
On Misconception of Hardware and Cost in IoT
Security and Privacy

Bryan Pearson∗, Lan Luo∗, Yue Zhang∗†, Rajib Dey∗, Zhen Ling‡, Mostafa Bassiouni∗and Xinwen Fu∗
∗College of Engineering and Computer Science, University of Central Florida, USA

Email: {bpearson,lukachan,rajibdey}@knights.ucf.edu, {yue.zhang,bassi,xinwenfu}@ucf.edu
†College of Information Science and Technology, Jinan University, China

‡Department of Computer Science, Southeast University, China
Email: zhenling@seu.edu.cn

Abstract—The popularity of IoT has raised grave security
and privacy concerns. There is a misconception that security
and privacy issues of IoT systems are caused by the hardware
and its cost. In this paper, we will explore the use of microcon-
trollers (MCUs) and crypto modules in IoT applications and
demonstrate that hardware and cost may not be the bottleneck
of IoT security and privacy in various application domains. We
discuss how to implement hardware security, system/firmware
security, network security, and data security with the low-cost
Espressif’s ESP32, TI’s CC3220 and Microchip’s cryptographic
co-processor ATECC608A. We perform extensive experiments
to validate the performance of cryptographic and networking
operations of IoT devices based on those and other MCUs and
crypto modules. We are the first to perform a comprehensive
measurement and comparison of cryptographic and networking
performance of these modern IoT MCUs and modules.

I. INTRODUCTION

Internet of Things (IoT) interconnects everything including
physical and virtual objects together through communication
protocols. IoT has broad applications in digital healthcare,
smart cities, transportation, agriculture, logistics and many
other domains. The global IoT market is booming. According
to Forbes [2], the IoT Market will reach $520B by 2021.

The popularity of IoT has raised grave concerns about
security and privacy [12], [14]. When medical devices are
connected to the Internet, compromised medical devices may
endanger the lives of patients. Hacked autonomous cars may
crash. Hackers exploited default passwords and user names
of webcams and other IoT devices, and installed the Mirai
botnet [1] on compromised IoT devices. The huge botnet
was then used to deploy the DDoS attack against Dyn DNS
servers. The IoT reaper botnet was discovered in 2017 [5]
and exploited newly found vulnerable IoT devices.

There is a misconception that the security and privacy
issues of IoT are caused by incapable hardware and the
associated cost. For example, it is believed that it is hard
to adopt secure hardware and achieve the desired security
such as public key cryptography based mutual authentication
while preserving decent networking performance for smart
home products. In this paper, we will explore how to secure
low-cost microcontrollers (MCUs) based IoT applications.
Sensor nodes in various smart systems such as smart home,
smart health and smart grid can use MCUs to process
commands and automatic control.

Fig. 1: ESP32, CC3220 and ATECC608A and development boards

Our major contributions can be summarized as follows.
First, we discuss how to implement hardware security, sys-
tem/firmware security, network security, and data security
through Espressif’s ESP32 ($3.45 at aliexpress) [4], TI’s
CC3220SF ($6.79 at TI) [13] and Microchip’s ATECC608A
($0.55 at Microchip) [6]. Figure 1 shows these modules and
the corresponding development boards. ATECC608A is a
crypto co-processor module with AES, HMAC and ECC
(elliptic curve) hardware acceleration and secure key storage;
it can be used with a MCU or microprocessor such as ESP32
and CC3220F to provide public key cryptography based mu-
tual authentication and communication secrecy and integrity.
Second, we perform extensive experiments to demonstrate
the performance of cryptographic and networking operations
of those and other MCUs and modules, and show that the
low cost MCUs and crypto chips will be able to meet the
security and privacy requirements in domains where MCUs
are used. We are the first to perform a comprehensive mea-
surement and comparison of cryptographic and networking
performance of these modern IoT MCUs and modules.We
advocate the use of these low-cost and low-power modules
to secure IoT systems.

The rest of this paper introduces readers to ESP32 security
features in Section II, discusses differences between ESP32
and CC3220 and capabilities of the ATECC608A in Section
III, and presents our evaluation of the cryptographic and
networking performance of these devices in Section IV.
Section V concludes the paper.

II. SECURE MCU BASED IOT SYSTEM VIA ESP32
In this section, we first discuss security requirements of

an IoT system, identifying the necessity of securing the

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

hardware, system and firmware, data on the flash, network
communication, and firmware updates. We then discuss how
to achieve these security features individually on the ESP32.

A. Security Requirements of IoT Systems
Different IoT systems have different requirements. We take

an Internet enabled environmental monitoring system as an
example to demonstrate security requirements of such an IoT
system, and believe other systems share similar attributes.

Environmental sensors may monitor air, water and soil
quality in the wild and hostile field. A secure environmental
monitoring system should have hardware security and be able
to prevent attackers from reading and changing the data on
the device, even when the attacker has physical access to
the device. However, hardware security is a great challenge.
For example, advanced attackers may remove the flash of
a device and manipulate the flash directly through its I/O
interface. Therefore, the IoT device should have system and
firmware security so that it can detect firmware changes and
protect the overall system. To further protect the firmware
and sensitive data that may be stored on the flash, we also
want data security—for example, flash and file encryption.

In order to secure network traffic to and from the IoT
device, we can use SSL/TLS (which we will refer to sim-
ply as TLS) to establish mutual authentication, message
encryption, and message integrity between the device and
a server. Mutual Authentication is necessary and critical for
any IoT system. We have explored various systems and found
that those without mutual authentication often have various
vulnerabilities [8], [7], [11], [9], [10], [3]. Without client
authentication, a fake client may solicit security credentials
from the server or a smartphone app. Without server/user
authentication, a fake server or a fake user can cheat on the
clients and collect sensitive information. Certificate based
mutual authentication based on public key crypto is often the
most feasible and simple implementation of mutual authen-
tication. In TLS’ certificate based mutual authentication, a
client verifies the server’s certificate and identity. The server
performs similar operations to authenticate the client.

Secure and efficient updating of the firmware of IoT
systems is also key to the longevity of an IoT system, since
no one can guarantee that a software has no bugs, and
security and functionality patches are always expected.

B. Hardware Security: Disabling JTAG and UART
The first step to accomplishing hardware security is to

disable I/O ports that may be present on the device. We
must disable the ESP32’s Joint Test Action Group (JTAG)
and Universal Asynchronous Receiver/Transmitter (UART)
ports, since they can lead to malicious read and write access.

JTAG is an interface which provides two primary functions
to the programmer. The first is boundary scanning, in which
the programmer can test each component of the chip sepa-
rately to verify it is connected and functioning correctly. The
second function is debugging. The Open On-Chip Debugger
(OpenOCD) is an open-source project and can interact with
the JTAG interface in a GNU Debugger (GDB) environment.
OpenOCD was extended to support the ESP32 JTAG chain.

Programmers can use GDB to communicate with OpenOCD,
providing complete flash access of the ESP32. It is possible
to read and write to any byte of memory, including registers
and instruction flow.

To disable JTAG, the corresponding eFuse value is set to
1. The ESP32’s eFuse is a 1024-bit partition of one-time
programmable memory, separated into four 256-bit blocks.
Upon setting a value, hardware “fuses" are severed, rendering
these values irreversible. As shown in Table I, the eFuse field
for disabling JTAG is named "JTAG_DISABLE". When the
programmer disables JTAG, they cannot re-enable it.

UART is a microchip which allows two devices to com-
municate over a serial connection. Both devices in a UART
connection can either transmit or receive bytes of data. Using
a serial register, UART will convert this data either from
serial to parallel or vice versa, depending on whether the
data is being transmitted or received. Unlike JTAG, which
can debug devices, UART is purely used for communication.

The primary purpose of UART with respect to the ESP32
is to upload an application or firmware to the flash. Other
possibilities with UART include monitoring output from the
console, and reading or modifying direct memory addresses.
The UART bootloader is implemented through an external
interface known as esptool. If flash content is encrypted
by the encryption key stored in the eFuse, then the UART
bootloader will transparently decrypt this content before
reaching the serial monitor. Similarly, the UART bootloader
will transparently encrypt data when flashing it via esptool.

To disable the insecure properties of the UART bootloader,
we must set three eFuse values. These are:

• DISABLE_DL_ENCRYPT: disables data encryption in
UART bootloader mode

• DISABLE_DL_DECRYPT: disables data decryption in
UART bootloader mode

• DISABLE_DL_CACHE: disables cache access in
UART bootloader mode

Afterwards, the UART bootloader cannot read or write to
the encrypted flash. If the UART bootloader tries to read
data, it will find that everything is encrypted. Similarly, if
the UART bootloader tries to upload plaintext data, this
data will not function correctly, since the flash controller
will transparently “decrypt" the data, effectively corrupting
it. Malicious users cannot override the encryption properties
of the flash, since they are set and enforced by the hardware.
C. System and Firmware Security

The ESP32 offers two main features to secure the system
and flash firmware from unauthorized access. These are
hardware-based secure key storage and secure booting of
the firmware. Secure key storage protects secret keys from
being externally revealed or modified. Secure boot requires
all firmware to be signed and verified before executing on
the device. The details of both features are discussed below.

1) Secure Key Storage: To guarantee that an IoT system is
secure, it is not enough to simply encrypt the data. We must
also securely store the encryption key, so that only trusted
systems can access it when needed, and even a software
malware that hacks into the system cannot access the keys.

TABLE I: ESP32’s security-related eFuse fields (Size in bits)

Name Description Size
FLASH_CRYPT_CNT Flash encryption counter 8

FLASH_CRYPT_CONFIG Flash encryption config. 4
CONSOLE_DEBUG_DISABLE Disable ROM console 1

ABS_DONE_0 Enable secure boot 1
JTAG_DISABLE Disable JTAG 1
DISABLE_DL_* Disable UART 3

BLK1 Flash encrypt key 256
BLK2 Secure boot key 256
BLK3 Undefined 256

The ESP32’s eFuse allows for secure key storage. Recall
this eFuse contains four 256-bit blocks. Block 0 is reserved
for the MAC address, SPI configurations, and related security
settings. Blocks 1 and 2 are actually used for key storage —
block 1 stores the flash encryption key, while block 2 stores
the secure boot key. Both keys are 256 bits and generated us-
ing an internal RNG hardware accelerated algorithm. Block
3 can be defined by the programmer to store application-
specific encryption keys.

The eFuse contains several important hardware-enforced
characteristics which make it secure. The first is that each
value cannot be reversed or lowered. For example, once the
memory sets the “JTAG_DISABLE" bit from 0 to 1, this
bit cannot be reversed, meaning that JTAG is permanently
disabled for the chip. The second characteristic is the ability
to remove read and write access from a value. When setting
blocks 1 and 2, the memory will preemptively set two bits
per block that correspond to read and write prevention,
effectively disabling these features. Since the eFuse is stored
in hardware, an attacker cannot use UART, JTAG, or other
means of communication to reveal the contents of the eFuse.

2) Secure Boot: Secure boot is a feature which ensures
that all software running in flash must be signed by a known
entity. If either the software bootloader or the application
firmware are modified, the device will refuse to boot.

Once properly configured, two keys are necessary to en-
able secure boot. The first key is a 256-bit secure bootloader
key, generated with internal RNG functions and stored in
eFuse block 2. This key allows the ROM bootloader to
validate the software bootloader. The second key is the
secure boot signing key, generated using ECDSA with
the NIST256p curve. The manufacturer will generate the
ECDSA keypair on their own system. The signing key is used
to generate image signatures, so it must be available to the
manufacturer. The software bootloader and the application
are validated via a chain-of-trust model, as detailed below.

The first step in secure boot is validation of the soft-
ware bootloader. When compiled into flash, the software
bootloader contains three attributes: (i) Binary: the image
executed by the software bootloader; (ii) ECDSA public key:
used to verify the application signature; (iii) AES digest: a
hash-based message authentication code (HMAC) used by
the ROM bootloader to validate the software bootloader.
Upon reading the software bootloader, the ROM bootloader
will calculate its own AES digest to validate the integrity
of the software bootloader. If the digest is valid, the ROM
executes the software bootloader. However, if the digests

fail to match, the ROM refuses to execute the software
bootloader, and the system halts.

The second step of secure boot is validation of the
firmware. Every firmware image and partition table must
contain an ECDSA signature appended to their binaries.
When loaded into flash, the application firmware con-
tains two attributes: (i) Binary: the image executed by the
firmware; (ii) ECDSA signature: generated using the binary
and the ECDSA private key. The software bootloader uses
its ECDSA public key to verify the ECDSA signature in the
application firmware with the binary as the input.

D. Data Security
The ESP32 has the ability to encrypt applications and

firmware using a secure AES-256 key. This procedure is
known as flash encryption. The AES key is stored in block
1 of the eFuse; once written to the eFuse, the read and write
bits for the key are set to prevent anyone from reading or
modifying the key.

When flash encryption is enabled, application-based flash
partitions, i.e. factory and over-the-air (OTA) partitions, are
encrypted by default. From there, decryption can only occur
at runtime via the flash controller. The flash controller is a
hardware component that can use the AES key to perform
the following operations: (i) Decryption of memory-mapped
read accesses to flash; (ii) Encryption of memory-mapped
write accesses to flash.

It is also possible to encrypt other flash partitions by
manually setting an “encrypt" flag for a partition. This
requires generating a custom partition table rather than using
the default table (which only encrypts factory and OTA
partitions). All partitions have the option for their content
to be encrypted, with the exception of nvs, or non-volatile
storage (NVS), which persists through the power cycle.

Although we cannot secure the NVS partition directly
using flash encryption, we can still encrypt the partition
through other means. We can create a new partition named
nvs_key, generate a new AES-256 secret key, and store the
key in this partition. This partition can be marked with
the ”encrypt” flag so that the key is encrypted with the
primary flash encryption key. Afterwards, when the ESP32
detects read or write requests to the NVS partition, it will
transparently encrypt or decrypt these requests using the
NVS key and AES-XTS mode. These requests are only
available from the ESP32’s NVS API library, so they cannot
be exploited from outside the device.

E. Network Security
The challenge to implement TLS on an IoT device

is often the cost and efficiency of implementing the
public key based cryptographic functionalities. As shown
in this paper, the hardware and cost may no longer be the
bottleneck. ESP32 has cryptographic hardware acceleration
for RSA and Random Number Generator (RNG), while ECC
hardware acceleration is limited based on our experiments.
Our extensive experiments show that the performance of
TLS is satisfactory in various application domains. ESP32
also has cryptographic hardware acceleration for AES and

SHA-2 in addition to RSA and RNG so that TLS can
be fully implemented. Therefore, AES encryption can be
implemented for communication secrecy, and HMAC will
achieve communication integrity.
F. Secure Over-the-Air Updates (OTA)

OTA is a process in which the MCU fetches a new image
from a remote location, stores this image in the flash, and
loads it on successive reboots. OTA updates are seamless and
transparent, and many devices can be updated concurrently.
The drawbacks are that wireless updates introduce additional
attack vectors that must be avoided. The ESP32 offers native
library support for HTTPS OTA updates. For example, a
partition table includes OTA partitions which store potential
firmware for the ESP32. An OTA partition otadata can point
to the newest firmware. Upon downloading a new update,
the unused firmware will be overridden, leaving the current
firmware untouched. If the update fails, the device will revert
to the previous application. If it succeeds, otadata updates
to point to the correct partition, and the system reboots to
the new firmware.

III. DISCUSSION

In this section, we first discuss the security differences be-
tween the ESP32 and the Texas Instruments (TI) CC3220SF
MCU (denoted as CC3220 thereafter) in terms of hardware
security, system and firmware security, network security, and
data security. The features of the CC3220 are technologically
similar to the ESP32. We will then discuss the use of low-cost
cryptographic co-processors for IoT security and privacy.

A. Differences from the TI CC3220
The CC3220 contains two separate execution environ-

ments, an ARM Cortex-M4 MCU (180 MHz) for user
applications, and a network processor MCU for network-
related tasks. The ESP32 contains two Xtensa LX6 cores
(240 MHz), allowing for preemptive context-switching and
user-specified processor workloads.

1) Hardware Security: Both the ESP32 and the CC3220
contain external UART and JTAG ports for communication
and debugging. CC3220 additionally has compact JTAG
(CJTAG) and serial wire debug (SWD) ports for alternative
debugging methods. Both chips can be configured to disable
these debug interfaces. The CC3220 supports two applica-
tion environments: development mode and production mode.
Users can select their preferred environment using the TI
Uniflash standalone flash tool. In development mode, JTAG
and other debugging interfaces are exposed, and the user can
navigate and modify the device file system using Uniflash. In
production mode, the user cannot use Uniflash to access the
file system. Furthermore, hardware-enforced file encryption
limits the capabilities of UART in production mode.

2) System/firmware Security: TI encourages CC3220
users to use the TI-Real Time Operating System (TI-RTOS).
This OS utilizes a file system model to organize image
contents and metadata. Both ESP32 and CC3220 can run
any SoC-level OS, such as FreeRTOS and Mongoose OS.

Both devices support similar functions with regards to
secure key storage. The ESP32 can store three private keys

in the eFuse. Additionally, users can generate an nvs_key
partition in the ESP32 to store encryption keys, which will
transparently encrypt and decrypt data in the NVS partition.
Finally, the ESP32 can generate temporary AES, DES, RSA
and ECC keys using the mbedtls library.

By comparison, the CC3220 can store up to eight different
private keys. Keys must be generated using ECDH with the
SECP256R1 curve, with the exception of the device-unique
keys. Secure key storage is available in three different forms
for the CC3220: hardware-bound device-unique private keys,
temporary keypairs, and pre-installed keypairs. There are two
device-unique keys on the CC3220. The first is a 128-bit
key that encrypts the file system using AES-128-CTR. The
second is a 256-bit keypair that can be used to sign and
verify various data buffers; this can be used to implement se-
cure content delivery, mutual authentication during the TLS
handshake, and various other features. Temporary keypairs
can be generated using the device TRNG (true random)
library; these will not persist through the power cycle.
Finally, pre-installed keypairs must be generated outside of
the CC3220 and flashed to the device before uploading the
main application code. From there, only the public keys are
retrievable, while the private keys are protected by hardware.

The CC3220 also provides secure boot functionality. When
first booting the application onto the chip, the user must
present a valid RSA certificate signed by a trusted CA. This
certificate is used to prove authenticity during subsequent
flashes. The user signs the image using the RSA private key.
The bootloader then stores the corresponding public key,
which is used to verify the image. Finally, the bootloader
hashes the image binary and stores this in a secure file.

Upon repeated boots, if the user decides to reflash the
same image, then they will need to present a valid certificate
to authenticate with the device. The bootloader will confirm
that the image signature is valid and the hashes match, and
the program will execute as normal. If the authenticated user
decides to reflash a new image and signs with the private
key, then the bootloader will verify the signature, hash and
store the new image binary, and execute the new image. In
this way, the ROM bootloader serves as the root of trust for
applications in the CC3220, similar to the ESP32.

The CC3220 secure boot approach differs from the ESP32
in several ways. For one, the CC3220 only verifies the run
time binary and the associated files, whereas the ESP32
verifies the binary, software bootloader, and all other flash
partitions with the exception of NVS. Second, secure boot
is enabled by default for the CC3220 (in production mode),
whereas it is optional and disabled by default for the ESP32.

3) Network Security: The ESP32 and CC3220 have sim-
ilar network security features. In our observations, we found
very few technical differences in the most critical areas of
network security, although network performance has been
shown to differ in our evaluation.

The ESP32 and CC3220 fully support the SSL/TLS proto-
col, enabling mutual authentication, message encryption, and
message integrity. Both the ESP32 and CC3220 can generate
X.509 certificates using ECC or RSA certificates. In addition,

the ESP32 and CC3220 both support HTTP, MQTT, and
HTTP/MQTT over SSL. Either HTTP/S or MQTT over SSL
is sufficient for secure communication with a server.

Both devices support WiFi (802.11 b/g/n) and Bluetooth
Low Energy (BLE version 4.2). In addition to serving as an
open access point (WEP and WPA), both devices can connect
to personal and enterprise WPA2 networks. If an enterprise
network is to be connected, the network CA certificate must
be manually imported onto the device. The CC3220 can also
communicate using Zigbee, a close-ranged communication
technology; Zigbee is unsupported by the ESP32.

4) Data Security: The ESP32 and CC3220 both support
some form of flash encryption. The ESP32 can encrypt all of
its flash contents using a hardware-stored AES key. Mean-
while, the CC3220 organizes most of its user-defined code
in a file system, which is also encrypted with a hardware-
bound AES key. TI refers to this protection mechanism as
”cloning detection", because only the original boot device
has authorization to decrypt the file system. Both chips also
support temporary and persistent key generation.

The CC3220 implements a file permission mechanism
known as data tampering detection. Users can designate and
label critical files in their applications. The file metadata will
denote them as “secure" files. Upon a secure file creation,
the system will generate several different 32-bit access tokens
for read, modify or delete; each token provides a different
access level for the file. This feature, coupled with the file
system encryption, prevents attackers from stealing sensitive
data even if they have full control of the device.

Both devices incorporate external hardware accelerators
for a variety of cryptographic algorithms. The ESP32 sup-
ports hardware acceleration for RSA, AES, SHA-2, and
RNG. The CC3220, meanwhile, supports hardware accel-
eration for AES, DES, 3DES, SHA-2, MD5, CRC, and
checksums. In section IV, we compute and compare different
procedures on data using AES, HMAC, ECC, and TLS.
B. Microchip ATECC608A

An old MCU may not have modern support of se-
cure boot, flash/file encryption and hardware crypto accel-
eration. However, solutions are available to secure those
MCUs and other processors. One example is Microchip’s
ATECC608A, which is a cryptographic co-processor with
secure hardware-based key storage. It can store 16 keys, and
supports ECDSA/ECDH, SHA-256 & HMAC, AES-128 and
other features. Communicating with ATECC608A is done
through either a GPIO (general-purpose input/output) pin
or a standard Inter-Integrated Circuit (I2C) interface, which
is a widely supported serial protocol. The ATECC608A
incorporates the functions of two older chips: ATECC508A
(ECC+HMAC) and ATAES132A (AES). We will also inves-
tigate the performance of the ATAES132A in our evaluation.

IV. EVALUATION

In this section, we present the results of evaluating the
ESP32, ESP8266 (the predecessor to ESP32), CC3220,
and Microchip’s ATAES132A and ATECC608A (denoted as
AES132 and ECC608 thereafter).

A. Experiment Setup
We evaluate the following metrics: AES key generation,

encryption, and decryption; ECC keypair generation, signa-
ture generation, and signature verification; HMAC compu-
tation; RSA keypair generation, signature generation, and
signature verification; MQTT over SSL connection estab-
lishment and round-trip time (RTT) delay. MQTT is a
lightweight IoT protocol so that devices and controllers can
exchange messages through a broker/server.

Figure 1 shows some of the development boards we use to
program those modules. Note that the development board is
a device that contains a chip such as the ESP32 and is used
to evaluate the chip. For the ESP32, we use the HiLetgo
ESP32 OLED WiFi Kit ($18.99 at Amazon) while one
without the OLED display costs around $10.99 at Amazon
and around $5 at aliexpress. The programming environment
is Espressif IoT Development Framework (esp-idf), Arduino
integrated development environment (IDE), or the Mongoose
OS firmware development framework. For ESP8266, we use
a NodeMCU development board (around $6.50 at Amazon).
We program in Mongoose, running ESP8266 at 160MHz. For
CC3220, we use TI’s CC3220SF-LAUNCHXL development
board ($49.99 at TI) and run at 180 MHz. The program-
ming environment is the Code Composer Studio (CCS)
IDE. For ECC608, we use Microchip’s Crypto Kit UDFN
Socketed XPRO Development Board ($85 at Microchip).
The programming environment for the AES132 and ECC608
is Atmel Studio 7; additionally, these crypto chips can be
programmed through the ESP32 or ESP8266.

B. Summary of Measurement Results
Table II shows the median of each operation. All metrics

were performed 100 times on each chip. RSA is only im-
plemented on the ESP32 to compare with ECC performance;
this is due to the time cost of RSA keypair generation, which
requires significantly large keys (2048 bits or more) for
sufficient protection. Key generation is performed externally
in the case of the Microchip MCUs involved. We can see
that these results are satisfactory in various IoT settings. For
example, the round trip time of a short message between our
devices and AWS Amazon IoT through the TLS tunnel has
a median of less than 50 ms. Although the TLS connection
establishment to the AWS IoT takes a median of 2.30 seconds
for ESP32 and 0.699 seconds for CC3220, it is acceptable
since the TLS connection can be reused and does not need
to go through the full handshake protocol. For example,
Amazon AWS IoT uses persistent TLS connections.

C. AES, HMAC, ECC, and RSA
We now show the box plots of these measurements.

We first show the performance of AES key generation,
encryption, and decryption. Figures 2 and 4 showcase these
results, respectively. We use a key size of 256 bits and cipher
block chain (CBC), except in the cases of the ESP8266 and
AES132. ESP8266 only implements 128-bit AES operations
due to RAM constraints, while the AES132 is restricted to
the 128-bit key size in Counter with CBC-MAC (CCM)
mode. For all other chips, we choose to measure AES-256 in

TABLE II: Summary of cryptography metrics (unit µs) for the ESP32, CC3220, ECC608, AES132, and ESP8266.

Evaluation ESP32
(240MHz)

CC3220
(180MHz) AES132A ESP8266

(160MHz)
ECC608

Standalone
ESP32 with

ECC608
ESP8266

with ECC608
AES encryption 4.05 38.8 10.0× 103 153 6.10× 103 N/A N/A
AES decryption 4.12 39.5 10.0× 103 145 6.70× 103 N/A N/A

HMAC 154 45.1 N/A 182 25.9× 103 N/A N/A
ECC sig. gen. 9.29× 104 3.87× 105 N/A 2.48× 105 90.2× 103 N/A N/A

ECC sig. verify 3.32× 105 7.09× 105 N/A 6.97× 103 45.1× 103 N/A N/A
RSA sig. gen. 159 N/A N/A N/A N/A N/A N/A

RSA sig. verify 2.27× 103 N/A N/A N/A N/A N/A N/A
MQTT conn. establishment 2.30× 106 6.99× 105 N/A 2.85× 106 N/A 1.10× 106 1.40× 106

MQTT RTT 3.99× 104 4.79× 104 N/A 8.32× 104 N/A 5.90× 104 5.22× 104

CBC mode because it is the same algorithm used to encrypt
the flash contents on the ESP32.

In our runs of AES key generation, CC3220 performed
approximately 226 µs faster than ESP32. Conversely, for
AES encryption and decryption, the ESP32 performed faster
than CC3220 and ESP8266 by a large margin, and slightly
faster than the ECC608 and AES132. The AES132A showed
the worst performance at 10 ms for encryption and de-
cryption. Encryption and Decryption operations performed
considerably faster than key generation.

Next, we measure HMAC, whose results can be seen in
Figure 5. For ESP32, CC3220, and ESP8266, we use a
key size of 112 bits, while the ECC608 uses a 256-bit key
size due to hardware restrictions. All chips use the SHA-
256 hash function. The final HMAC is 256 bits. Our tests
indicate that ESP32 executes HMAC slower than CC3220
and ECC608 by approximately 100 µs. CC3220 showed
the strongest performance at only 45.1 µs. The ECC608
performed the worst at 25.9 ms. Similar to AES, all metrics,
except the ECC608, are on the order of µs, likely due to
SHA-2 hardware acceleration.

For ECC, we first use ECDH (Elliptic Curve Diffie-
Hellman), followed by ECDSA (Elliptic Curve Digital Sig-
nature Algorithm) to generate and verify the digital signature.
We use the SECP256R1 curve and a 256-bit sized key. ECC
is particularly advantageous over RSA in terms of speed and
key size. The results of ECC performance on the MCUs can
be observed in Figures 3 and 6. ESP32 outperformed the
CC3220 in all three benchmarks. The ESP8266 showcased a
median run time of approximately 0.25 seconds for signature
generation and 0.07 seconds for verification. It is observed
that ECC operations are several orders of magnitude slower
than AES and HMAC. This behavior is expected and well-
documented.

Next we examine the performance of RSA with a 1024-
bit key. We only focus on the performance of ESP32, to
compare with ECC. Software-based RSA keypair generation
would predictably run poorly on MCUs, due to the large
key size. Even our 1024-bit key size, which is below NIST’s
recommended minimum key size of 2048 bits, is very time-
consuming. Furthermore, the other chips in our evaluation
do not appear to support RSA hardware acceleration; thus,
we refrain from measuring their RSA performance.

Figures 7 and 8 plot the results of RSA key generation, sig-
nature generation, and signature verification on the ESP32, in
comparison to ECC. We continue to use the SHA-256 hash
function for consistency with ECC. RSA key generation vari-

ance was significant. ECC key generation performed faster
and more consistently; however, RSA signature operations
fared much better than ECC due to hardware acceleration. As
expected, all operations fell on the order of seconds, with key
generation performing at least ten times slower than signature
operations in most cases.
D. MQTT

In our setup, we use the Amazon AWS IoT broker in
the North Virginia region to measure MQTT connection
establishment and round-trip delay. We publish messages
with a quality of service (QOS) level of 1, ensuring that
AWS will acknowledge our messages by responding with
PUBACK message packets. The run times for ESP32 and
CC3220 can be seen in Figures 9 and 10. We also measure
performance of these chips when leveraging the ECC608’s
hardware acceleration.

For connection establishment time, CC3220 outpaced the
ESP32 and ESP8266. The CC3220 performed over three
times faster than the ESP32 and over four times faster than
the ESP8266. Without crypto acceleration, the ESP32 took
approximately 2.3 seconds, while the ESP8266 took about
2.85 seconds. The ECC608 performed at 1.1 seconds and
1.4 seconds, respectively. It is shown that on the tested chips,
connection establishment time can take as little as one quarter
of a second, although network lag can throttle performance
by a considerable margin.

On the whole, the ESP32 showed the best performance for
round-trip MQTT delay. The ESP8266 performed slightly
worse than the other chips, and ECC608 did not appear
to significantly impact the ESP32 or ESP8266 run times.
Round-trip delay is predictably faster than connection estab-
lishment time, which is ideal for persistent TLS connections.

V. CONCLUSION
In this paper, we study modern MCUs and crypto co-

processors including Espressif’s ESP32, TI’s CC3220 and
Microchip’s ATECC608A in terms of their cryptographic and
networking operation performance. It can be observed that
these MCUs and modules can provide satisfactory hardware
security by disabling the I/O interfaces, system/firmware
security through secure boot, network security through
SSL/TLS (including mutual authentication that is required by
Amazon AWS IoT), and data security through flash/file en-
cryption and Over-the-Air (OTA) firmware upgrade through
wireless or HTTPS. The very low cost ATECC608A can be
added to various MCUs and microprocessors as a crypto co-
processor to secure the overall IoT system, and meet the
performance requirements of networking.

Fig. 2: AES (256) key generation Fig. 3: ECC (SECP256R1) key generation Fig. 4: AES encryption and decryption

Fig. 5: HMAC with SHA-256 Fig. 6: ECC signature operations
Fig. 7: ECC (256) and RSA (1024) keypair
generation for the ESP32

Fig. 8: ESP32 signature operations using ECC
(256) and RSA (1024). Fig. 9: AWS IoT connection establishment Fig. 10: Round-trip delay of MQTT packets

ACKNOWLEDGEMENT

This work was supported in part by National Key R&D
Program of China 2018YFB0803400 and 2017YFB1003000,
by the US National Science Foundation under Grant Nos.
(1642124 and 1547428), by National Natural Science Foun-
dation of China under grants 61572130, 61532013, and
61632008, by Jiangsu Provincial Key Laboratory of Network
and Information Security under grants BM2003201, by Key
Laboratory of Computer Network and Information Integra-
tion of Ministry of Education of China under grants 93K-9
and by Collaborative Innovation Center of Novel Software
Technology and Industrialization. Any opinions, findings,
conclusions, and recommendations in this paper are those
of the authors and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou. Understanding the mirai botnet.
In Proceedings of the 26th USENIX Security Symposium (Security),
2017.

[2] L. Columbus. Iot market predicted to double by 2021, reach-
ing $520b. https://www.forbes.com/sites/louiscolumbus/2018/08/16/
iot-market-predicted-to-double-by-2021-reaching-520b/, Aug 2018.

[3] N. Dhanjani. Security evaluation of the philips hue personal
wireless lighting system. http://www.dhanjani.com/docs/Hacking%
20Lighbulbs%20Hue%20Dhanjani%202013.pdf, 2013.

[4] Espressif Systems (Shanghai) Pte., Ltd. Esp32. https://en.wikipedia.
org/wiki/ESP32, 2018.

[5] A. Greenberg. The reaper iot botnet has already
infected a million networks. https://www.wired.com/story/
reaper-iot-botnet-infected-million-networks/, Oct. 2017.

[6] M. T. Inc. Atecc608a. https://www.microchip.com/wwwproducts/en/
ATECC608A, 2018.

[7] Z. Ling, K. Liu, Y. Xu, Y. Jin, and X. Fu. An end-to-end view of
iot security and privacy. In Proceedings of the 60th IEEE Global
Communications Conference (Globecom), Singapore, December 2017.

[8] Z. Ling, J. Luo, Y. Xu, C. Gao, K. Wu, and X. Fu. Security
vulnerabilities of internet of things: A case study of the smart plug
system. IEEE Internet of Things Journal (IoT-J), 2017.

[9] J. Molina. Learn how to control every room
at a luxury hotel remotely. https://www.defcon.
org/images/defcon-22/dc-22-presentations/Molina/
DEFCON-22-Jesus-Molina-Learn-how-to-control-every-room-WP.
pdf, 2014.

[10] J. Molina. Learn how to control every room at a luxury hotel remotely:
The dangers of insecure home automation deployment. In Proceedings
of Defcon, 2014.

[11] J. Obermaier and M. Hutle. Analyzing the security and privacy of
cloud-based video surveillance systems. In Proceedings of the 2nd
ACM International Workshop on IoT Privacy, Trust, and Security
(IoTPTS), 2016.

[12] X. Peng, J. Ren, L. She, D. Zhang, J. Li, and Y. Zhang. Boat: A block-
streaming app execution scheme for lightweight iot devices. IEEE
Internet of Things Journal, 5(3), June 2018.

[13] Texas Instruments Incorporated. Cc3220. http://www.ti.com/product/
CC3220, 2018.

[14] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu. Iot security techniques
based on machine learning: How do iot devices use ai to enhance
security? IEEE Signal Processing Magazine, 35(5), September 2018.

