
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  
11	  
12	  
13	  
14	  
15	  
16	  
17	  
18	  
19	  
20	  
21	  
22	  
23	  
24	  
25	  
26	  
27	  
28	  
29	  
30	  
31	  
32	  
33	  
34	  
35	  
36	  
37	  
38	  
39	  
40	  
41	  
42	  
43	  
44	  
45	  
46	  
47	  
48	  
49	  
50	  
51	  
52	  
53	  
54	  
55	  
56	  
57	  
60	  
61	  
62	  
63	  
64	  
65	  

Real-Time Execution of Trigger-Action Connection
for Home Internet-of-Things

Kai Dong†‡, Yakun Zhang§, Yuchen Zhao§, Daoming Li†, Zhen Ling†∗, Wenjia Wu†, and Xiaorui Zhu¶
†School of Computer Science and Engineering, Southeast University, P.R. China
§School of Cyber Science and Engineering, Southeast University, P.R. China

‡State Key Laboratory for Novel Software Technology, Nanjing University, P.R. China
Email:{dk, zyk, zyc, lidaoming0219, zhenling, wjwu}@seu.edu.cn

¶School of Information Engineering, Nanjing Xiaozhuang University, P.R. China
Email:xr zhu@outlook.com

Abstract—IFTTT is a programming framework for Applets
(i.e., user customized policies with a “trigger-action” syntax), and
is the most popular Home Internet-of-Things (H-IoT) platform.
The execution of an Applet prompted by a device operation suf-
fers from a long delay, since IFTTT has to periodically reads the
states of the device to determine whether the trigger is satisfied,
with an interval of up to 5min for professionals and 60min for
normal users. Although IFTTT sets up a flexible polling interval
based on the past several times an Applet has run, the delay is still
around 2min even for frequently executed Applets. This paper
proposes a novel trigger notification mechanism “RTX-IFTTT”
to implement real-time execution of Applets. The mechanism
does not require any changes to the current IFTTT framework
or the H-IoT devices, but only requires an H-IoT edge node
(e.g., router) to identify the device events (e.g., turning on/off)
and notify IFTTT to perform the action of an Applet when an
identified event is the trigger of that Applet. The experimental
results show that the averaged Applet execution delay for RTX-
IFTTT is only about 2sec.

Index Terms—H-IoT, IFTTT, Applet, real-time execution

I. INTRODUCTION

IFTTT is a popular service integration platform which
provides a convenient way to connect the Home Internet-of-
Things (H-IoT) devices (e.g., Fitbit, Philips Hue) and web
services (e.g., Gmail, Dropbox) [1]. A user can establish and
customize Applets to create connections among devices and
services by describing the triggers and actions, with the “IF
this THEN that” syntax [2].

Each Applet suffers from a variable execution delay after the
trigger event happens. The reason is that IFTTT uses a polling
architecture to request a list of recent events. According to
IFTTT documentation [3], the polling interval is up to 60min
for normal users, and 5min for professionals. This delay also
attracts the attention of the academia, e.g., [4] shows that the
averaged delay is roughly 2min and can be up to 15min.
However, there is no practical way to address the problem. On
the one hand, an intuitive signaling architecture is impractical
since it requires changes to the H-IoT devices. On the other
hand, a polling architecture is born with a polling interval. It is
supposed that IFTTT can never get rid of this delay, but only

* Corresponding author: Prof. Zhen Ling of Southeast University, China.

make some slight optimization to reduce it, e.g., by decreasing
the polling interval at the cost of heavier traffic overhead.

We propose a novel trigger-notification mechanism named
RTX-IFTTT which really gets rid of the polling interval to
minimize the Applet execution delay. This mechanism offloads
the task of monitoring the trigger events from the IFTTT
server side to the edge node (e.g., a router). With RTX-IFTTT,
the execution of an IFTTT Applet no longer relies on the
polling architecture. Instead, the edge node is responsible for
identifying the trigger events and notifying IFTTT of the
events in real-time. It follows a two-step approach.

In the first step, the edge node should identify the trigger
events with extremely high precision and recall rate. We pro-
pose a fine-grained event identification method based on traffic
analysis. It has already been verified by existing researches that
the traffic generated by an IoT device can be used to infer
an IoT event [5][6][7][8][9][10][11]. However, RTX-IFTTT
requires a much higher recall level. Suppose a trigger event,
the identification (or inference) recall rate of which is 90%.
It is really dangerous in an attack scenario, but is inadequate
if an Applet can only be executed with this probability. In
RTX-IFTTT, we divide a trigger event into fine-grained sub-
events, and fingerprint sub-events to achieve nearly perfect
identification precision and recall rate.

In the second step, the edge node must notify IFTTT of
the trigger events. We propose a real-time Applet execution
method based on two interfaces. The first one is a user
interface named Check Now. The alternative interface is the
Webhook, i.e., a callback interface. After the edge node identi-
fies a trigger event, it either sends a “check now” request to the
IFTTT, or makes an HTTP request to the URL configured for
the Webhook. In either situation, IFTTT can be signaled to do
something. Some additional tasks related to Applet processing
is also performed by the edge node, to ensure the behavior of
IFTTT conforms to the correct semantics of that Applet.

The advantage of RTX-IFTTT is three fold. Firstly and
most importantly, it greatly reduces the Applet execution delay
from roughly 2min to 2sec. Secondly, it enlarges IFTTT’s
ecosystem, since it is able to identify trigger events which are
not supported by IFTTT. Lastly, it enables IoT connections
across platforms/ecosystems which support Webhooks, e.g.,
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Fig. 1. RTX-IFTTT overview

IFTTT, SmartThings [12], HomeKit [13], Zapier [14], Home
Assistant [15].

To summarize, this paper makes the following contributions:
• We propose an edge-based trigger notification mechanism

named RTX-IFTTT to implement real-time execution of
Applets. To the best of our knowledge, this is the first
mechanism which is able to reduce the Applet execution
delay to seconds of time.

• We propose a fine-grained trigger event identification
method. By fingerprinting sub-events instead of the whole
trigger event, that event can be identified with nearly
perfect precision and recall rate.

• We propose a real-time Applet execution method by
employing either Check Now or Webhooks. With these
interfaces, RTX-IFTTT does not require any changes to
the IFTTT service or the H-IoT devices.

• Based on RTX-IFTTT, we introduce a new way to not
only enlarge a single H-IoT ecosystem (IFTTT), but also
connect devices and services across various ecosystems.

The rest of this paper is organized as follows. Sec. II de-
scribes the Applet execution delay in current IFTTT platform.
Sec. III proposes a trigger event notification mechanism RTX-
IFTTT and Sec. IV provides some detailed analysis. Sec. V
evaluates RTX-IFTTT and Sec. VI gives a brief survey on
related techniques. Sec. VII concludes the paper.

II. PROBLEM

IFTTT enables “trigger-action” connections only between
services. When a user connects his H-IoT device to the
IFTTT ecosystem, what IFTTT actually communicates with
is the vendor’s service rather than the device itself. The
mechanism behind the connection is the API endpoint, which
is a Uniform Resource Identifier (URI) at the service’s domain
where IFTTT will GET updates (for triggers) or POST data
(for actions).

By default, IFTTT uses a polling architecture to GET the
updates. The polling interval is 60min for normal users and
5min for professionals [3], and the execution delay for each
H-IoT Applet is various and ranges from 2min to 15min [4].

In recent years, IFTTT uses some really clever methods to
reduce the delay by tuning the polling interval. However, the
averaged delay is still roughly 2min (as detailed in Sec. V).
Along with the polling architecture, IFTTT also provides the
Realtime API. This API has already been used by many web
services (for triggers). An Applet involving such a trigger can
be executed near-instantly.

Unfortunately, many services (especially H-IoT services)
do not implement the Realtime API. We use Selenium[16],
an automatic testing tool to crawl all the services and events
including triggers and actions. By January 1st 2021, IFTTT’s
ecosystem consists of 681 services and over 2, 600 events.
Among them are 335 H-IoT services and 1, 447 H-IoT trigger
events. Most Applets prompted by H-IoT trigger events rely
on the polling architecture instead of the Realtime API. One
possible reason is that, if all H-IoT trigger services utilize this
API, the incurred instantaneous workload may be too high [4],
since IoT workload is known to be highly bursty [17].

III. METHODOLOGY

In this section, we propose a trigger-notification mechanism.
We name it RTX-IFTTT, since it enables real-time execution
of “IF-this-THEN-that” form of connection between H-IoT
services/events, not only for IFTTT platform, but also for other
popular platforms (as discussed later in Sec. IV-C).

A. Mechanism Overview

The idea behind RTX-IFTTT is to use a “signaling” archi-
tecture instead of the “polling” one, by offloading the task
of monitoring triggers from IFTTT to the edge. The edge
follows a two-step approach to implement real-time execution
of Applets: it first identifies a trigger event, then notifies IFTTT
of that trigger to ensure real-time execution of the Applet.
The trigger event identification is mainly based on traffic
analysis and fingerprinting device events (status changes, e.g.,
turning on/off). The edge maintains features (fingerprints) of
all device events. It monitors the transmitted packets, and
identifies the device events and the corresponding triggers, and
notifies IFTTT of the triggers. The real-time execution of an
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Trigger Service——SmartLife： { 
    ... 
    "trigger": { 
        "trigger_title_0": "Device or group is turned on", 
        …
        "trigger_title_1": "Device or group is turned off", 
        …
      … } }

Fig. 2. An example trigger service of Smart Life

Applet is guaranteed by either requesting IFTTT to perform
an immediate check on the target Applet with the Check Now
interface, or by notifying the Webhook of a specific connection
constructed in advance (i.e., another Applet) which has the
same action of the target Applet. In what follows, we detail
implementation of these two steps.

B. Trigger Event Identification

RTX-IFTTT is able to automatically extract features of a
trigger event and identifies that trigger. It has already been
verified by existing researches that various features of traffic
can be used by an adversary to infer an event of an H-IoT
device [5][6][7][8][9][10][11]. The inference recall rate ranges
from roughly 70% to 100% depending on various events,
devices, noise handling technologies, and machine learning
models generated in the training phase.

The main challenge for RTX-IFTTT deals with identification
recall rate. Although the recall rate achieved by existing tech-
niques is really dangerous for performing an inference attack,
it is far from adequate for identifying a trigger event, since this
rate determines the probability of successfully prompting the
action of an Applet. Furthermore, the trigger event identifica-
tion in RTX-IFTTT is deployed in large-scale and performed
automatically, inevitably at the cost of precision and recall
rate. To address this challenge, RTX-IFTTT divides a trigger
event to sub-events, and identifies every sub-event to precisely
identify the original trigger event. In what follows, we detail
the workflow related to trigger event identification in RTX-
IFTTT. Some analysis on our improvement on identification
recall rate is provided in Sec. IV-A

1) Fine-Graining Trigger Events: In real H-IoT environ-
ments, the traffic generated with a same trigger event is
heterogeneous. An H-IoT trigger event describes one specific
device status, however this status can be resulted from any
one of many different operations (e.g., manual/APP/IFTTT
operation). A device can be either remotely controlled by
a service (e.g., user controls the device from an APP like
SmartThings, or from an IoT platform like IFTTT), or locally
controlled by a nearby user (e.g., user presses a button on the
device or on the infra-red controller), to respond to different
operations but result in a same status (i.e., a same event). Due
to this reason, one trigger event corresponds to many different
features in traffic generated with distinct operations.

For each operation of a same trigger event, usually two sub-
events can be distinguished. Each sub-event corresponds to a
hybrid of up-streaming and down-streaming traffic. The first
sub-event is the controlling command sent from the vendor’s
service to the H-IoT device. If an operation is remotely

<node 
       …
       text=“turn on/off socket 1”
       …
/>

Fig. 3. A layout and corresponding XML file in Smart Life

controlled, the service will send a message about the operation
to the device, and then the device will probably send some
feedback. If an operation is locally controlled, there is no
such traffic. The second sub-event is the status change sent
from the device to the service. Whether remotely controlled
or locally controlled, the device should definitely respond to
the operation and change its status, and report this change to
the service. Then the service will confirm the status change.
We rely on the router to identify the sub-events of a trigger,
since all the traffic is forwarded by the router.

For most cases, we can obtain the features of a status change
sub-event by performing a manual operation. After that, the
features of the controlling command sub-events can also be
obtained by performing other operations. When no manual
operation is available, the features of the status change sub-
event can also be obtained by performing different operations
(i.e., different controlling command) which lead to a same
device state (i.e., possibly same status change).

The identification recall rate is greatly improved by dividing
a trigger event to sub-events. Some analysis is provided in
Sec. IV-A, which is confirmed by our experiments in Sec. V-B.

2) Extracting Device Events: The events of an H-IoT
device can be extracted from IFTTT Applets [7][18][19] and
the UI of an APP for that device [20][21][22], by using Natural
Language Processing (NLP) techniques.

For IFTTT Applet, every event (trigger or action) has a
title field to specify its functionality. Take a trigger service in
Smart Life as an example (as shown in Fig. 2), the contents in
the title field of the first trigger event is “Device or group is
turned on”, where “Device” and “group” specifies the subject,
and “is turned on” specifies the triggering condition. RTX-
IFTTT uses Selenium [16] for crawling the description in
title for IFTTT Applets, and uses NLTK [23] for parts-of-
speech tagging and dependency relation parsing [24], and uses
WordNet [25] for interlinking different expressions of a same
operation, to finally extract device events supported by IFTTT.

For the UI of an APP, each device event correlates with a
control in some layout. We use UiAutomator [26] and Android
Debug Bridge (ADB) [27] to obtain the UI hierarchy XML
file, which contains the information of all the controls within
a layout. An example layout and the corresponding XML file
is as shown in Fig. 3. The device event can be identified by
the String value in the text field in the XML file.

3) Fingerprinting Sub-Events: There are three steps in
fingerprinting sub-events, i.e., traffic collection, noise filter-
ing and fingerprint generation. For traffic collection, RTX-
IFTTT collects all routed traffic by using Tcpdump [28] and
Wireshark [29]. For noise filtering, RTX-IFTTT filters the
beacon packets, re-transmission packets, unrelated packets,
and other noise packets. For fingerprint generation, RTX-
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(a) Check Now (b) Webhook

Fig. 4. Interfaces used for notification.

IFTTT uses the MAC addresses to distinguish devices, and
uses the packet lengths and the transmission directions to
compute the fingerprint Fφ of event φ as follows.

Fφ = argmin
sφi ∈Sφ

1

‖Sφ‖
∑
∀sφj ∈Sφ

dist(sφi , s
φ
j ). (1)

Where sφi represents the ith sequence of packets for event
φ, Sφ represents all the sequences collected for φ, dist(sφi , s

φ
j )

represents the Levenshtein Distance [30] between sφi and sφj .
With RTX-IFTTT, we have already constructed fingerprints for
27 kinds of H-IoT devices from 16 vendors. Part of fingerprints
are listed in Table II, and all the devices are listed in Table III.

4) Identifying Trigger Events: RTX-IFTTT first identifies
sub-events, then determines whether the trigger event has
happened. To identify a sub-event in real-time, RTX-IFTTT
keeps monitoring the traffic by using the Scapy.Sniff library,
and compares the traffic to all the fingerprints. If there exists
one fingerprint that matches the traffic, then the corresponding
sub-event with that fingerprint is identified. Based on identi-
fication of sub-events, RTX-IFTTT establishes an incremental
and autonomous event identification method, which achieves
near perfect precision and recall rate, as detailed in Sec. IV-A
and Sec. IV-B. After the edge successfully identifies a trigger
event, it then asks IFTTT to perform the action of the Applet.

C. Real-Time Applet Execution

It is non-trivial for RTX-IFTTT to ensure real-time and
correct execution of an Applet. The router is unable to perform
the action of that Applet by itself, unless it makes some change
to IFTTT, or the H-IoT devices, or the vendors’ services. To
address this challenge, RTX-IFTTT introduces a novel method
in which RTX-IFTTT notifies IFTTT of a trigger, and ensures
IFTTT will respond to that trigger immediately. RTX-IFTTT
relies on either of the two common interfaces, Check Now and
Webhooks. Both interfaces are supported not only by IFTTT
but also the majority of other H-IoT platforms.

1) Notification by Check Now: The first method is to call
the Check Now interface (as shown in Fig. 4(a)), so that IFTTT
will check for the trigger by itself immediately. On calling
the interface, RTX-IFTTT should address the concurrency
problems originated from IFTTT. There is a race condition
when IFTTT executes related Applets, especially when the
Applets are prompted within a short period of time. IFTTT
maintains the latest event it has seen for each trigger service.
Each time it GETs updates from the service, the service returns
a list of (up to 50) recent events. The action prompted by

Sequence of Trigger Events ( WeMo Plug #1)
on→off→on→off→on→off

+
IFTTT Applets

IF WeMo Plug #1 on THEN WeMo Plug #2 on
IF WeMo Plug #1 off THEN WeMo Plug #2 off

↓
Sequence of Actions

( WeMo Plug #2) Final State Frequency

on→off→on→off→on→off

Correct

2/25

12/25on→on→on→off→off→off 8/25
off→on→off→on→on→off 1/25
on→on→off→on→off→off 1/25
off→off→off→on→on→on

Incorrect
10/25

13/25off→on→off→on→off→on 2/25
on→on→off→off→off→on 1/25

Fig. 5. Multiple actions in a race condition

the first trigger event is executed together with a cluster of
subsequent actions. These actions are performed concurrently,
therefore are in a race condition.

Suppose two related Applets, “If WeMo Plug #1 is activated
(or deactivate), turn on (or off) WeMo Plug #2”. If WeMo Plug
#1 is activated and then deactivated within a short period of
time, the actions of WeMo Plug #2 are in a mess. We further
suppose a trigger sequence “on→off→on→off→on→off” and
perform it 25 times, to obtain the possible sequences of actions
as illustrated in Fig. 5. Within all the 25 action sequences,
only 2 sequences satisfies the “on-off” consistency (i.e., each
on/off action corresponds to one on/off trigger sequentially).
Moreover, it is possible that WeMo Plug #1 is finally off and
WeMo Plug #2 is finally on. We believe this deviates from the
user’s real intention behind the Applets. To make the situation
even worse, IFTTT will never turn off WeMo Plug #2 (e.g.,
after checking the consistency of the final states of WeMo
Plug #1 and #2), unless the WeMo Plug #1 is turned on/off
again. This is determined by the underlying implementation of
the polling architecture of IFTTT. Within each polling, IFTTT
is only notified of changes of data GET from the URI at the
trigger service. If the data of the trigger service (of WeMo
Plug #1) is not changed, IFTTT will not POST anything to
the action service (of WeMo Plug #2).

In RTX-IFTTT, the edge is conscious of the trigger se-
quence, therefore it guarantees that the last action corresponds
to the last trigger to ensure the correctness of the final states
of all H-IoT devices. If necessary, the edge is also able to
guarantee that every action is prompted the correct number
of times in correct order, by blocking a notification to IFTTT
until the previous actions are performed.

2) Notification by Webhooks: A more general method is
to rely on the Webhooks which are user customized HTTP
callbacks (as shown in Fig. 4(b)). Most platforms including
IFTTT provide this interface for users and developers. RTX-
IFTTT specifies a Webhook in advance by configuring a URL
for each possible action, and constructs a new Webhook-action
connection. Multiple Applets with a same action share a same
Webhook. When a trigger of an Applet is identified, RTX-
IFTTT determines which action to be performed, and makes
an HTTP request to the URL configured for the corresponding
Webhook. Then IFTTT performs that action immediately.

For IFTTT, a Webhook-action connection is constructed as
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TABLE I
THE FINGERPRINTS OF A TRIGGER EVENT IS COMPOSED OF FINGERPRINTS OF SUB-EVENTS. CC INDICATES THE controlling command SUB-EVENT, AND

SC INDICATES THE status change SUB-EVENT. THE RECALL RATE IS SHOWN IN THE TABLE, AND THE PRECISION RATE IS ALWAYS 100%.

Trigger Event Operations Fingerprints Recall #1 CC Fingerprints Recall #2 SC Fingerprints Recall #3

WeMo Smart Plug
switch on/off

Manual 322↑33↓ 92.00% / / 322↑33↓ 92.00%
APP 351↓33↑774↑33↓ 86.00% 351↓33↑ 100.00% 774↑33↓ 86.00%

Timer/Count down 330↓33↑322↑33↓ 100.00% 330↓33↑ 100.00% 322↑33↓ 100.00%
IFTTT Applet 363↓33↑774↑33↓ 90.00% 363↓33↑ 100.00% 774↑33↓ 90.00%

follows. A Webhook-action connection is in essence an Applet
with a special trigger service, i.e., a Webhook. The trigger event
is IFTTT “receives a web request”, and a name to the event
needs to be specified. Then the Maker server of IFTTT will
automatically configure a web URL which is a regular expres-
sion: “https://maker.ifttt.com/trigger/{name}/with/key/{key}”,
where name is the name of the trigger event specified by RTX-
IFTTT, and key is the secret key assigned to a user by IFTTT
which can be obtained from the Maker server.

3) Applet Management: RTX-IFTTT must ensure the be-
havior of IFTTT conforms to the correct semantics of that
Applet. For notification by Check Now, the router simply
sends a request to IFTTT. For notification by Webhooks,
the router establishes a new Webhook-action connection in
advance, where the action in the connection is the same action
in the target Applet. When RTX-IFTTT notifies the Webhook,
it also disables the original Applet in IFTTT to ensure that
action is prompted only once.

D. Workflow of RTX-IFTTT

The router maintains fingerprints of all possible trigger
events and sub-events, and monitors routed traffic as illustrated
in Fig. 1. 〈T0, T1〉 and 〈T6, T7〉 indicate the controlling com-
mand sent from the vendor’s service to the H-IoT device, along
with some optional feedback from the device to the service.
〈T2, T3〉 and 〈T8, T9〉 indicate the status change sent from the
device to the service, along with the acknowledgement from
the service to the device. T4 indicates the traffic generated
by the edge in RTX-IFTTT, which is in comparison with that
generated in IFTTT (indicated by T4’).

The workflow of RTX-IFTTT 1 is as follows. When a trigger
event happens, the router identifies that trigger from traffic
(T0∼T3). Then the router notifies IFTTT of that trigger in
real-time (T4). Therefore, IFTTT does not need to poll for
that trigger (T4’). After being notified, IFTTT POSTs data
to the action service (T5), to perform the action (T6∼T9).
The workflow of RTX-IFTTT is quite different from that of
the vanilla IFTTT. The traffic marked as T4’ (dotted arrows)
is generated by IFTTT for polling the trigger service and by
the service to notify IFTTT of that trigger. In contrast, RTX-
IFTTT uses a signaling architecture implemented on the edge
to replace the polling one.

IV. ANALYSIS

In this section, we provide some analysis on RTX-IFTTT.
We provide the reason that fine-grained identification achieves

1A demo is available at https://github.com/nis-seu/RTX-IFTTT-demo

higher recall rate in comparison with the traditional coarse-
grained identification. In the meanwhile, we investigate the
reason that real traffic generated with a trigger-event is dif-
ferent with its fingerprints. We also make some comparison
between notification by Check Now and that by Webhooks.
The prior is faster and tolerates identification errors, while the
latter can be used to enable connections across platforms.

A. Identifying Fine-Grained Sub-Events

Existing inference techniques suffers from an inadequate
recall rate, when applying to trigger identification in real H-
IoT environments. This is because a same trigger event can
be the result of different operations, while each operation
can be divided into sub-events (controlling command and
status change), and each sub-event can generate different
traffic patterns. Even if the traffic of a same trigger event is
collected thousands of times, no one can guarantee a perfect
recall rate. Table I illustrates the recall rate in identifying an
example trigger event “ WeMo Smart Plug switch on/off”. The
recall rate (Recall #1) is inadequate since there are too many
(potential) fingerprints for this trigger event.

By dividing a trigger event to sub-events, we obtain the
following findings. The recall rate (Recall #2) for identifying
the controlling command sub-event is always 100%, however
the recall rate (Recall #3) for identifying the status change sub-
event is often inadequate. If a controlling command sub-event
is identified, while the corresponding status change sub-event
is not, then the trigger probably happens. RTX-IFTTT decides
whether the trigger event has happened as follows. It supposes
this trigger happens, and notifies IFTTT of this trigger by using
the Check Now interface. If the action is prompted by IFTTT,
then this trigger has really happened.

The fine-grained sub-event identification performance is
provided in Table II. Take WeMo Smart Plug (the 1st device)
as an example. If it is operated by an IFTTT Applet (the
4th operation of the device), the recall rate for identifying
the controlling command sub-event is 100% and that for
identifying status change is 90%. This implies that, with the
i.i.d. assumption, the traditional coarse-grained identification
achieves a recall rate of 100% × 90% = 90%, while RTX-
IFTTT can in theory achieve a recall rate of 1− (1−100%)×
(1 − 90%) = 100%. This is confirmed by our experiments
where the recall rate for identifying this trigger event is perfect.

B. Identifying Trigger Events in Real H-IoT Environments

Although one can identify a trigger event based on traffic
analysis in a laboratory environment, it is still challenging to
achieve adequate precision rate and recall rate in the real H-
IoT environments. This is because the real traffic generated
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TABLE II
FINGERPRINTS AND IDENTIFICATION FOR TRIGGER EVENTS OF 5 SELECTED DEVICES.

(Vendor) Device
Trigger Events Operations Sub-Events Fingerprints Sub-Event Identification Trigger Event Identification

Precision Recall F1 Score Precision Recall F1 Score

WeMo Smart Plug
Switch on/off

Manual SC 322↑,33↓ 100.00% 92.00% 95.83% 100.00% 92.00% 95.83%

APP CC 351↓,33↑ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 774↑ 33↓ 100.00% 86.00% 92.47%
Timer/

Countdown
CC 330↓,33↑ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 322↑,33↓ 100.00% 100.00% 100.00%

IFTTT Applet CC 363↓,33↑ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 774↑ 33↓ 100.00% 90.00% 94.74%

MiJia Smart Switch 2
Switch on/off

Manual SC 169↑185↑89↓89↓ 100.00% 81.00% 89.50% 100.00% 81.00% 89.50%

APP CC 169↓169↑ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 185↑137↑89↓89↓ 100.00% 87.00% 93.05%
Timer/

Countdown
CC 217↓105↑ 98.52% 100.00% 99.25% 98.52% 99.50% 99.01%SC 169↑185↑89↓89↓ 100.00% 68.50% 81.31%

Smart Life Smart Strips
Switch on/off

Manual SC 255↑4↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

APP CC 188↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 255↑4↓ 100.00% 100.00% 100.00%
Timer/

IFTTT Applet
CC 296↓ 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%SC 255↑4↓ 100.00% 100.00% 100.00%

SmartThings Switch
Switch on/off

Manual SC
433↑47↓

100.00% 96.00% 97.96% 100.00% 96.00% 97.96%434↑47↓
435↑47↓

APP/
Timer/

Countdown/
IFTTT Applet

CC

127↓47↑

98.46% 96.00% 97.21%

98.52% 99.75% 99.13%

128↓47↑
255↓47↑
256↓47↑
257↓47↑

SC
433↑47↓

100.00% 93.50% 96.64%434↑47↓
435↑47↓

Yeelight LED Bulb 1
Switch on/off

APP CC 121↓89↑ 99.01% 100.00% 99.50% 99.01% 100.00% 99.50%SC 121↑89↓ 100.00% 99.00% 99.50%

Timer CC 153↓89↑ 100.00% 100.00% 100.00% 98.04% 100.00% 99.01%SC 121↑89↓ 100.00% 97.00% 98.48%

IFTTT Applet CC 105↓89↑ 100.00% 96.00% 97.96% 99.01% 100.00% 99.50%SC 121↑89↓ 100.00% 100.00% 100.00%

between a device and the vendor service can be changeable
and is not always ideal.

We conduct a small experiment (as illustrated in Fig. 6)
and dive into the details of the traffic a little bit, to obtain
some insight into the reason why fingerprinting events perform
poorly in real H-IoT environments. We only focus on two
operations of a same device, i.e., switch on/off WeMo Smart
Plug manually or via APP, and we suppose we have obtained
the fingerprints of this trigger event (and the corresponding
three sub-events including status change for manual operation
and controlling command and status change for APP oper-
ation). In the experiment, we turn on/off the plug via APP
and then within 1 second turn off/on the plug manually. We
record the traffic, reduce the noise, and try to identify the
events/sub-events. The process is repeated 100 times. It is quite
interesting that the ideal traffic for identifying the trigger event
is observed only 8 times. This implies that traffic generated
with concurrent events of a same device is mixed up.

We observe some possible patterns of the mixed up
traffic.1)Multiple feedbacks: Multiple feedbacks can be gen-
erated with concurrent events of a device. 2)Random order:
Concurrent events and corresponding packets can be in inde-
terminate orders. 3)Repetitive events: Some of the concurrent
events can be performed more times than expected. 4)Missed
events: Some events can be missed. 5)Coalesced packets:
packets generated with distinct events can be coalesced to form
a new packet. 6)Changed packets: Feedback packets generated
with concurrent events can be indeterminate. Figure 6 illus-

trates how likely each possible pattern happens. There can be
more complicated patterns when we consider more events/sub-
events. Fortunately, we can still identify fine-grained sub-
events with most of these patterns (except coalesced packets)
with adequate precision and recall rate.

It should be noted that, increasing the recall rate by identify-
ing fine-grained sub-events instead of the whole trigger event,
is in theory at the expense of precision rate. This is because
the information entropy of the fingerprints for a sub-event is
smaller than that for a trigger event. Moreover, the precision
rate of identifying a trigger event can be lower than each
of its sub-event. For traffic with multiple feedbacks, multiple
status change sub-events might be mistakenly identified. This
is confirmed by our experiment as illustrated in Table II. For
Yeelight LED Bulb 1 (the 5th device), if it is operated by
IFTTT Applet (the 3rd operation of the device), the precision
rate of identifying sub-events is 100% while that of identifying
the whole trigger event drops to 99.01%.

RTX-IFTTT is designed to increase recall rate at the expense
of precision rate due to two reasons. Firstly, the increment
in recall rate is significant while the decrement in precision
rate is always negligible. Secondly, notification by Check Now
tolerates identification errors but not misses. The final trigger
event identification performance is provided in Table II.

C. Check Now Vs. Webhooks

On identifying a trigger event, RTX-IFTTT immediately
notifies IFTTT by using either the Check Now interface or

6

6



Event Operations Fingerprints
WeMo Smart Plug

switch on/off
Manual 322↑33

APP 351↓33↑774↑33
+

Switch WeMo Smart Plug on/off via APP,
then switch it on/off manually within seconds.

↓
Possible Patterns Freq. Example Traffic (Denoised)

Ideal Traffic 8/100 322↑33↓351↓33↑774↑33↓
Multiple Feedbacks 80/100 322↑33↓351↓33↑774↑33↓33↓

Random Order 48/100 351↓33↑774↑322↑33↓33↓33↓
Repetitive Actions 23/100 351↓33↑774↑322↑33↓33↓33↓322↑33↓

Missed Actions 25/100 351↓33↑774↑33↓33↓
Coalesced packets 22/100 351↓33↑1096↑33↓33↓33↓
Changed packets 4/100 322↑33↓351↓33↑774↑37↓

Fig. 6. Some possible patterns of mixed up traffic.

Fig. 7. The edge node and 27 kinds of H-IoT devices (from 16 vendors).

the Webhooks. Both methods achieve real-time execution of
Applets. In comparison, notification by Check Now does not
rely on Applet management, and is highly flexible even with
low trigger identification precision. Moreover, Check Now
achieves a shorter delay in Applet execution, the run-time
performance is provided in sec. V-B. Therefore, RTX-IFTTT
uses Check Now by default.

Webhooks are used to enable connections across platforms.
The difficulty in connecting different vendors’ services is
restricting the development of H-IoT. Despite IFTTT’s ecosys-
tem of more than 600 world-class services, for many of
the services only part of the events are designated as API
endpoints. An example is the Yeelight service [31], it only
allows IFTTT to POST data for actions, but not to GET data
for triggers. There are even more services (e.g., MiJia [32])
that cannot be accessed from IFTTT due to business reasons.

RTX-IFTTT enlarges the ecosystem of IFTTT, and enables
connections across various platforms. Compared with tradi-
tional approaches which rely on the vendor’s services to
provide update to a trigger event, RTX-IFTTT relies on the
edge to identify the trigger event. If the platform is notified
of the trigger with a Webhook, that platform does not need to
check for the triggers at all, as illustrated in Fig. 1. This implies
that a trigger endpoint designated in one platform is able to
prompt an action endpoint designated in another platform,
only if the latter platform supports Webhooks. Fortunately,
the Webhooks are now commonly integrated in IoT platforms
like IFTTT, SmartThings [12], HomeKit [13], Zapier [14],
Home Assistant [15], etc. For example, a Webhook in Zapier
is a web URL which is a regular expression: “https://hooks.
zapier.com/hooks/catch/{userID}/{AppletID}”, where userID
is the unique ID of a user, and AppletID is the ID of the
Applet assigned to a user by Zapier. In Sec. V-D, we validate
effectiveness of cross-platform Applets.

TABLE III
LIST OF ALL DEVICES.

◦ INDICATES THAT TRIGGER (T) AND ACTION (A) EVENT IS SUPPORTED
BY IFTTT (OR CAN BE SUPPORTED BY RTX-IFTTT ); × INDICATES THAT
EVENT IS NOT SUPPORTED; − INDICATES THAT EVENT DOES NOT EXIST.

Vendors Devices IFTTT RTX-
IFTTT

T A T A
WeMo Smart Plug ◦ ◦ ◦ ◦

Smart Life Smart Strip, ◦ ◦ ◦ ◦
PIR Motion ◦ − ◦ −

SmartThings Outlet, ◦ ◦ ◦ ◦
Motion Sensor, M-purpose Sensor ◦ − ◦ −

Yeelight Bulb 1, Bulb 1S × ◦ ◦ ◦
Ring Video Doorbell 3 Plus ◦ ◦ ◦ ◦

iRobot Roomba ◦ ◦ ◦ ◦
Arlo Camera ◦ ◦ ◦ ◦
Wyze Camera ◦ ◦ ◦ ◦

Philips Hue Light × ◦ ◦ ◦
Netatmo Weather Station ◦ − ◦ −

Blink Camera ◦ ◦ ◦ ◦
Alexa Voice Assistant ◦ ◦ ◦ ◦

MiJia

Motion Sensor, Door Sensor, × − ◦ −
Temperature/Humidity Sensor, × − ◦ −

Smart Plug, M-purpose Gateway, × × ◦ ×
Purifier, Humidifier, Sweeper × × ◦ ×

XiaoAi Voice Assistant × × ◦ ×
XiaoYi Voice Assistant × × ◦ ×
QingMi Smart Strip × × ◦ ×

V. EVALUATION

In this section we evaluate the performance of RTX-IFTTT
from the following aspects: 1)trigger event identification per-
formance, 2)runtime performance of single-platform Applets,
3)runtime performance of cross-platform Applets.

A. Settings

We use 27 kinds of H-IoT devices from 16 vendors (as
listed in Table III) in our experiments, and use a raspberry
PI 4B to serve as the edge/router (as shown in Fig. 7). All
these devices are divided into 4 categories (marked as C1-
C4), according to whether the vendor provides a trigger/action
service that can be accessed by IFTTT. C1Most devices are
fully supported by IFTTT. Vendors of these devices provide
both trigger services and action services. C2Vendors of some
devices provide only trigger services, and these devices are
always sensors and cannot perform any actions. C3Vendors of
some other devices provide only action services, e.g., Yeelight,
and these devices are not fully supported by IFTTT. C4We
also find some devices that are not at all accessible by IFTTT,
including devices from MiJia, XiaoAi, XiaoYi and QingMi.
We select 5 devices to represent all categories, which include
devices that are accessible by IFTTT (i.e., WeMo, Smart Life,
SmartThings and Yeelight) and those are not (i.e., MiJia), and
also include devices the vendors of which provide not only
action services but also trigger services (i.e., WeMo, Smart
Life and SmartThings), and those provide only action services
(i.e., Yeelight). Experimental results related to these devices
are detailed, and results for other devices are briefly reported
due to page limit.

B. Event Identification Performance

We use RTX-IFTTT to classify the captured traffic by the
IP and MAC address of the device, reduce the noise in it,
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(c) Cross-Platform (IFTTT and Zapier) Connections

Fig. 8. Runtime performance of single-platform Applets and cross-platform Applets in IFTTT and RTX-IFTTT. Prefix A- indicates that Applet is executed
directly by IFTTT, C- indicates that RTX-IFTTT notifies IFTTT by Check Now, I- indicates that RTX-IFTTT notifies IFTTT by Webhooks, Z- indicates that
RTX-IFTTT notifies Zapier by Webhooks. The number indicates the serial number of an applet in Table IV. RTX-IFTTT greatly reduces the execution delay
from roughly 2min to 2sec by Check Now or 5sec by Webhooks, and it enables connections across platforms.

TABLE IV
APPLETS (CONNECTIONS) USED IN EXPERIMENTS IN FIG. 8

# Triggers Actions
1 Smart Life Smart Strip is on Turn on WeMo Smart Plug
2 Smart Life Smart Strip is off Turn off WeMo Smart Plug
3 WeMo Smart Plug is on Turn on Smart Life Smart Strip
4 WeMo Smart Plug is off Turn off Smart Life Smart Strip
5 Smart Life Smart Strip is on Turn on Yeelight Bulb 1
6 Smart Life Smart Strip is off Turn off Yeelight Bulb 1
7 MiJia Smart Plug is on Turn on Smart Life Smart Strip
8 MiJia Smart Plug is off Turn off Smart Life Smart Strip
9 MiJia Smart Plug is on Turn on WeMo Smart Plug

10 MiJia Smart Plug is off Turn off WeMo Smart Plug
11 MiJia Smart Plug is on Turn on Yeelight Bulb 1
12 MiJia Smart Plug is off Turn off Yeelight Bulb 1
13 Smart Life Smart Strip is on Add row to Google Sheets
14 Smart Life Smart Strip is off Add row to Google Sheets
15 WeMo Smart Plug is on Add row to Google Sheets
16 WeMo Smart Plug is off Add row to Google Sheets
17 MiJia Smart Plug is on Add row to Google Sheets
18 MiJia Smart Plug is off Add row to Google Sheets

and then match it with the fingerprints of this device. For
most devices, we consider the trigger event be “switch on/off”.
The fingerprints for switching on and that for switching off a
device are always the same. Due to this reason, RTX-IFTTT
maintains a local variable for each device to save the current
state of that device. In the meanwhile, RTX-IFTTT discovers
for each device whether it is online/offline according to the
cyclic packets (e.g., ping/pong and heartbeat). If the device is
supposed to be offline for some time, the state of the device
is updated with the notification by Check Now.

Each operation is at first performed 20 times, and the
generated packet sequences are collected to generate the
fingerprint(s) (calculated by Equation 1). The operation is
then performed additional 100 times for identifying the sub-
events. All packets generated in the latter 100 experiments
are collected sequentially for identification, so the identified
number of a certain sub-event can be greater/smaller than 100
in case of errors/misses. Then the trigger events are identified
according to method described in Sec.III-B and IV-A. The fin-
gerprints and identification performance of trigger events/sub-
events for 5 selected devices are provided in Table II.

In an H-IoT environment, devices are often supposed to be
operated remotely via APPs or even automatically via Applets.

For sub-event identification, the precision rate is near perfect
(is always greater than 98.5%). However the recall rate is not
at all adequate (sometimes drops to 68.5%). For identification
of the whole trigger events, the precision rate drops a little
bit in comparison with that of sub-events, but is still near
perfect (is always greater than than 98%). The recall rate is
significantly increased and near perfect (is always greater than
99.5%). These results validate the identification performance
of RTX-IFTTT when devices are not operated manually.

Results for other devices. The identification performance
for other devices is also near perfect. We make the following
conclusions. 1)For normal H-IoT devices, if they are not
operated manually, the precision and recall rate are both near
perfect. For example, event identification for Qing Mi Smart
Strip (turning on/off 327 times) and Yeelight Bulb 1S (turning
on/off 327 times) both achieve 99.08% precision rate, 100.00%
recall rate, and 99.54% F1-score. 2)For WiFi enabled sensors,
the precision and recall rate are both near perfect. For example,
event identification for Smart Life PIR Motion (updating data
50 times) achieves 100.00% precision rate, recall rate, and
F1-score. 3)Even for hub/gateway which connects multiple
wireless sensors (ZigBee or Z-Wave enabled), the precision
and recall rates based on the integrated traffic are still near
perfect. For example, event identification for MiJia multi-
purpose gateway (updating data from motion sensor, door
sensor or temperature/humidity sensor 689 times) achieves
98.99% precision rate, 99.27% recall rate, and 99.13% F1-
score. For sensors, the edge can only identify events of
updating data, but cannot identify trigger events which are
mainly based on specific values of sensor data. RTX-IFTTT
must use the Check Now interface and rely on IFTTT platform
to determine whether the trigger event is satisfied.

C. Runtime Performance of Single-Platform Applets

In this experiment, we compared the runtime performance
of IFTTT Applets executed by IFTTT and that by RTX-IFTTT.
The Applets are listed in Row 1 to 6, Table IV. Each Applet
is executed directly by IFTTT 40 times, and then by RTX-
IFTTT with notification by Check Now 40 times and then by
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Webhooks 40 times. The results are as illustrated in Fig. 8(a),
the Applet execution delay by IFTTT ranges from 5 ∼ 260sec.
RTX-IFTTT greatly reduces the average execution delay from
roughly 2min to 2sec by Check Now or 5sec by Webhooks.

Results for other Applets. The runtime performance for
other devices/Applets is quite similar to that illustrated in
Fig. 8(a). The average delay for IFTTT is always around
2min, and that for RTX-IFTTT ranges from 2sec to 6sec.
The only exception deals with Ring video doorbell, when the
trigger event is “new ring detected”. Applets with this trigger
event are executed by IFTTT extremely fast (the average delay
is 2sec), faster than that by RTX-IFTTT. One possible reason
for this exception is that the vendor of this device implements
the Realtime API for its trigger service.

D. Runtime Performance of Cross-Platform Connections

We conduct experiments to validate that RTX-IFTTT en-
larges IFTTT’s ecosystem by considering connections of non-
IFTTT triggers to IFTTT actions. We choose MiJia Smart
Plug which is not supported by IFTTT to generate trigger
events. We consider 6 trigger-Webhook connections as listed
in Row 7 to 12, Table IV, and run each Applet 40 times. The
runtime performance is as illustrated in Fig. 8(b). The average
execution delay is only about 5sec.

We also conduct experiments to validate that RTX-IFTTT
enables cross-platform connections. In this experiments, we
choose two platforms IFTTT and Zapier. We consider “Add
row to Google Sheets” as the action of each connection, and
establish Webhooks for this action in both IFTTT and Zapier.
We construct Applets (or connections) as listed in Row 13 to
18, Table IV. Each Applet is executed by RTX-IFTTT with
notification by IFTTT Webhooks 40 times, then by Zapier
Webhooks 40 times, and by IFTTT Check Now 40 times if
this Applet can be established in IFTTT platform. The runtime
performance is illustrated in Fig. 8(c). The average execution
delay of cross-platform connections in RTX-IFTTT is about
5sec for both IFTTT Webhooks and Zapier Webhooks, and
that for IFTTT Check Now is about 2sec.

VI. RELATED WORK

This section briefly surveys related techniques.

A. Device Action Inference

There are already many researches on device action infer-
ence based on traffic analysis in H-IoT environment. Mollers
et al. [5] propose a passive attack to detect user information in
real home automation environment. Copos et al. [6] propose
an inference attack on two devices (Nest thermostat and Nest
protect) based on IP addresses, packet lengths and the bursty
characteristics of sending packets. Miettinen et al. [33] propose
a device type inference method based on features of packet
headers (e.g., protocol, port number). Bihl et al. [34] propose
a fingerprinting framework optimized for Z-Wave devices.
Zhang et al. [7] propose an inference attack on the SmartTings
platform based mainly on packet lengths. Trimananda et al.
[8] distinguish phone-device communication and cloud-device

communication to observe more comprehensive fingerprints.
Acar et al. [10] use statistical characteristics of traffic as
features based on the observation that most devices generate
traffic in different patterns when they are sleeping or working.
The existing techniques on device action inference cannot be
directly used in RTX-IFTTT since the recall rate of these
techniques are inadequate.

B. Applet Execution Delay Measurement/Countermeasures

By now, there are not many approaches dealing with applet
execution delay in IFTTT. Mi et al. [4] propose a real IFTTT
test-bed and conduct experiments to analyze the Applet execu-
tion performance. They are the first to comprehensively report
and analyze the Applet execution delay in IFTTT. However,
they do not provide any solutions to this critical problem. Heo
et al. [35] propose an optimization approach which reduces
the averaged execution delay by dynamically adjusting polling
intervals. By predicting sensor values in the near future,
the polling interval is dynamically increases/decreased when
trigger conditions is unlikely/likely to be satisfied. IFTTT
reduces the average delay by tuning the polling interval to
improve user experience. If an Applet has run many times
recently, the polling interval will be decreased [3].

C. Edge Based IoT System/Platform

Home Assistant [15] is a secure IoT platform which keeps
all data local and can be deployed on the edge. Many other
existing approaches also rely the edge to enhance security
in H-IoT by event verification [36], device/behavior profiling
[37][38][39], intrusion/anomaly detection [40], privacy protec-
tion [41][42] and flow control [43][44].

VII. CONCLUSION

This paper proposes an edge based trigger notification
mechanism named RTX-IFTTT, which identifies trigger events
from the H-IoT traffic and notifies the H-IoT platform
by Check Now of Webhooks. RTX-IFTTT enables real-time
trigger-action execution, achieves near perfect precision and
recall rate for trigger identification, enlarges IFTTT’s ecosys-
tem, and enables cross-platform H-IoT connections.
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