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Abstract—Smart mobile devices have become an integral part
of people’s life and users often input sensitive information on these
devices. However, various side channel attacks against mobile
devices pose a plethora of serious threats against user security
and privacy. To mitigate these attacks, we present a novel secure
Back-of-Device (BoD) input system, SecTap, for mobile devices.
To use SecTap, a user tilts her mobile device to move a cursor
on the keyboard and tap the back of the device to secretly input
data. We design a tap detection method by processing the stream
of accelerometer readings to identify the user’s taps in real time.
The orientation sensor of the mobile device is used to control the
direction and the speed of cursor movement. We also propose an
obfuscation technique to randomly and effectively accelerate the
cursor movement. This technique not only preserves the input
performance but also keeps the adversary from inferring the
tapped keys. Extensive empirical experiments were conducted on
different smart phones to demonstrate the usability and security
on both Android and iOS platforms.
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I. INTRODUCTION

Smartphones have been ubiquitously used in our daily
activities such as online banking and shopping. However,
various side channel attacks pose severe security risks against
smartphones. These side channel attacks can be categorized
mainly into two groups: internal side channel attacks and
external side channel attacks. In internal side channel attacks,
an attacker finds ways to install a malicious application into
a victim’s device and takes advantage of various sensor data
obtained inside a device, e.g., gyroscope, accelerometer, front
camera, microphone, and ambient light sensor [4], [9], [18],
[21], [22], [26], [27], [30], to infer user input. In external
side channel attacks, an attacker exploits side channels outside
a device. Two example external side channel attacks are
vision-based attacks and smudge-based attacks. In vision-based
attacks [5]–[7], [17], [28], [31]–[33], an adversary records
videos of a user performing touch inputs, and use various
techniques to analyze the videos and infer the passwords and
text entered on the screen. In smudge-based attacks [1], [3],
[19], [35], the adversary analyzes the oil or heat residues left
on the touch screen in order to infer the victim’s input.

One approach to defending against these side channel
attacks is to randomize the position of the keys on the keyboard
because these side channel attacks assume a static keyboard
layout. The random keyboards [32] have been implemented
on both Android and iOS platforms. Nevertheless, not only
does a random keyboard increase the user’s input time, it also
reduces input accuracy, because it is not easy for the user to
find right keys on the random keyboard. The usability issue
prevents random keyboards from being broadly accepted.

To address the challenge, we introduce a novel secure back

Fig. 1. SecTap input method

of device input method, SecTap, that uses the traditional static
keyboard. While using SecTap to input sensitive information
such as passwords, a user tilts the mobile device and such
tilting drives an on-screen cursor to move in specific directions
at corresponding velocities towards an intended key. Once the
cursor is on the right key, the user taps the back of the device
to enter this key. To implement SecTap, we derive the tap
features from raw accelerometer data and employ classification
algorithms to efficiently identify the taps. Moreover, to secure
the cursor trajectories on the screen, we propose an obfuscation
technique to effectively randomize the velocity of the on-
screen cursor movement to thwart advanced attackers who can
even obtain the raw accelerometer and orientation data, but do
not know the randomization parameters. Those randomization
parameters are generated within our SecTap code on the fly.
Figure 1 shows a user using SecTap with one hand. A video
demo of SecTap input method on both iOS and Android
platforms is given at https://youtu.be/VlXrTxzn-0w.

Key contributions of this paper are summarized as follows.

• SecTap requires only the accelerometer sensor and
orientation sensor, two popular motion sensors in most
mobile devices. We explore these two sensors for tap
detection and tilt-based on-screen cursor control. Since
the tilt-based on-screen object control method is fairly
intuitive (for example, they are pervasively applied
in various games for modern mobile devices), users
will get used to SecTap quickly. Moreover, our system
uses a traditional keyboard with a static layout for its
intuitiveness. We are the first to design the secure tilt-
based input method and have patented the technique.

• To improve the usability and robustness, we carefully
investigate the raw accelerometer data and choose
efficient features and classifiers to reduce computation
cost and increase the accuracy of tap detection. Even
if a phone case is used, our approach can accurately
detect the taps. Extensive real-world experiments are
performed to show the feasibility and effectiveness
of SecTap. The results show that SecTap outperforms
the randomized keyboard. Since back-of-device taps
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mitigate the “fat finger” issue [8], the input accuracy
is even better than that of the traditional touching input
method on both iOS and Android platforms.

• SecTap can defeat various side channel attacks, in-
cluding internal side channel attacks, smudge-based
attacks, and vision-based attacks. The security of Sec-
Tap relies on its obfuscation technique that randomly
accelerates the on-screen cursor movement and on
the back-of-device taps that eliminate the chance for
smudge-based attacks [3] (no heat or oil left on screen)
or vision-based attacks [32] (no movement path of
fingertips). Moreover, we carefully choose the range of
acceleration parameters so as to improve the security,
usability, and robustness.

The rest of this paper is organized as follows: We present
the SecTap input method, including the threat model, the basic
idea, and the detailed design of our system in Section III. In
Section IV, we conduct theoretical analysis in terms of the
security and usability of our developed system. In Section V,
we perform extensive real-world experiments to demonstrate
the security and usability of the SecTap input method. We
review related work in Section VI. Finally, we conclude this
paper in Section VII.

II. BACKGROUND

In this section, we briefly introduce the accelerometer
sensor and orientation sensor used by SecTap.

A. Accelerometer Sensor
Most accelerometer sensors in smart mobile devices are

based on Micro Electro Mechanical System (MEMS). It is
a hardware sensor that measures the acceleration of a smart
device on three axes: x (i.e., lateral), y (i.e., longitudinal), and
z (i.e., vertical). It senses the forces of acceleration along these
three axes in units of meters per second squared (i.e., m/s2).
If the reading from the accelerometer sensor is n, the actual
acceleration is n× 9.8m/s2.

Figure 2 (a) depicts the three coordinate axes of an ac-
celerometer sensor defined over the screen of a smartphone.
Let (Ax, Ay, Az) be the readings from the accelerometer
sensor on three axes. If the smartphone is horizontally lifted
on a surface, Ax and Ay are zero and Az is the force of the
gravity, i.e., 1.0, as the smartphone derives the support force
from the surface. On different mobile platforms, the signs of
the readings are different, for example, Az is equal to 1.0 in
an Android phone, while Az is equal to −1.0 in an iPhone.

B. Orientation Sensor
The orientation sensor is a software sensor that mea-

sures the orientation changing in three dimensions, i.e., Az-
imuth/Yaw (x axis), Pitch (y axis), and Roll (z axis). The
readings are in degrees. Figure 2 (b) illustrates the coordinate
used for the orientation sensor. In our paper, we only use
pitch and roll in our system. Note that pitch and roll can be
calculated by using only the accelerometer sensor. Let g be the

gravity, where g =
√

A2
x +A2

y +A2
z . Assume that the angles

of pitch and roll are α and β respectively. Figure 2 (c) shows
that a phone is rotated a pitch angle α along the x axis. Then
the force on the y axis can be derived by Ay = g sinα. Hence,
the pitch can be computed by

α = arcsin(−Ay/g) = arctan(−Ay/
√

A2
x +A2

z). (1)

The range of pitch is [−180◦, 180◦]. Likewise, we can calculate
the roll by

β = arcsin(Ax/g) = arctan(Ax/
√

A2
y +A2

z), (2)

where the range of the roll is [−90◦, 90◦].

III. SECURE BACK OF DEVICE INPUT SYSTEM

In this section, we first elaborate on the threat model and
present the basic idea of our system. We then introduce the
two crucial parts of our system, i.e., tap detection and secure
cursor movement.

A. Threat Model

We aim at defending against strong security threats. First,
we assume that an attacker can obtain the stream of raw ac-
celerometer data and orientation data. Since these two sensors
do not require access permission on both iOS and Android
platforms, it is possible that the attacker can stealthily obtain
the sensor data by installing a malicious app. Second, we
assume that the attacker can perform vision-channel attacks by
recording and observing the victim’s tap gesture. Nevertheless,
we assume that an attacker cannot see the content on the
screen. In other words, SecTap is not designed to defeat those
shoulder surfing attacks in which attackers can see the content
on the screen or screenshot attacks via malware [14]. Defeating
such shoulder surfing attacks while maintaining usability is
still a daunting research task.

B. Main Idea
Figure 3 illustrates the workflow of SecTap. We utilize the

orientation sensor and accelerometer sensor to control a cursor
over a keyboard and detect the back-of-device (BoD) click
by a user respectively. Specifically, the orientation sensor is
employed to sense the user’s hand motion in the roll and pitch
dimensions. Based on the roll and pitch angles, we control
the movement direction and the velocity of the cursor over
the keyboard. To thwart the inference of cursor movement,
we obfuscate the cursor trajectory by randomly accelerating
the velocity. Once the cursor is on the right position of an
intended key, the user taps the back of the device to enter
this key. To identify a BoD tap event, various statistic data is
obtained from the raw accelerometer sensor data and trained
for accurate and efficient detection of the tap event.

Since a user interacts with the mobile phone at the back of
the device rather than the touch screen, there are no residues
left on the screen, rendering smudge-based attacks useless.
Vision-based attacks also become extremely difficult, if not
impossible, because no information regarding fingertip clicks
and fingertip movement can be exploited for the attack [32].
Moreover, we design an obfuscation method to randomly
accelerate the cursor movement so that an attacker cannot
accurately infer the location of the cursor due to the random
cursor acceleration even if she could access the raw orienta-
tion/accelerometer sensor data and detect the tap events.

C. Tap Detection
We explore a machine learning based classifier to detect the

tap events from a stream of raw accelerometer data. We first
obtain the ground-truth tap data and then extract the features.
We then perform offline training over the ground-truth data to
derive a robust classifier. Finally, we use this classifier for the
runtime prediction to accurately and efficiently identify a key
tap event.
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1) Ground-truth Data Collection: To derive the ground-
truth tap data, we implement custom apps on both Android
and iOS platforms. A user clicks a start button on the app,
waits for a second and then taps the back of a device. In this
way, we can remove the data corresponding to the click of
the start button easily. The procedure above produces one tap
sample.

Figure 4 illustrates a tap sample collected from an iPhone
5s. Denote Ax(i), Ay(i), and Az(i) as the ith acceleration
values along the x, y, and z axes, respectively, and T (i) as
the timestamp corresponding to the ith reading. Since the
accelerometer sensor is sensitive, any clicks on the device may
introduce noise during sample collection. We can observe the
noise caused by clicking the start button at the beginning of
the raw data stream. The tap event is highlighted by the two
dashed vertical lines in the middle of the raw data. We recruited
8 volunteers and collected 993 ground-truth tap samples with
each volunteer creating more than 100 tap events. We also
collect the same number of non-tap samples that do not contain
a tap when our subjects use the phone without tapping.

2) Offline Training: During the offline training phase, we
first identify a tight time period, denoted as tap window, during
which a tap lasts. The acceleration substantially increases when
a tap is performed as shown in Figure 4. We analyze the
ground-truth data to locate an appropriate window, during
which the maximum acceleration occurs, as the tap window.

Once the location of the tap window and its length are
determined, the feature vector is extracted from the data in
this window. We extract 35 features from data in this window,
including mean, median, standard deviation (Std), mode, coef-
ficient of variation (CoV), kurtosis, skewness, root mean square
(RMS)), average data-by-data absolute change (AvgDeltas),
RMS cross rate (RCR), average absolute time from a data to
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Fig. 4. A sample of raw accelerometer data for collecting one tap

the maximum data (ATM). The 11 features above are applied
in the three dimensions of the acceleration data, producing
33 features in total. Another 2 features, acceleration change
to minimum in speed (ACTM) and acceleration change from
minimum (ACFM) in speed are used on the z axis of the
acceleration data. Since the tap would cause the rapid change
on the z axis, these two special features can effectively detect
the taps and rule out a number of false positives. Refer to
Table I for the definition of AvgDeltas, RCR, ATM, ACTM
and ACFM. These 35 features form the feature vector.

We train a classifier to identity the tap. The classifier takes
the feature vector as an input and decides if a data window
corresponds to a tap. To train the classifier, we use 709 out of
935 samples as training samples, while the other 226 samples
are used as the testing samples. Our experiments show that a
Support Vector Machine (SVM) [23] based classifier performs
well in our context.

3) Online Tap Detection: During the online tap detection
phase, we collect the readings in a queue and use a sliding
window with a step of one reading to search a data segment
that most likely corresponds to a tap. The length of the sliding
window is the tap window length determined in the training
phase. The trained classifier exploits the features extracted
from the data in the sliding window in order to identify the
tap event. Once a tap event is detected, the sliding window
slides forward the size of the tap window and works on all
new readings.

D. Secure Cursor Movement Control
Users hold the mobile phone and tilt the device in the pitch

and roll dimensions in order to move the cursor on the screen
to an intended key. The cursor is designed to move only over
the keyboard and stay only on one key each time. The basic
idea behind the tilt-based cursor control is that titling is used to
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TABLE I. LIST OF SPECIAL FEATURES

Feature Definition (N is the number of values in x.)

AvgDeltas 1
N−1

N
∑

i=2
|xi − xi−1|

RCR 1
N−1

N
∑

i=2
f{(xi − r)(xi−1 − r) < 0},

where f(x) =

{

1, if x == true.

0, otherwise.

ATM 1
N

N
∑

i=1
|Ti − Tm|,

Aj(m) = Max(Aj(i)|i=1 to N )

ACTM
Az(k)−Az(k−1)
T (k)−T (k−1)

,

Az(k) = Min(Az(i)|i=1 to N )

ACFM
Az(k+1)−Az(k)
T (k+1)−T (k)

,

Az(k) = Min(Az(i)|i=1 to N )

simulate the force change. Such a change is decomposed into
changes along the x axis and y axis to drive the cursor (like
an object) in the intended direction at a particular velocity. For
instance, Figure 2 (c) shows the gravity decomposed along the
y axis. In this case, the virtual on-screen object will move along
the y axis because of the force Ay . According to Newton’s first
law of motion, the force is F = m ∗ a where m is the mass
of the object and a is the acceleration, i.e., a = ∆v/∆t where
∆v is the velocity of the object. In the case shown in Figure 2
(c), the velocity on the y axis is ∆v = g ∗ sinα ∗ ∆t/m.
Therefore, the velocity of the on-screen cursor is proportional
to the angles of pitch and roll dimensions.

According to velocity control for tilt-based interaction in
[16], we have tilt magnitude M and angle θ defined by

M =
√

α2 + β2, (3)

θ = arcsin(β/M), (4)

where M is the simulated force to control the velocity of the
on-screen cursor, and θ is the moving angle. Figure 2 (d) shows
the magnitude and angle on the touch screen axes.

Nevertheless, a malicious app installed on the smartphone
can calculate the values above as well. To address this issue, we
introduce a method to randomly accelerate the velocity in order
to derive an obfuscated cursor trajectory corresponding to the
real one. We add randomness into the tilt magnitude in order
to obfuscate the simulated force. The obfuscated magnitude is
defined by

M = L
√

((1 −W )α)E + (Wβ)E , (5)

where L is a multiplier, W and 1 − W are weights for
roll and pitch, and E is an exponent. The multiplier L is
used as a gain to scale the value of magnitude. Weights are
used to adjust the force in the two directions. Exponent E
is employed to adjust the force on the x axis and y axis.
Assume that L ∈ {L1, . . . , Lm}, W ∈ {W1, . . . ,Wm}, and
E ∈ {E1, . . . , Em}. For the pitch αi and roll βi for the ith

reading1, we can randomly choose L, W , and E within their
ranges to derive the obfuscated magnitude Mi.

Denote Ii as the interval between the ith and (i + 1)th

readings of the orientation sensor. The movement distance Di

1Even if the smart device with an accelerometer does not provide the
readings of orientation sensor, we can calculate αi and βi according to
Equation (1) and Equation (2).

at the ith sensor reading is

Di = MiIi, (6)

By using the tilt angle θ, we can have two distance on the x
axis and y axis, respectively,

Dx,i = Di sin θ, (7)

and
Dy,i = Di cos θ. (8)

The on-screen cursor then moves (Dx,i, Dy,i). In this way, we
randomly accelerate the on-screen cursor so that the attacker
cannot figure out the actual cursor movement even if her
malicious app records the raw accelerometer and orientation
sensor readings.

IV. ANALYSIS

In this section, we first define the performance metrics for
measuring the usability of our SecTap input method and then
perform the security analysis. Finally, we discuss how to defeat
a brute force attack on a small keypad.

A. Performance Metrics
We first introduce the standard classification metrics, i.e.,

precision, recall, and F1 score. Denote the number of the
true positives (i.e., the number of samples that are correctly
classified as a tap) as TP . Denote the number of false positives
(i.e., the number wrongly classified as a tap) as FP . Denote the
number of false negatives (i.e., the number of wrongly rejected
ones) as FN . Precision, recall, and F1 score are defined as
follows

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

and

F1 = 2 ∗
precision ∗ recall

precision+ recall
. (11)

To evaluate the overall performance of our SecTap input
method, we define the input accuracy rate by

P =
Na

N
, (12)

where Na and N are the number of correctly tapped inputs
and the total number of inputs by the users, respectively.

B. Security Analysis
Recall that the severe threat against SecTap is that a

malicious app may obtain the raw accelerometer readings
and thus orientation sensor readings. To fight such an attack,
we randomize the acceleration parameters L, W , and E in
Equation (5). Each {Li,Wi, Ei} is applied to a sensor reading.
It is kept as a secret and unknown to the malicious app.
We expect that such randomization achieves secure cursor
movement control.

We now analyze how the adversary may try to compromise
the secure cursor movement control strategy. The adversary can
brute force enumerate the sequence of the three acceleration
parameters L, W , and E in Equation (5) in order to guess
the obfuscated trajectory. Recall that these three parameters
vary for each sensor reading. Denote the frequency of sensor
readings as f and the time needed to input sensitive data (e.g.,
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password, social insurance number, and birthday) as t. Then
the total number of readings is n = f × t. The number of all
possible sequences of L, W , and E will be |L|n|W |n|E|n,
where |.| denotes the cardinality. By carefully choosing the
range of L, W , and E, we can significantly increase the
obfuscated trajectory space and render the brute force attack
impossible.

A persistent adversary may launch a trajectory-based at-
tack, not deterred by the huge trajectory space. We assume
that the adversary obtains the sensor readings corresponding
to a password input process. She then randomly chooses a
sequence of L, W , and E, generates a trajectory, and tries to
fit the trajectory over the keyboard. We assume the adversary
records sensor data corresponding to the passcode inputting
process2. Therefore, the adversary knows only the trajectory
and does not know the starting point of the trajectory on the
keyboard. She has to fit the estimated trajectory from top left
to right bottom over the keyboard to obtain all the possible
input sequences and hopes one of them is the right password.
If the estimated trajectory does generate possible inputs that
contain the right password, we call it a hit trajectory. If the
chosen sequence of acceleration parameters does not generate
the right password, the adversary may choose another sequence
and tries again.

We define two security metrics, hit rate and success rate, to
evaluate the trajectory-based attack. For a password input, the
attacker tries with Nt sequences of acceleration parameters,
out of which Nc sequences generate password candidates that
contain the right password. The hit rate is defined as follows,

H =
Nc

Nt

. (13)

Even if the attacker obtains a hit trajectory, the number of
input candidates corresponding to this trajectory could be very
high. She needs to try each candidate to actually deploy the
attack. The success rate is defined as follows,

S =
H

Np

, (14)

where Np is the average number of password candidates
generated by the Nc hit trajectories. The attack will not be
feasible if the success rate is too low, even if there are hit
trajectories.

C. Discussion
In our secure cursor movement control strategy, the values

of L, W and E are randomly selected for each sensor reading
and kept as a secret. After a user inputs her password, the
attacker could use the trajectory-based attack to guess the user
input. This attack does not work in practice for the QWERTY
keyboard since the success rate will be too low. However, if
the user uses a numeric keypad and enters 4 digits as a pin,
Np in Equation (14) will be small given the small keypad
and the attack success rate will likely increase. To address
this issue for a small keypad, we can move the cursor to a
random key (or position) every time after a user performs a
BoD tap. Therefore, the starting position of the cursor is always
random for the next key that will be tapped. This strategy can
significantly increase Nc and effectively defeat the trajectory-
based attack against a small keypad.

2Actually recording more data may not be more useful since our random
acceleration will distort a longer trajectory too much.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate SecTap. We first present the
experiment setup and then introduce the selection of tap
window and classifier. Finally, we show the evaluation results
in terms of usability and security.

A. Experimental Setup
We design and implement SecTap on both iOS and Android

platforms as the input method, which provides users with a new
input method with either a numeric keypad or a QWERTY
keyboard. The sensor data acquisition and processing are
implemented in distinct threads to improve the performance.
Specifically, we use one thread to obtain and record the stream
of accelerometer data, calculate the features from the recorded
data, and detect the tap with a classifier. We use the other
thread to process the orientation data and compute the cursor
movement and control the cursor motion on the screen.

B. Empirical Selection of Tap Window Size and Classifier
To select an appropriate window size and a classifier, we

perform extensive empirical experiments in the offline training
phase to evaluate the tap detection rate with different window
sizes and classifiers. The ground-truth data in Figure 4 shows
a tap generates the large acceleration at the mth sensor reading
along the z axis. Therefore, the window during which the tap
occurs will be [m− p,m+ q]. The window size is p+ q + 1.
Empirically, we evaluate five different windows, i.e., [m −
1,m + 1], [m − 2,m + 2], [m − 3,m + 5], [m − 4,m + 8],
and [m− 5,m+15], and the corresponding window sizes are
3, 5, 9, 13, and 21, respectively. By extracting the features (in
Section III-C3) from the data in a window, we leverage three
distinct classifiers, including Random Forests (RF), Support
Vector Machine (SVM), and Decision Tree (DT), to evaluate
the performance of detection rate with these different window
sizes. Figures 5, 6, and 7 illustrate recall, precision, and F1

score over different window sizes, respectively. The results
show that the SVM classifier is most efficient and robust for
tap detection. In addition, Figure 7 shows that the performance
is better with the window size of 5, 9, and 13 for the SVM
classifier. The corresponding F1 scores for these window sizes
are 0.9978, 1, and 0.9956, respectively.

To avoid overfitting, we further evaluate the SVM classifier
with these three window sizes of 5, 9, and 13 to determine
the best window size in the runtime tap detection phase. Ten
volunteers use SecTap to input 26 distinct letters and tap each
letter 10 times on iPhone 5s. To evaluate the classifier, we
introduce the metric, error rate, which is defined as the number
of errors divided by the total number of taps. If the key is
not detected or detected as dual taps, we count it as an error.
We obtained the error rate of 5.77%, 8.46%, and 3.85% for
window size 5, 9, and 13, respectively. With window size 5
and 13, we observed both undetected taps and dual taps while
only undetected taps were found with window size 13. Hence,
we choose the sliding window size as 13 for real-time tap
detection.

C. Usability Evaluation
To evaluate the usability of our system, we perform ex-

tensive experiments on iOS and Android platforms. iPhone
5s and iPhone6 Plus are used as example subjects of the iOS
system and Samsung Galaxy S5 and Motorola Moto G (second
generation) are used as example subjects of the Android sys-
tem. These phones have diverse display size, resolution, and
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Fig. 13. Input time using Android phones and
a numeric keypad

computational power, and are fair to evaluate the effectiveness
and robustness of SecTap. We recruit two groups of volunteers
to evaluate the performance of our systems: the iOS group and
the Android group. The iOS group consists of 15 volunteers,
10 males and 5 females. The Android group consists of 15
male volunteers.

We first test the moving time between distinct keys as
it is a crucial metric to evaluate the usability of SecTap.
The iOS group uses iPhone 6 Plus for the evaluation. The
users are required to control the cursor to move between
keys using a QWERTY keyboard and then enter these keys
by performing taps. Then we calculate the average moving
time. Figures 8, 9, 10, 11, and 12 illustrate the average cursor
moving time between the keys by applying distinct multipliers,
weights and exponents. It can be observed that the exponent
should not be too small or too big. The results with different
weights have similar patterns to the results with different
exponents. On one hand, if the exponent or weight is too
large, the cursor can move quickly from one key to another,

and it may become harder for the user to stop the cursor on
the intended key. She will spend more time tapping the right
key if the intended key is missed. On the other hand, if the
exponent or weight is too small, the cursor moves too slow
and the user spends more time on moving the cursor to the
right key. According to the experimental results, the weight and
exponent work well in the range of [0.4, 0.8] and the range of
[2, 4], respectively. In addition, with the increasing multiplier,
the moving time decreases. Thus, we choose the range of the
multiplier as [2, 10].

To evaluate the detection accuracy of SecTap, we use
the Android group with each person performing 30 taps on
Samsung Galaxy S5. The average tap detection rate is 98.89%.
Only 5 taps from 3 users are not recognized. Therefore, our
method can effectively and efficiently detect the taps.

To evaluate the inputting time, we perform a series of 12
different tests. We implement an application to generate 20
random strings with 4 pure letters and 4 pure numbers and
record the user inputting time. Before the tests, each user takes
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Fig. 16. Input accuracy rate using Android phones
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around 2 minutes to test run our system on a numeric keypad
and a QWERTY keyboard. The first 8 tests are performed with
the Android group, and the last 3 tests are with the iOS group.
We also performed a test (Test 9) to compare the input time
of SecTap with that of a randomized keyboard. The detailed
test scenarios are as below.

• Test 1 (T1): Users test Samsung Galaxy S5 with no
case using a numeric keypad.

• Test 2 (T2): Users test Samsung Galaxy S5 with a
plastic case using a numeric keypad.

• Test 3 (T3): Users test Samsung Galaxy S5 with no
case using a numeric keypad and single hand mode.

• Test 4 (T4): Users test Motorola Moto G (2nd gen)
with no case using a numeric keypad.

• Test 5 (T5): Users test Samsung Galaxy S5 with no
case using a QWERTY keyboard.

• Test 6 (T6): Users test Samsung Galaxy S5 with a
plastic case using a QWERTY keyboard.

• Test 7 (T7): Users test Samsung Galaxy S5 with no
case by using a QWERTY keyboard and single hand
mode.

• Test 8 (T8): Users test Motorola Moto G (2nd gen)
with no case using a QWERTY keyboard.

• Test 9 (T9): Users test Samsung Galaxy S5 with no
case using a random QWERTY keyboard.

• Test 10 (T10): Users test iPhone 5s with no case using
a QWERTY keyboard.

• Test 11 (T11): Users test iPhone 6 Plus with no case
using a QWERTY keyboard.

• Test 12 (T12): Users test iPhone 6 Plus with a plastic
case using a QWERTY keyboard.

Figure 13 and 14 illustrate the comparison of input time
between the SecTap input method and touch-input using An-
droid phones, on a numeric keypad (Tests T1-T4) and on
a QWERTY keyboard (Tests T5-T9), respectively. We can
see that the median inputting time with SecTap is less than
4 seconds on a numeric keypad, and about 5 seconds on a
QWERTY keyboard. The median touch-input time is around
1 second on a numeric keypad, and about 2 seconds on a static
QWERTY keyboard (Tests T5-T8). On a randomized QWER-
TY keyboard (T9), however, the median touch-input time is
around 6 seconds. Therefore, SecTap is a more straightforward
input method than a randomized keyboard. In addition, the
input time using Samsung Galaxy S5 with a plastic case is
almost the same as that without a case, indicating that phone
case has no much impact on the performance. Due to the

space limitation, the results of input time and input accuracy
on iPhones are not shown in the paper. We have similar
observations for input time and input accuracy on Android
phones and iPhones.

Figures 15 and 16 show the input accuracy (see Sec-
tion IV-A for definition) on Android phones and iPhones,
respectively. Surprisingly, we observe that the input accuracy
with SecTap in nearly all the tests is better than that using
official input method. The main reason might be that back-of-
device tapping avoids the “fat finger” problem [8].

D. Security Evaluation
We first evaluate the brute force attack. In our threat model,

we assume that the adversary could obtain the raw sensor
data and infer the tap information. After gaining the original
orientation data, the adversary could enumerate a sequence
of three acceleration parameters, i.e., multiplier L, weight
for roll W , and exponent E. We assume that the adversary
can learn the range of these three acceleration parameters,
i.e., L ∈ {2, 4, 6, 8, 10}, W ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, and
E ∈ {2, 2.5, 3, 3.5, 4}. Each parameter has 5 possible values.
Assume that the input length is 4. As shown in our experiments
for usability evaluation in Figure 13, the median input time
for entering a random input using Samsung Galaxy S5 is
around 4 seconds and the sampling frequency is around 100Hz.
Thus, there are 400 raw sensor readings corresponding to the
input. For the brute force attack, the trajectory space will be
(5 ∗ 5 ∗ 5)400 ≈ 5.81 ∗ 10838.

We now evaluate the trajectory-based attack. In our experi-
ments, a person enters 10 input sequences (passwords), each of
which has four random letters on the QWERTY keyboard. The
adversary records the raw sensor readings. Then she generates
a sequence of random multiplier, weight and exponent so that
she could generate an on-screen trajectory. Assume that 1000
trajectories are generated. The adversary fits each trajectory
over the keyboard from top left to bottom right. Our experi-
ments show that the hit rate is 3.94% and the average number
of input candidates for a hit trajectory is 156. Therefore,
the success rate is about 3.94%/156.1 ≈ 2.52 ∗ 10−4. The
trajectory-based attack will not be practical for the adversary.

VI. RELATED WORK

As a useful Human-Computer Interaction (HCI) device,
smart mobile devices suffer from diverse side channel attacks,
which may expose individuals’ sensitive information, e.g.,
passwords or pins. Examples of these attacks include sensor-
based malware attacks [4], [9], [18], [20]–[22], [26], [30],
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residue-based attacks [3], [19], [34], [35], and computer vision-
based attacks [7], [17], [24], [25], [28], [29], [32]. The sensor-
based malware attacks need two phases. In the offline training
phase, the attacker needs to train the data collected from the
sensors in order to build a strategy to infer the tapped keys
on the touch enabled devices. In the online attack phase,
the data is obtained in real time and then the strategy is
applied to determine which key is tapped by the victim. Once
the sensitive information is derived, the malicious application
will send the information to a remote server controlled by
the attacker. For instance, TouchLogger [9] is an Android
malware that uses the device gyroscope sensor data to infer
keystrokes. Owusu et al. showed [21] that a malware could
use accelerometer data to infer the entered keys on a virtual
keyboard. TapLogger [30] used motion sensors to infer a user’s
tap inputs on a smart mobile device.

In residue-based attacks, an adversary can physically access
the victim’s mobile device and obtain the residues left on
the screen. In this way, the password can be inferred. For
example, Michal Zalewski [34] used the thermal residue of
a finger left on the pressed keys on a keypad to infer the
typed keys. Mowery et al. [19] investigated the effectiveness
of this thermal residue-based attack from aspects, including the
keypad surface materials, the diversity of body heat between
people using the keypads, and the scalability of the attack. The
order of the password characters can be inferred based on the
key that is “hotter”. Additionally, oily residues (i.e., smudges)
left by tapping fingers on a touch screen may disclose a
plethora of information about its users [3]. There are other
attacks. For example, Yang et al. [35] studied a fingerprint
attack against the tapped passwords through a software keypad.
In this attack, an adversary first dusted the touch screen with
fingerprint powder to reveal fingerprints left from tapping
fingers. Then, the fingerprints were photographed and the
fingerprints to the on-screen keyboard were mapped so that
the password could be recovered.

In vision-based attacks, an adversary remotely observes the
procedure of tapping a password on a screen and uses computer
vision techniques to infer the victim’s password. For example,
in [24], the reflections of a device’s screen on a victim’s glasses
or other objects were exploited to automatically infer the text
typed onto a virtual keyboard. Balzarotti et al. [7] proposed an
automatic approach to reconstruct the text typed on a keyboard
from a video, that records what a person types on a physical
keyboard. Their work assumes that the adversary can deploy
a camera to record the victim’s hand on the keyboard and the
camera has a static and clear view of the typing hand on the
keyboard.

Computer vision analysis was also applied to analyze each
frame of the recorded video and reconstruct the keys pressed
by the victim. For example, Maggi et al. [17] implemented an
automatic shoulder-surfing attack against touch screen mobile
devices. In their work, the adversary can use a video camera
to record the victim’s screen and leverage the popping up keys
typed by the user to infer the password. Yue et al. [32], [33]
investigated attacks that enable attackers to blindly recognize a
victim’s password without observing the content of the screen.
Shukla et al. [25] investigated schemes that could blindly infer
a victim’s pin password by correlating movements between the
victim’s hand and device.

New side channel attacks also pose a threat on a traditional

QWERTY keyboard and a handheld Point of Sale (POS)
device. For instance, Liu et al. [15] proposed a wearable
device based attack to exploit the accelerometer data from
the smartwatch to infer the keystroke. The feasibility to infer
keystrokes by analysing the channel state information extracted
from Wifi signals is explored in [2], [13]. Zhu et al. [36] used
the smartphones to record the acoustic signal emitted by a
keyboard so as to recover the keystrokes.

A number of research efforts have been made to mitigate
these risks [10]–[12]. The one closest to our work is by De
Luca et al. [11], [12], where the back of the mobile device
was employed for the purpose of authentication. However, their
approach requires a special rear-touchable device in order to let
the users perform pointing and dragging operations on the back
of the device. Also related is the work on tilt-based interaction
for mobile games and text entry [16]. SecTap, however, aims
at secure input of sensitive information, and thus requires
new techniques such as obfuscation to secure the on-screen
trajectories and thwart various side channel attacks.

VII. CONCLUSION

Various side channel attacks including computer vision,
residue and sensor based attacks may obtain users’ inputs such
as passwords and pose serious threats against security and
privacy of mobile devices. To defend against these attacks, we
introduce a novel secure back of device (BoD) input system,
SecTap, that allows users to securely enter sensitive informa-
tion on mobile devices. To use SecTap, users tilt a device to
move an on-screen cursor towards an intended key. When the
cursor is moved over a key of interest, users can tap the back
of the device to enter this key. To accurately detect tap events,
we carefully analyze the raw accelerometer data and extract a
feature vector to effectively identify the tap action in real time.
The accelerometer and orientation sensors are used to control
the moving velocity and direction based on the tilting. We
also design an obfuscation approach to randomly accelerate
the cursor movement. This approach can effectively defeat
malware that can even access the raw accelerometer/orientation
data or an adversary that records a video of victim using
SecTap, analyzes the video and tries to discover the input.
Our theoretical analysis and empirical experiments show that
our obfuscation technique can significantly increase the on-
screen cursor trajectories space to thwart those side channel
attacks. Our extensive experiments validate the effectiveness
and efficiency of the SecTap input system.
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