank of element with key H 

 
r = 1 

 
r = 3 

 
r = 5 

y 
r = 5 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 2:  
find rank of element with key P 

y 
r = 1 



Determining The  
Rank Of An Element 
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OS-Rank(T, x) 
{ 
    r = x->left->size + 1; 
    y = x; 
    while (y != T->root) 
        if (y == y->p->right) 
            r = r + y->p->left->size + 1; 
        y = y->p; 
    return r; 
} 

Example 2:  
find rank of element with key P 

 
r = 1 

y 
r = 1 + 5 + 1 = 7 



Maintaining Subtree Sizes 

●  So by keeping subtree sizes, order statistic
 operations can be done in O(lg n) time 

●  Maintain sizes during Insert() and Delete()
 operations 
■  Insert(): Increment size fields of nodes traversed

 during search down the tree 
■ Delete(): Decrement sizes along a path from the

 deleted node to the root 
■ Both: Update sizes correctly during rotations 



Maintaining Size Through Rotation 

●  Salient point: rotation invalidates only x and y 
●  Can recalculate their sizes in constant time 
■ Why? 

y 
19 

x 
11 

x 
19 

y 
12 

rightRotate(y) 

leftRotate(x) 

6 4 

7 6 

4 7 



Augmenting Data Structures:
 Methodology 

●  Choose underlying data structure 
■  E.g., red-black trees 

●  Determine additional information to maintain 
■  E.g., subtree sizes 

●  Verify that information can be maintained for
 operations that modify the structure 
■  E.g., Insert(), Delete()    (don’t forget rotations!) 

●  Develop new operations 
■  E.g., OS-Rank(), OS-Select() 



Advanced Data Structures 

Augmenting Data Structures:  
Interval Trees 



Review: Methodology For
 Augmenting Data Structures 

●  Choose underlying data structure 
●  Determine additional information to maintain 
●  Verify that information can be maintained for

 operations that modify the structure 
●  Develop new operations 



Interval Trees 

●  The problem: maintain a set of intervals 
■ E.g., time intervals for a scheduling program: 

10 7 

11 5 

8 4 18 15 23 21 

17 19 

i = [7,10]; i →low = 7; i→high = 10 



Interval Trees 

●  The problem: maintain a set of intervals 
■ E.g., time intervals for a scheduling program: 

■ Query: find an interval in the set that overlaps a
 given query interval 
○  [14,16] → [15,18] 
○  [16,19] → [15,18] or [17,19] 
○  [12,14] → NULL 

10 7 

11 5 

8 4 18 15 23 21 

17 19 

i = [7,10]; i →low = 7; i→high = 10 



Interval Trees 

●  Following the methodology: 
■  Pick underlying data structure 
■ Decide what additional information to store 
■  Figure out how to maintain the information 
■ Develop the desired new operations 



Interval Trees 

●  Following the methodology: 
■ Pick underlying data structure 

○ Red-black trees will store intervals, keyed on i→low 

■ Decide what additional information to store 
■  Figure out how to maintain the information 
■ Develop the desired new operations 



Interval Trees 

●  Following the methodology: 
■  Pick underlying data structure 

○ Red-black trees will store intervals, keyed on i→low 

■ Decide what additional information to store 
○ We will store max, the maximum endpoint in the

 subtree rooted at i 
■  Figure out how to maintain the information 
■ Develop the desired new operations 



Interval Trees 

[17,19] 
 

[5,11] 
 

[21,23] 
 

[4,8] 
 

[15,18] 
 

[7,10] 
 

int 
max 

What are the max fields? 



⎪
⎩

⎪
⎨

⎧

→→

→→

→

=→

max
maxmaxmax

rightx
leftx
highx

x

Interval Trees 

[17,19] 
23 

[5,11] 
18 

[21,23] 
23 

[4,8] 
8 

[15,18] 
18 

[7,10] 
10 

int 
max 

Note that: 
 



Interval Trees 

●  Following the methodology: 
■  Pick underlying data structure 

○ Red-black trees will store intervals, keyed on i→low 

■ Decide what additional information to store 
○ Store the maximum endpoint in the subtree rooted at i 

■ Figure out how to maintain the information 
○ How would we maintain max field for a BST? 
○ What’s different? 

■ Develop the desired new operations 



Interval Trees 

●  What are the new max values for the subtrees? 
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leftRotate(x) 
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Interval Trees 

●  What are the new max values for the subtrees? 
●  A: Unchanged 
●  What are the new max values for x and y? 
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Interval Trees 

●  What are the new max values for the subtrees? 
●  A: Unchanged 
●  What are the new max values for x and y? 
●  A: root value unchanged, recompute other 

[11,35] 
35 
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rightRotate(y) 

leftRotate(x) 
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Interval Trees 

●  Following the methodology: 
■  Pick underlying data structure 

○ Red-black trees will store intervals, keyed on i→low 

■ Decide what additional information to store 
○ Store the maximum endpoint in the subtree rooted at i 

■  Figure out how to maintain the information 
○  Insert: update max on way down, during rotations 
○ Delete: similar 

■ Develop the desired new operations 



Searching Interval Trees 

IntervalSearch(T, i) 
{ 
    x = T->root; 
    while (x != NULL && !overlap(i, x->interval)) 
        if (x->left != NULL && x->left->max ≥ i->low) 
            x = x->left; 
        else 
            x = x->right; 
    return x 
} 

●  What will be the running time? 



IntervalSearch() Example 

●  Example: search for interval  
overlapping [14,16] 
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IntervalSearch(T, i) 

{ 

    x = T->root; 

    while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max ≥ i->low) 

            x = x->left; 

        else 

            x = x->right; 

    return x 

} 



IntervalSearch() Example 

●  Example: search for interval  
overlapping [12,14] 
 

[17,19] 
23 

[5,11] 
18 

[21,23] 
23 

[4,8] 
8 

[15,18] 
18 

[7,10] 
10 

IntervalSearch(T, i) 

{ 

    x = T->root; 

    while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max ≥ i->low) 

            x = x->left; 

        else 

            x = x->right; 

    return x 

} 



Correctness of IntervalSearch() 

●  Key idea: need to check only 1 of node’s 2
 children 
■ Case 1: search goes right 

○ Show that ∃ overlap in right subtree, or no overlap at all 
■ Case 2: search goes left 

○ Show that ∃ overlap in left subtree, or no overlap at all 



Correctness of IntervalSearch() 

●  Case 1: if search goes right, ∃ overlap in the right
 subtree or no overlap in either subtree 
■  If  ∃ overlap in right subtree, we’re done 
■  Otherwise: 

○  x→left = NULL, or  x → left → max  <  i → low (Why?) 
○  Thus, no overlap in left subtree! 

while (x != NULL && !overlap(i, x->interval)) 

        if (x->left != NULL && x->left->max ≥ i->low) 

            x = x->left; 

        else 

            x = x->right; 

    return x; 



Correctness of IntervalSearch() 

●  Case 2: if search goes left, ∃ overlap in the left
 subtree or no overlap in either subtree 
■  If ∃ overlap in left subtree, we’re done 
■  Otherwise: 

○  i →low ≤ x →left →max, by branch condition 
○  x →left →max = y →high for some y in left subtree 
○  Since i and y don’t overlap and i →low ≤ y →high, 

i →high < y →low 
○  Since tree is sorted by low’s, i →high < any low in right subtree 
○  Thus, no overlap in right subtree 

while (x != NULL && !overlap(i, x->interval)) 
        if (x->left != NULL && x->left->max ≥ i->low) 
            x = x->left; 
        else 
            x = x->right; 
    return x; 


