Web Data Management

Data Compression and Search

Similarity Search

Overview

The foundations of

how different compression tools work.

how to manage a large amount of data on

small devices.
how to search gigabytes, terabytes or

petabytes of data.

how to perform full text search efficiently
without added indexing.

how to query data with similarity measurements
efficiently.

Course A1ims

As the amount of Web data increases, 1t 1s
becoming vital to not only be able to search and
retrieve this information quickly, but also to store
1t 1n a compact manner.

This 1s especially important for mobile devices
which are becoming increasingly popular.

Without loss of generality, within this course, we

assume Web data (excluding media content) will
be in XML and 1ts like (e.g., XHTML).

Course A1ims

. Introduce the concepts, theories, and algorithmic 1ssues
important to Web data compression and search.

. Discuss similarity search techniques for flat strings and
hierarchical data (for example, XML).

. Selected methods will be presented, their effectiveness
and efficiency will be discussed.

. Filtering techniques to improve the efficiency will be
introduced.

Course 1nfo

e Lectures: 14:00-16:25 (Mon)
—Y 201
— Weeks 1-12

Lecturer 1n charge

£ 1
Office: Room 230, Computer Building
Email: lujianhua@seu.edu.cn

Assumed knowledge

At the start of this course students should be able to:

 understand fundamental data structures.
« knowledge and tools of RDBMS and SQL

« produce correct programs in C/C++, 1.e., compilation,
running, testing, debugging, etc.

 appreciate use of abstraction in computing.
« produce readable code with clear documentation.

Final Mark

« Assignments (50%)
» Representations (30%)
in class
with/without preparations
* Final report (20%)
About Assignments/Representations

Assignments

* Programming assignments (except
assigtl) are relatively challenging

* In addition to correctness, reasonable
performance 1s required

Tentative course schedule

Week Lecture
1 Course overview; basic information theory

2 Arithmetic coding, adaptive coding, dictionary coding
3 Adaptive Huffman, LZW; Overview of BWT

4 Pattern matching and regular expression

5 FM index, backward search, suffix array

6 Suffix array O(n), compressed BWT

7 XML overview

8 XML compression

9 Similarity search overview

10 String edit distance

11 g-gram distance
12 Trees, RDB, and tree edit distance

Now

* Others you should know...

* Data compression and search starts ...

Learning outcomes

have a good understanding of the fundamentals of text
compression

be introduced to advanced data compression techniques
such as those based on Burrows Wheeler Transform

have programming experience in Web data compression
and optimization

have a deep understanding of XML and selected XML
processing and optimization techniques

understand the advantages and disadvantages of data
compression for Web search

have a basic understanding of XML distributed query
processing

appreciate the past, present and future of data
compression and Web data optimization

Questions to discuss

hat 1s data compression
hy data compression

nere

Compression

e Minimize amount of information to be
stored / transmitted

* Transform a sequence of characters into a
new bit sequence

— same information content (for lossless)
— as short as possible

Familiar tools

* Tools for
—Z
—.ZIp
— .g7
—.bz2

A glimpse

raaabbccccdabbbbeee$

Run-length coding

* Run-length coding (encoding) 1s a very

widely used and simple compression
Technique

— replace runs of symbols (possibly of length

one) with pairs of (symbol, run-length)

RLE

raaabbccccdaaaaabbbbeeeeeced$

How?

ra3bbc4dasb4e6d$

Example: BWT

rabcabcababaabacabcabcabcababaa$

Example: BWT

rabcabcababaabacabcabcabcababaa$

aabbbbccacccrcbaaaaaaaaaabbbbba$

Example: BWT+RLE

rabcabcababaabacabcabcabcababaa$

aabbbbccacccrcbaaaaaaaaaabbbbba$

aab4ccac3rcbal 0b5a$

HTTP compression

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Etag: "3f80f-1b6-3e1cb03b"

Accept-Ranges: bytes

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip

0g In 0 Register

Xte I e f'l k Develop'er. - 1al i 1 w Fuchase

Web Ul Components & Controls Mobile Ul Controls & Components Code Anatysis & Refactoring Support Telertk TV

Degklop Ul Componente & Conlrole Reporting & ORM Automited Testing & Mocking Community Services

RadCompression for ASP.NET AJAX

Homa > Devabear Pradd ity o Procss » ASPIET A JAX Corfrols » Compresaon

oVG[‘V‘e\‘J Thig and T0= other corlrals sre par of
11 RadCompression IS @ proud mamber of RadConrols for ASP NET & JAX
001 Telenk's AJafamily of performance
0001 - oplimization helpar controls. 1 aulomatically
00110 ZIP-3 the AJAX and WebSenice rasponces for
001010 00110010 even faster data ransfers and imgraved page Down load
11100 parformanca Tha Comprassion process is $999 °f Fren Tria
110 = carpletely ranaparertto your cllert-side code
(1);0 WJavaSenptor Silvedighth and your server-sida
code Getthis product + 7 more & port of
B See Demos Premium Collection Bundle
wik LN 10r webwaskiog
Features

Download
= Types of Compressed Content $1299 s HL—: :
f tate Comprassion

s Performance Tasts

g Compression Peromance Tesls

Add-ons for RadControls

a Wisual Sludio Plus-in Tor Autornatad Tesling
Talarik ASF.MET Al Compression 1s noidesigned to be 3 comglete raplacement for other HTTF —
sion Wols, such as the built-in HTTP Comaression in 1S 7. Instead, itis designed o work n Visual Style Builder
With those e315tng 10012 10 COVEX SCENANNS thay USUAINMISS - namely he compression of bits
moving back and forth in AJ&2 (and nor Sitverlight) spelications. Telenk ASP.INET AlAd

Types of Compressed Content

comp

G visual Studio Ed2nslons

From: http://www.telerik.com/products/aspnet-ajax/compression.aspx

Storwize

Better Storage Utilization
Reduces existing storage utilization up to 80%
No performance degradation

Lowers Capital and Operational Costs
Better Energy Efficiency

Less to store, power and cool

Virtualized Server Servers

e N

-t

Gt

Mgt. Console

Switches
IBM Real-time
Compression
Appliances

i l

Source: from storwize.com

Anti-virus definitions & updates

 (FU LiveUpdate

Options

Welcome to Livelpdate

(sl pdate
Livelpdate Status

Options

The following updates have b :

() > Symantec Security S oftwar Welcome to LiveUpdate Express , symantecm
> Antivirug and antispyware de ')

» Intrusion Prevention signatu Livel pdate Status

Total Download 114468.0 KB -

Downloading &ntivinus and antispyware definitions [2 of 2, complete.

. % D ownloading Antivirus and an ‘ Downloading Intrusion Prevention signatures (1 of 1), complete. F
P agm G Downloading Antiviug and an R Downloading Symantec Secunty Software (1 of 2], complete.
] - complete... II Downloading Symantec Security Software (2 of 2], complete.

Installing Antivirus and antispyware definitions [1 of 2], complete.
Installing Antivirus and antispyware definitions [2 of Z), complete.
Installing Intrusion Prewvention signatures (1 of 1), finished
decompressing.

Livelpdate will search for upd
components.

=

Click Cancel to quit Livel pd']

e m— Livelpdate will search for updates ta vour installed products and
Livack siotemen components.

Cancel

Privacy staterment

31

Others

» Software updates
¢.g., Reg files, UI schemas / definitions

» Software configuration/database updates

e.g., Virus database for anti-virus software

e Data streams
e.g., RSS

wong:Desktop wong$ 1s -1 image.jpg

- "WX @ 1 wong staff 671172 11 Feb 17:32 image.
wong:Desktop wong$ gzip image.jpg

wong:Desktop wong$ 1s -1 1mage.jpg.gz

—-PWX------ @ 1 wong staff 424840 11 Feb 17:32 image
wong:Desktop wong$ mv image.jpg.gz image.jz
wong:Desktop wong$ gzip 1mage.jz

wong:Desktop wong$ ls -1 image.jz.gz

- "WX @ 1 wong staff 424932 11 Feb 17:37 image
wong:Desktop wong$ my image.jz.gz image.jzz
wong:Desktop wong$ gzip image.jzz

wong :Desktop wong$ 1ls -1 image.jzz.gz

- WX ------ @ 1 wong staff 425018 11 Feb 17:32 image
wong:Desktop wong$

34

Similarity measure

If two objects compress better together than
separately, it means they share common
patterns and are similar.

From: Li, M. et al., “The similarity metric”, IEEE Transactions on Information Theory,
50(12), 2004

Overview

Compression refers to a process of coding that will
effectively reduce the total number of bits needed to
represent certain information.

e -~

Input Encoder Storage or Decoder
, > (compression) networks | (decompression)
data

Output

data

. .

Information theory studies efficient coding algorithms
— complexity, compression, likelihood of error

Compression

* There are two main categories

— Lossless (Input message = Output message)

— Lossy (Input message = Output message)
» Not necessarily reduce quality

Compression

Uncompressed Size

Compression Ratio =
P Compressed Size

Compressed Size

Space Savings = 1-
Uncompressed Size

Example

 Compress a 10MB file to 2MB
 Compression ratio =35 or 5:1

* Space savings = 0.8 or 80%

Terminology

* Coding (encoding) maps source messages from
alphabet (S) into codewords (C)

* Source message (symbol) 1s basic unit into
which a string 1s partitioned

— can be a single letter or a string of letters

Terminology (Types)

Block-block

— source message and codeword: fixed length
—e.g., ASCII

Block-variable

— source message: fixed; codeword: variable
— e.g., Huffman coding

Variable-block

— source message: variable; codeword: fixed
—e.g., LZW

Variable-variable

— source message and codeword: variable
— e.g., Arithmetic coding

Terminology (Symmetry)

* Symmetric compression

— requires same time for encoding and decoding
—used for live mode applications (teleconference)

e Asymmetric compression

— performed once when enough time 1s available
— decompression performed frequently, must be fast

—used for retrieval mode applications (e.g., an
interactive CD-ROM)

Decodable

A code 1s

— distinct 1f each codeword can be distinguished
from every other (mapping 1s one-to-one)

—uniquely decodable 1f every codeword 1s
identifiable when immersed in a sequence of
codewords

44

Example

: 10
11
: 101

To encode ABCD: 11011101
To decode 11011101: ?

S 0w R

45

Uniquely decodable

* Uniquely decodable is a prefix free code
1f no codeword 1s a proper prefix of any other

* For example {1, 100000, 00} 1s uniquely
decodable, but 1s not a prefix code

— consider the codeword {...1000000001...}

* Practical we prefer prefix code (why?)

S Code
a 00

b 01

C 10

d 110

111

Example

S Code
a 00

b 01

C 10

d 110
e

111

Example

0100010011011000

s

Code

00

01

10

110

a o | o (@ ")

111

Example

0100010011011000

babadda

Static codes

* Mapping 1s fixed before transmission
— E.g., Huffman coding

 probabilities known in advance

Dynamic codes

* Mapping changes over time
— 1.€. adaptive coding

« Attempts to exploit locality of reference

— periodic, frequent occurrences of messages
— e.g., dynamic Huffman

Traditional evaluation criteria

e Algorithm complexity

— running time

 Amount of compression
— redundancy

— compression ratio

e How to measure?

Measure of information

» Consider symbols Siand the probability of
occurrence of each symbol p(si)

* In case of fixed-length coding , smallest
number of bits per symbol needed is

— L >1log2(N) bits per symbol
— Example: Message with 5 symbols need 3
bits (L > log25)

Variable length coding

* Also known as entropy coding

— The number of bits used to code symbols 1n
the alphabet 1s variable

— E.g. Huffman coding, Arithmetic coding

Entropy

* What is the minimum number of bits per
symbol?

* Answer: Shannon’s result — theoretical
minimum average number of bits per code
word 1s known as Entropy (H)

n

z - p(si)log.p(si)

=]

Entropy example

* Alphabet S = {A, B}
—p(A)=04; p(B)=0.6

* Compute Entropy (H)
—-0.4*10g20.4 + -0.6*l0og20.6 = .97 bits

 Maximum uncertainty (gives largest H)
— occurs when all probabilities are equal

Example: ASCII

-
s

—+

[
= L»

M O < (b

W+ H oM

=R a
(o I SR W s |
Ll
S
(19 TR S T 6 T) J .
s LT I T N U (R (R K B R O S g B |

(W

SRR R Iy (R =S RN S R
[B N W I U Wy (e B S T i S

m v |
11

@
8
(@

J

=
A B et

CO —J O

-'._,I(Sr'_'l_{b,l:
N PR OOl o® Mo

WD = W] =
] 3 L O as
|

WD oo
= L

SR -G ' I
co O =
L™

o

[}
© il
0 BN |

n

o O D

o g
[l
O O W oo~ DO L Row ooy
oo =

Al o T e TR O T SRS
=

— e E A
= =
ca

s Es)
N
=
N 3
i S T}

127 del

-

ASCII

Example: SPACE 1s 32 or 00100000. ‘z’ 1s
122 or 01111010

256 symbols, assume same probability for
each

P(s) = 1/256
Optimal length for each char 1s log 1/P(s)
=log 256 = 8 bits

58

David A. Huffman

David Huffman 1s best known for the
invention of Huffman code, a highly
important compression scheme for
lossless variable length encoding. It was
the result of a term paper he wrote while a
graduate student at the
Massachusetts Institute of Technology
(MIT)...

From: Wikipedia

Huffman coding algorithm

1. Take the two least probable symbols in
the alphabet

(longest code words, equal length, differing in
last digit)

2. Combine these two symbols into a single
symbol

3. Repeat

Example: Huffman coding

S Freq
a 30
b 30
C 20
d 10
e 10

Example

S Freq Huffman
a 30
b 30
C 20
d 10
e 10

Example

S Freq Huffman
a 30
b 30
C 20
d 10
e 10

a

b

Example

S Freq Huffman
a 30
b 30
C 20
d 10
e 10

09O

a

b

C

d

€

Example

S Freq Huffman
a 30
b 30
C 20
d 10
e 10

Example

S Freq Huffman
a 30
b 30
C 20
d 10
e 10

.
@

Example

S Freq Huffman
a 30 00

b 30 01

C 20 10

d 10 110

e 10 111

Average length L

= (30*2 +30*2+20*2+10*3+10*3)/100
=220/100
=2.2

Average length L

= (30*2 +30*2+20*2+10*3+10*3)/100
=220/100
=2.2

Better than using fixed length 3 bats
for 5 symbols.

Entropy

H=-03*1log0.3+-0.3*log0.3+-0.2*1log0.2
+-0.1 *log 0.1 +-0.1 * log 0.1

= 20.3%(-1.737) + -0.3*(-1.737) +-0.2 * (-
2.322) + -0.1 * (-3.322) +-0.1 * (-3.322)

=0.31og 10/3+0.31log 10/3 +0.21log 5+ 0.1
log 10 + 0.1 log 10

=0.3*1.737+0.3*1.737 +0.2* 2.322 +
0.1*3.322 +0.1*3.322

=2.17

Another example
S={a, b, c, d} with freq {4, 2,1, 1}
H = 4/8*1og22 + 2/8*log24 + 1/8*1og28 + 1/8*log28

H=12+1/2+3/8+3/8=1.75

a=>0 b=>10 c=>110 d=>111
Message: {abcdabaa} => {0 10 110 111 0 10 0 0}

Average length L = 14 bits / 8 chars = 1.75
If equal probability, 1.e. fixed length, need log24 = 2 bits

Huffman coding

S Freq Huffman
a 3021
b 3021
C 2020
d 1019
e 1019

Total: 100

/

Huffman coding

S Freq Huffman
a 21 00

b 21 10

C 20 01

d 19 110

e 19 111

/‘\
N

Huffman optimal?

H = 0211log 100/21 + 0.21 log 100/21 + 0.2 log
5+0.19 log 100/19 + 0.19 log 100/19

=0.21%2.252 +0.21%2.252 +0.2* 2.322 +
0.19%2.396 + 0.19%2.396

—239
L =Q21*2+21*2+20*2+ 19*%3 + 19*3)/100
=2.38

Huffman coding

S Freq Huffman
a 30100000

b 306

C 202

d 101

e 101

/

Total: 100010

Huffman coding

S Freq Huffman
a 100000 O

b 6 10

C 2 110

d 1 1110

e 1 1111

ooy

Huffman optimal?

H = 0.9999 log 1.0001 + 0.00006 log 16668.333
+ ...+ 1/100010 log 100010

~ (.00

L =(100000*1 + ...)/100010
~]

Problems of Huffman coding

« Huffman codes have an integral # of bits.

— E.g., log (3) = 1.585 while Huffman may need
2 bits

* Noticeable non-optimality when prob of a
symbol 1s high.

=> Arithmetic coding

Arithmetic coding

Character Probabillity
Message to encode: 0000 _ _ o _ o
BILL GATES SPACE 1/10
A 1/10
B 1/10
E 1/10
G 1/10
T 1/10
L 2/10
o 1/10
T 1/10

Example extracted from February, 1991 issue of Dr. Dobb’s Journal

Arithmetic coding

Character Probability Range

SPACE 1/10 0.00 - 0.10
A 1/10 0.10 = 0.20
B 1/10 0.20 = 0.30
E 1/10 0.30 - 0.40
G 1/10 0.40 - 0.50
T 1/10 0.50 = 0.60
L 2/10 0.60 - 0.80
S 1/10 0.80 = 0.90
T 1/10 0.90 - 1.00

Arithmetic coding algorithm

Set low to 0.0
Set high to 1.0
While there are still input symbols do
get an input symbol
code range = high - low.
high = low + range*high range(symbol)
low = low + range*low range(symbol)
End of While
output low or a number within the range

Arithmetic coding

Low value

o O O O O
L T

o O O
L] L]]
J

o
.

o
N e T R R R S S R S A

(no oo 0o o G Om

-
.

0.3

0.26

0.258
0.2576
0.25724
0.257220
0.25721668
0.25721665
0.25721677
0.25721677

Y

—~—

N

&)

Example

Consider the second L as new char:

code range =0.258 —0.256 = 0.002
high =0.256 + 0.002*0.8 = 0.2576
low =0.256 + 0.002*%0.6 = 0.2572

Decoding algorithm

get encoded number
Do

find symbol whose range straddles the encoded
number

output the symbol
range = symbol high value - symbol low value
subtract symbol low value from encoded number
divide encoded number by range

until no more symbols

Arithmetic coding

Encoded Number Output Symbol Low High Range
0.2572167752 B 0.2 0.3 0.1
0.572167752 I 0.5 0.6 0.1
0.72167752 L 0.6 0.8 0.2
0.6083876 L 0.6 0.€& 0.2
0.041936 SPACE 0.0 0.1 0.1
0.41938 G 0.4 0.5 0.1
0.1938 A 0.2 0.3 0.1
0.938 T 0.9 1.0 0.1
0.38 E 0.3 0.4 0.1
0.8 S 0.8 0.9 0.1

]
]

Example

At the first L, encoded number 1s 0.72167752.
output the first L

range = 0.8 — 0.6 =0.2

encoded number = (0.72167752 — 0.6) / 0.2
=(0.6083876

Advantage of arithmetic coding

Assume: A 90% END 10%
To encode: AAAAAAA

New Character Low value High Value

0.0 1.0

A 0.0 0.9

A 0.0 0.81

yay 0.0 0.729

A 0.0 0.6561

A 0.0 0.59049

A 0.0 0.531441

A 0.0 0.47829609

END 0.43046721 0.4782969

Advantage of arithmetic coding

Assume: A 90% END 10%
To encode: AAAAAAA

New Character Low value High Value

0.0 1.0

A 0.0 0.9

A 0.0 0.81

yay 0.0 0.729

A 0.0 0.6561

A 0.0 0.59049

A 0.0 0.531441

A 0.0 0.47829609

END 0.43046721 0.4782969

e.g., 045

Lossless compression revisited

* Run-length coding
* Statistical methods

— Huffman coding
— Arithmetic coding

 Dictionary methods
— Lempel Ziv algorithms

Static vs Adaptive

Dictionary coding

 Patterns: correlations between part of the
data

 Idea: replace recurring patterns with
references to dictionary

e LZ algorithms are adaptive:
— Universal coding scheme

— Single pass (dictionary created on the fly)
— No need to transmit/store dictionary

L2777 & LZ78

o LZ777: referring to previously processed
data as dictionary

« L7Z778: use an explicit dictionary

92

Lempel-Z1v-Welch (LZW) Algorithm

* Most popular modification to LZ78

* Very common, e.g., Unix compress, GIF87
» Read http://en.wikipedia.org/wiki/LZW
regarding 1ts patents

* Fixed-length references (12bit 4096
entries)

e Static after max entries reached

93

LZW Compression

w = NIL;
while (read a character k)
d
1f wk exists 1n the dictionary
w = wk;
else

add wk to the dictionary;
output the code for w;
w =Kk;

h

EXample W k output index symbol

NIL -
o Tl B 2.5 T
Input: "WED"WE"WEE"WEB*WET T B W 257 WE
E D E 258 ED
w=nil D - D 299 D"
while(read a character k){ 5 il
if wk exist in the dic “W E 256 260 AWE
W = WKk; E 9 E 261 E*
else - i
add wk to the dic AT E
output the code forw AWE B 260 262 ATWEE
w=k; B Aé
Y E* il 201 263 E~T
Til B
WE B 257 264 WEB
B i B 2685 B*
- Til
] B
AWE T 260 266 “WET

AL EGF i b

LZW Compression

* Original LZW used dictionary with 4K
entries, first 256 (0-255) are ASCII codes.

 In the above example, a 19 symbols
reduced to 7 symbols & 5 code. Each
code/symbol will need 8+ bits, say 9 bits.

« Reference: Terry A. Welch, "A Technique
for High Performance Data Compression”,

IEEE Computer, Vol. 17, No. 6, 1984, pp.
8-19.

96

LZW Decompression

read a character k;

output k;

w =Kk;

while (read a character/code k)

d

entry = dictionary entry for k;
output entry;
add w + entry[0] to dictionary;
W = entry;

h

97

Example

Input: "WED<256>E<260><261><257>B<260>T

W k output index symbol
read a chark; A Tir W 256 AT
ouputie W E E 257 WE
whille(reod a char/code k){ = - - 228 ED

entry = dic entry for k; D <256> i 259 D~
output entry; <z256> B B 260 W
add w+entry[0] to dic; E <2600 TTE 2671 ;TR
w=entry; <280y <261> E™ 262 “WEE
} <261> <257> WE 263 E~W
<25 B B 264 WEB

B <260> “WE 265 B

<260> T . 2660 “WET

98

LZW implementation

 Parsing fixed number of bits from input 1s
easy

 Fast and efficient

99

More online readings

http://www.ics.uci.edu/~dan/pubs/DC-Sec1.html
http://marknelson.us/1991/02/01/arithmetic-coding-statistical-modeling-data-compression/

The end

We have covered:

* Course overview
* Prefix code, entropy
* Huffman code

* Arithmetic code
* LZW

101

