
LDR: Secure and Efficient Linux Driver Runtime for
Embedded TEE Systems

Huaiyu Yan†, Zhen Ling†∗, Haobo Li†, Lan Luo‡, Xinhui Shao†, Kai Dong†

Ping Jiang†, Ming Yang†, Junzhou Luo†, Xinwen Fu§
†Southeast University, Email: {huaiyu yan, zhenling, haobo li, xinhuishao, dk, jiangping, yangming2002, jluo}@seu.edu.cn

‡Anhui University of Technology, Email:lanluo448@gmail.com
§University of Massachusetts Lowell, Email: xinwen fu@uml.edu

Abstract—Trusted execution environments (TEEs), like Trust-
Zone, are pervasively employed to protect security sensitive
programs and data from various attacks. We target compact
TEE operating systems like OP-TEE, which implement minimum
TEE internal core APIs. Such a TEE OS often has poor device
driver support and we want to alleviate such issue by reusing
existing Linux drivers inside TEE OSes. An intuitive approach
is to port all its dependency functions into the TEE OS so that
the driver can directly execute inside the TEE. But this approach
significantly enlarges the trusted computing base (TCB), making
the TEE OS no longer compact. In this paper, we propose a TEE
driver execution environment—Linux driver runtime (LDR). A
Linux driver needs two types of functions, library functions and
Linux kernel subsystem functions that a compact TEE OS does
not have. The LDR reuses the existing TEE OS library functions
whenever possible and redirects the kernel subsystem function
calls to the Linux kernel in the normal world. LDR is realized as
a sandbox environment, which confines the Linux driver inside
the TEE through the ARM domain access control features to
address associated security issues. The sandbox mediates the
driver’s TEE functions calls, sanitizing arguments and return
values as well as enforcing forward control flow integrity. We
implement and deploy an LDR prototype on an NXP IMX6Q
SABRE-SD evaluation board, adapt 6 existing Linux drivers into
LDR, and evaluate their performance. The experimental results
show that the LDR drivers can achieve comparable performance
with their Linux counterparts with negligible overheads. We are
the first to reuse functions in both the TEE OS and normal world
Linux kernel to run a TEE device driver and address related
security issues.

I. INTRODUCTION

Trusted execution environments (TEEs) are extensively uti-
lized to safeguard the integrity and confidentiality of security-
sensitive program logic (SPL). Contemporary TEEs employ
hardware-based methods, delivering robust security founda-
tions for creating an isolated domain (such as SGX en-
claves [1], SEV secure virtual machines [2], TrustZone secure
worlds [3], and RISC-V enclaves [4]), which functions as a
black box to the external environment. SPLs are typically
deployed within these isolated domains to protect against

*Corresponding author: Prof. Zhen Ling of Southeast University, China.

external threats, particularly privileged attacks from root users,
operating systems, hypervisors, etc. As a result, TEEs are
widely adopted by cloud service providers and embedded
system manufacturers to enable secure data processing.

However, due to the absence of sophisticated driver support
inside TEEs compared to the comprehensive driver support
found in commodity OS kernels, such as the Linux kernel,
it is difficult to implement I/O-oriented TEE services. Instead
of employing a monolithic design like KNOX [5], embedded
TEE OSes, like OP-TEE [6] and SierraTEE [7], take a compact
kernel design in order to reduce attack surfaces, and we
refer to these TEE OSes as compact TEE OSes. Compact
TEE OSes typically maintain a minimal trusted computing
base (TCB) with a small line of code (LoC) [8], [9],
[10], providing only security-critical services like secure boot,
cryptographic operations, and attestation. When it comes to
TEE exclusive I/O interactions, many research works choose
to port existing device drivers into TEEs [11], [12], which
involves a huge amount of repeated engineering efforts. To
reduce the engineering efforts introduced by trivial driver
porting, Driverlets [13] proposes a general driver-reuse method
where a recorder executes a driver inside an emulator like
QEMU [14] and records its runtime I/O and DMA behaviors.
Then, a replayer replays the recorded behaviors inside TEE
to reproduce driver functionalities. However, the request of a
sophisticated emulator is hard to satisfy, as only a limited set of
hardware board models is currently supported by QEMU [15].
Moreover, such approach of replying recorded driver behaviors
exhibits poor performance. Other systems like MyTEE [16]
enable secure I/O by reusing existing NW drivers and provid-
ing security guarantees through virtualization-based memory
isolation as well as temporary supervised privilege escalation.
However, since MyTEE I/O operations involve world switches
and hypercalls, it incurs heavy overhead for devices with
frequent I/O requests. Therefore, we are motivated to explore
an approach that reuses the existing device drivers to facilitate
secure and efficient driver support inside compact TEE OSes
while maintaining a small TCB.

In this paper, we propose a TEE driver execution environ-
ment, named Linux driver runtime (LDR), that enables secure
and efficient TEE driver support. We focus our design on
ARM TrustZone-empowered embedded systems and choose to
reuse existing Linux drivers. LDR is a sandbox environment
that provides necessary runtime support for driver execution
inside the secure OS which works as the operating system
inside the TrustZone secure world (SW). In brief, we load a

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23009
www.ndss-symposium.org

driver module for a target secure peripheral, which we refer
to as a SW driver, into LDR and orchestrate and mediate its
interactions with the secure OS as well as the normal world
(NW) Linux kernel so that the driver module can properly
initialize and operate on the target peripheral. To mitigate the
security concerns introduced by the SW driver’s dependency
on the NW Linux kernel, LDR provides library function (e.g.,
memory management, I/O operation, etc.) support for the SW
driver by reusing the secure OS library functions. As for the
remaining ones which the secure OS does not implement, LDR
redirects them to the NW Linux kernel yet with security checks
on both passed arguments and return values.

To maintain a small TCB and to protect the secure OS
from potentially untrusted drivers, LDR isolates SW drivers
from the secure OS as well as from each other. To be
specific, LDR leverages ARM domain access control (DAC)
[3] features to create an isolated execution domain (IED) for
each SW driver so that an untrusted driver cannot directly
access the secure OS memory or other SW drivers’ data during
execution. To facilitate secure interactions between SW drivers
and the secure OS, LDR creates an IED gate that acts as
the secure gateway of the secure OS. Particularly, during SW
driver execution, the IED gate intercepts and mediates every
secure OS function call issued by a SW driver. Additionally,
LDR enforces forward control flow integrity (F-CFI) on these
function calls to defend against control-flow hijacking attacks
on the secure OS. Finally, we investigate the secure driver state
maintenance schemes to prevent sensitive SW driver data from
being leaked to the NW during redirected Linux subsystem
calls.

LDR design choices have several advantages over existing
approaches in terms of 1) engineering efforts (§VI-C): Beside
driver code reuse, LDR reuses existing secure OS functions
and redirects unsupported ones to the NW Linux kernel
instead of implementing the driver runtime from the scratch.
2) performance (§VI-E, §VI-F): LDR runs compiled driver
modules in native speed and therefore outperforms Driverlets
that leverages emulated execution. 3) security (§VII): LDR
enables secure I/O with all device I/O operations exclusively
conducted inside the SW. LDR isolates all SW drivers from the
secure OS as well as from each other to maintain a small TCB.
Meanwhile, LDR mediates each function call issued from SW
drivers and enforces security checks on those redirected to the
NW Linux kernel.

We develop an LDR prototype and deploy it on a
TrustZone-empowered NXP IMX6Q SABRE-SD board in
order to demonstrate the feasibility and effectiveness of LDR.
To estimate engineering efforts, we generate the SW drivers
for diverse sensors, including accelerometer, image processing
unit, etc. The results show that the modification to the original
Linux driver code is reasonable and most driver code stays
untouched. Additionally, we evaluate the LDR performance
using these SW drivers via various use cases. The experimental
results demonstrate that the LDR SW drivers can exert the
full power of the devices for these real-world use cases, with
sensor data collection in full sampling speed and only -2.43%
streaming speed penalty to high-definition video streaming.

In summary, this paper offers the following contributions:

• We present several key observations on the internal

structures of modern Linux drivers. Such observations
can minimize the dependency functions of a SW driver,
thus simplifying the overall LDR design and reducing
engineering efforts.

• We are the first to offer driver runtime environment sup-
port by reusing existing TEE functions whenever possible
and redirecting the unsupported ones to the NW OS
kernel.

• We propose a TEE driver isolation mechanism based on
efficient ARM DAC features, which separates untrusted
drivers from the secure OS as well as from each other
while securely mediating their interactions with the secure
OS and the NW Linux kernel through CFI.

• We implement an LDR prototype and evaluate its fea-
sibility and effectiveness in supporting various sensor
drivers. The experimental results demonstrate that LDR
introduces minimal performance overhead to real-world
use cases.

II. MOTIVATION & OBSERVATION

In this section, we first present our motivations and inves-
tigate two alternative design choices, briefly discussing their
merits and limitations. Then, we present our observation and
insights on the Linux driver model which can greatly simplify
the overall LDR design.

A. Motivations

TrustZone-based secure OSes have limited support for
device driver inside the SW, which hinders the deployment of
I/O-oriented secure services on TrustZone-enabled platforms.
In contrast, the Linux kernel provides sophisticated driver
support to almost all devices whose drivers are well maintained
by a lot of communities. Therefore, we are motivated to
propose an approach that shall realize 1) Code reuse. The
existing driver code should be reused. We intend to reuse low-
layered driver functions related to direct I/O, interrupt handling
and utility functions since these functions interact with the
peripheral and realize basic driver functionalities. 2) Security.
To preserve a small TCB size, the modifications to the secure
OS should be as small as possible. Additionally, since a SW
driver is large in size and may contain potential security flaws,
all SW drivers should be isolated from the secure OS rather
than being included as part of the TCB. 3) Good performance.
The SW drivers shall achieve comparative performance with
their Linux counterparts.

B. Alternative Designs

Porting Linux Kernel Functions into Secure OS. One
straightforward approach is to include driver loadable kernel
modules (LKM) and the Linux kernel inside the secure OS, as
shown in Figure 1-(a), so that all external functions depended
by the driver LKM can be provided by the secure OS. To
minimize code base introduced to the secure OS, the original
Linux kernel can be trimmed down only to include functions
needed by the drivers. During runtime, drivers can directly
invoke functions of the trimmed kernel as they do when run-
ning inside the Linux kernel. This approach can result in good
performance as both the drivers and the trimmed kernel reside
in the same address space of the secure OS. Additionally,
since the trimmed kernel provides all the functions needed

2

by the drivers, no driver modification is needed. However,
there are several drawbacks involving such approach. Firstly,
it is a non-trivial job to trim down the Linux kernel. As
shown in §II-C, a driver depends on functions provided by
various Linux kernel subsystems. These functions are tightly
aggregated with the Linux kernel as well as with each other
and it takes huge engineering efforts to extract them. Secondly,
though trimmed down, the remaining kernel code base is still
very large compared to the secure OS and adding such trimmed
kernel to the secure OS can result in tremendous TCB bloating.

Redirecting All Function Calls to Linux Kernel. Another
alternative approach is to only put driver LKMs inside the
secure OS and redirect all driver dependency function invoca-
tions back to the NW Linux kernel, as shown in Figure 1-(b).
For each SW driver’s dependency function, a SW caller stub
and a NW callee stub are generated to pass arguments and
synchronize global data objects between the SW and the NW
accessed by both the caller and the callee [17]. Meanwhile, a
remote procedure call (RPC) proxy checks and validates each
redirected call in terms of passed arguments and return values.
Such total function call redirection approach does not enlarge
TCB since the complex Linux kernel subsystems still reside in
the NW and can be realized with relatively small engineering
efforts. However, such approach may result in performance
downgrade as well as security issues. Firstly, redirecting every
single function invocation may result in huge performance
overhead for drivers with frequent kernel function calls, e.g.,
sensor devices with bus I/O at a high sampling rate. To justify
such claim, we deploy an MMA8451 accelerometer driver[18]
inside the secure OS following this approach. The results show
that the sampling rate drops to 405.89, 49.3% lower than the
device’s default sampling rate of 800. Secondly, such approach
may result in security issues. Recall that the kernel I/O library
functions primarily help drivers to interact with the underlying
devices. Therefore, the untrusted Linux kernel may corrupt the
raw data by hooking these I/O functions and the SW cannot
acquire integral and genuine raw data.

Linux Kernel

(a)

Secure OSLinux Kernel

Trimmed
Linux Kernel

 Functions

Data Objs

Sym Table

(b)

Secure OS

Driver
LKM

Driver
LKM

 Functions

Data Objs

Sym Table

Trusted Isolated DomainUntrusted

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

RPC
Proxy

Secure OS
Core

Driver
LKM

Driver
LKM

Driver
LKM

Driver
LKM

Secure OS
Core

Fig. 1: Alternative Design Choices. (a) placing a trimmed Linux
kernel inside the secure OS. (b) redirecting all function calls back to
the Linux kernel.

Reflection on Alternative Designs. The fundamental factor
resulting in the drawbacks of the above two alternative designs
is that a driver LKM depends on so many complicated kernel
functions that the runtime environment has to support either
by porting or through function call redirection. Therefore, we
ask two inspiring questions:

Q1 Are all driver functions necessarily needed to provide I/O
support inside TEE?

Q2 Do all these dependency functions need to be either
directly provided inside the secure OS or completely
redirected to the NW Linux kernel?

C. Observations

We try to answer Q1 by figuring out the abstract structure
of a Linux driver. In turn, we construct a Linux driver model
by analyzing the source code of different Linux drivers [19],
[20], [18], [21], focusing on their common internal structures
and their interactions with other Linux kernel components.
In general, a driver is composed of its state variables and
functions, as shown in Figure 2.

Hardware Peripheral Device

Linux Driver

Kernel Space

User Space
System Call Interfaces

Application Application

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

Linux VFS Subsystems

Dev & Drv
Subsystem

Clock
Subsystem

Interrupt
Subsystem

Utilities

In
it

 &
 C

o
n

fi
gVFS Interface Implementation

State Vars

Device
Info

Kernel
ObjectsInterrupt Handler Direct I/O

Fig. 2: Linux Driver Model

State Variables. Usually, a Linux driver is implemented
with several global data structures holding information vital to
the driver. We refer such global data structures as the driver’s
state variables which contain the driver’s device information
(e.g., register map and hardware state) and subsystem data
objects used when Linux kernel functions are invoked.

Driver Functions. As shown in Figure 2, we classify all
driver functions into five categories in terms of their function-
alities: 1) Initialization & configuration. These functions (i.e.
init(), probe()) are responsible for initializing the driver
state variables. The Init & Conf functions set up the device
information fields and call kernel subsystem functions with
the subsystem data objects as arguments to register the driver
to various Linux kernel subsystems. 2) Direct I/O. These
functions interact directly with the underlying hardware device
through bus I/O operations or memory mapped I/O (MMIO).
3) Interrupt handler. These functions handle the interrupts
issued by the device and they are often registered to the Linux
interrupt subsystem during the driver initialization. 4) VFS
interface implementation. These functions implement VFS-
defined interfaces and are registered to the VFS subsystems in
form of function pointers [22]. 5) Utilities. The rest functions
are referred to as utility ones which conduct operations, e.g.,
processing data read from devices, enabling/disabling a device
functionality using I/O functions.

Based on such abstract driver model, we observe that Init
& Conf functions are meant to initialize the state variable and
never get executed during runtime. Such observation motivates
our first observation shown as follows.

Obs 1. There is no need to re-run Init & Conf functions as long as
we make a secure and valid copy of the SW driver’s state variable
from an initialized NW driver.

3

Moreover, the original driver provides its services to user-
space applications through its VFS functions. Though so-
phisticated, Linux file systems are too heavy for TEEs [23]
and the secure OS has its own lightweight mechanism to
provide secure OS services to SW applications. Therefore,
such observation results in our second observation.

Obs 2. A driver’s VFS functions are service-oriented and do
not directly interact with the peripherals. Instead, they depend on
functions related to I/O, interrupt handling and utilities, which
conduct direct interaction with the underlying device.

According to Obs 1&2, a driver’s Init & Conf and VFS
functions can be discarded and LDR no longer needs to
support the corresponding dependency functions invoked by
these functions (Q1). Furthermore, as to be shown in §VI-C,
such function discarding will significantly reduce the number
of driver dependency functions, especially kernel subsystem
functions, and in turn simplify the overall LDR design.

To answer Q2, we analyze a driver’s dependency functions
and categorize them into two classes: 1) Library functions
which provide various utility primitives (e.g. memory manage-
ment, primary data processing, I/O operations, etc.) which are
common across various OSes. 2) Kernel subsystem functions
which provide advanced driver management services which
are specific to the Linux kernel. The remaining dependency
functions are vital to driver’s well functioning and it is difficult
to port them to the secure OS. Accordingly, we answer Q2 by
presenting our final observation.

Obs 3. Library functions can be directly supported by the secure
OS and the Linux kernel subsystem functions need to be redirected
to and handled by the NW Linux kernel.

III. ASSUMPTIONS & THREAT MODEL

We assume that the secure OS is trusted. The NW programs
including the Linux kernel and NW drivers are assumed trusted
during the system boot phase so that NW drivers can be
securely initialized and a legal NW state variable can be
generated and used to initialize the corresponding SW driver.
After the SW driver is initialized, the whole NW may be
compromised at run time and thus become malicious.

It is also assumed that the SW drivers may contain vul-
nerabilities which an attacker can exploit to launch mem-
ory corruption or control flow hijacking attacks, e.g., return-
oriented programming (ROP) attacks [24]. We are intended
to protect the secure OS from such attacks and maintain a
small TCB. Moreover, we aim to ensure code integrity and
data privacy for each SW driver and prevent an untrusted
driver from corrupting memory regions belonging to other
SW drivers. Note that LDR cannot ensure device availability
since the malicious NW OS can just shutdown or crash the
system, resulting in denial-of-service. In addition, we assume
that the underlying hardware’s implementation adheres to their
specification. Finally, we consider advanced hardware-oriented
attacks, e.g., cache-based side channel attacks [25], [26], [27],
bus snooping attacks [28], DMA attacks [29] and cold boot
attacks [30], to be out of scope.

We assume that the underlying devices can be configured as
secure using the TrustZone Protection Controller (TZPC) [31],

making them exclusively accessible from the SW. Therefore,
data can only be captured inside the SW so as to assure the
integrity and validity of the raw data. However, we do not
enforce any particular security policy on whether the captured
data can only be accessed from the SW or be shared among
both NW and SW programs. Developers can make the final
decision depending on the particular application scenario. If
developers allow NW applications to access the data, the data
can be further protected by being encrypted or signed inside
the SW and then passed to the NW applications [32].

IV. LDR DESIGN

In this section, we elaborate on the design of our Linux
driver runtime for TrustZone-based secure OSes. After present-
ing an overview of LDR design, we first introduce the LDR
driver generation approach to generate the twin drivers from
the original Linux driver. Then we justify the correctness of
substituting Linux kernel library functions with secure OS ones
and demonstrate the basic workflow of the SW driver execution
inside LDR. Finally, to protect secure OS from untrusted SW
drivers, we present a driver isolation mechanism based on
ARM domain access control (DAC) and secure state variable
maintenance schemes.

A. LDR Overview

We design the Linux Driver Runtime (LDR), a runtime
execution environment for SW driver loadable kernel modules
(LKMs). Two phases are involved to run a driver inside LDR,
namely the offline phase and the runtime phase, as shown in
Figure 3.

Offline Phase: During offline phase, we generate SW
drivers and prepare the corresponding driver dependency func-
tions inside LDR. We first investigate a twin driver approach
where a pair of twin drivers, namely the NW driver and the
SW driver, are generated based on the original Linux driver
(§IV-B). Particularly, the NW driver is meant to assist with the
SW driver’s runtime execution. Additionally, the SW driver
is generated by removing Init & Conf and VFS functions
of the original driver (Obs 1&2). Moreover, based on the
dependency functions of the SW driver, LDR provides the
corresponding library functions by reusing existing secure
OS functions (§IV-C) and generates RPC stubs that redirect
subsystem function calls (Obs 3).

Runtime Phase: During runtime, the twin drivers work
cooperatively to facilitate SW driver support (§IV-D). The
SW driver is loaded into LDR, interacts with the secure
peripheral devices and provides secure I/O services to other
SW components. The corresponding NW driver is a helper
driver running inside the NW Linux kernel to assist with SW
driver initialization and subsystem call redirection.

Considering that SW drivers themselves have large code
base and may contain potential security flaws, we create
an isolated execution environment to protect the secure OS
from the untrusted SW drivers and prevent an untrusted SW
driver from jeopardizing other drivers’ code integrity and data
privacy. Firstly, we create an isolated execution domain for
a set of functionally-related SW drivers and prevent such
SW drivers from accessing memory regions belonging to the
secure OS and other IEDs (§IV-E1). Secondly, we provide

4

a carefully-defined IED call gate that intercepts and mediates
each dependency function call issued by a SW driver (§IV-E2).
Finally, we propose several driver state maintenance schemes
that securely maintain both SW and NW driver states so that no
sensitive SW driver information is leaked to the Linux kernel
during driver initialization and execution (§IV-F).

Library Function
Substitution

Subsystem
Function Stubs

SW
Drv A

IED Call Gate

SW
Drv B SW

Drv C

SW
Drv D

Linux KernelSecure OS

Trusted Isolated Execution DomainUntrusted IED Call Gate LDR Components

NW
Driver

SW
Driver

Linux
Driver

1.
 R

em
o

ve
 V

FS
 F

u
n

cs
2.

 R
ep

la
ce

 In
it

 &
 C

o
n

f
Fu

n
cs

1.
 A

d
d

 L
D

R
 S

tu
b

s

Offline Phase Runtime Phase

NW
Drv A

NW
Drv C

NW
Drv B

NW
Drv D

 Subsys Funcs

NW RPC Proxy

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

 Library Funcs Secure OS Core

Fig. 3: LDR Design Overview.

B. Twin Driver Generation

We propose an LDR driver generation (LDG) approach to
generate a pair of twin drivers, namely the SW driver and the
NW driver. The SW driver is to interact with the corresponding
device and export its services to the secure OS components so
that the secure OS can provide the driver services to trusted
applications (TA). The NW driver is a NW helper driver used
to synchronize the SW state variable and provide data retrieval
interfaces to NW applications if needed.

1) SW Driver: The SW driver is generated by recognizing
and removing unnecessary functions from the original driver
and the basic idea is to remove Init & Conf functions and VFS
functions from the driver.

Recall that the Init & Conf functions initialize the driver’s
state variable by invoking multiple Linux kernel subsystem
functions (Obs 1). During runtime, the corresponding NW
driver is first initialized and its state variable is copied and used
as the SW driver’s state variable. However, several fields of the
NW driver’s state variable are invalid inside the SW due to the
semantic gap between the NW and SW. Take device register
mapping as an example, the returned register mapping address
is a Linux kernel virtual address which is invalid inside the
SW. Therefore, a new initialization function (sw_init()) is
added to invoke the driver registration interfaces provided by
our light-weighted LDR driver manager to register SW drivers
to LDR. Then, another initialization function (sw_probe())
is added to initialize the device information fields of the SW
driver state variable by invoking the secure OS functions. For
example, we invoke the secure OS memory mapping functions
to acquire the correct register mapping addresses. The rest
fields of the SW state variable (i.e. the subsystem data objects)
remain intact with their NW counterparts.

As for VFS functions, we can remove them without jeop-
ardizing the driver’s capability to provide I/O functionalities
(Obs 2) and we present an automatic way to remove these
functions in §V-A.

2) NW Driver: The NW driver is also generated from the
original Linux driver with minor modifications to initialize the

state variables for the SW driver and provide data retrieval in-
terfaces to NW applications if needed. We add extra operations
to the original Init & Conf functions, namely init() and
probe(), to pass the initialized subsystem data object fields
of the NW state variable to the SW driver. To allow developers
to retrieve data from the SW driver if needed, we design a
cross-world procedure call (CPC) mechanism to generate a
pair of NW and SW CPC stubs. The NW stub is responsible
for marshalling the arguments while the SW stub unmarshalls
the arguments and invokes the corresponding SW driver data
retrieval function. Except the Init & Conf functions and the
optional NW stubs, the rest NW driver functions are never
executed during runtime.

C. Library Function Substitution

LDR provides library function support for SW drivers by
reusing the existing secure OS library functions. To be specific,
we wrap the existing secure OS library functions to adapt their
function signatures to those declared by the Linux kernel (Obs
3). These secure OS library function wrappers are used during
SW driver linking phase and eventually invoked by the SW
driver during driver execution phase.

We claim that such substitution can achieve functional
correctness. Firstly, since a secure OS library function realizes
the same functionalities as its Linux kernel counterpart, reusing
the existing secure OS library functions can satisfy the SW
driver’s requirements. Secondly, due to the intrinsic simplicity
of the secure OS, a structure defined by the secure OS is not
so sophisticated as its Linux kernel counterpart and therefore
takes less memory space. For example, the struct mutex
of the Linux kernel [33] takes 20 bytes while that of OPTEE
[34] takes only 12 bytes. Recall the SW driver is built using the
Linux KBuild system. Therefore, the memory space reserved
for each SW driver data object, either global or local, is
determined by the corresponding Linux structure definition and
is more than what the secure OS function needs. Since the
SW driver data objects are only used by secure OS library
functions and the reserved memory space is sufficient for
function execution, it is safe to use pointers to these SW driver
data objects as arguments of the secure OS library functions.

D. Workflow of SW Driver Execution

LDR consists of the SW driver loader, the symbol manger,
the driver manger and the session manager. Figure 4 illustrates
the workflow of LDR, showing how the SW driver is loaded
into LDR and how its services are provided to other SW and
NW components. During the loading phase, the SW driver’s
code integrity is enforced through digital signature and the
validity of its initial state is ensured through trusted boot
[35]. To begin with, a SW driver is signed offline and stored
inside the non-volatile storage media such as a flash disk. A
NW LDR client application (CA) passes the SW driver ELF
image to the SW driver loader through shared memory. After
verifying the SW driver’s signature, the SW driver loader sets
proper memory access attributes for its sections, resolves its
undefined symbols using the symbol manger and relocates
the dependency function callsites to the resolved function
addresses (Fig. 4, 1). After the SW driver is properly loaded
and linked, the SW driver’s sw_init() is invoked to register
the driver information, such as the SW state variable address

5

and shared memory, to the LDR driver manager. Then, the
NW driver is loaded to the NW Linux kernel. Once the NW
driver is fully initialized, the SW driver can be notified to
invoke sw_probe(), thereby copying the whole NW state
variable to the SW state variable which is used as the SW
driver’s initial state. The subsystem data object fields are kept
intact while sw_probe() initializes the rest fields, so that
these fields contain valid device information and can be used
by the secure OS library functions (Fig. 4, 2). Once the SW
driver is properly initialized, LDR leverages TZPC to configure
the corresponding peripheral as secure device. Its SW I/O
functions are exclusively responsible for all I/O interactions
with the device, and interrupts issued by the device are handled
by its SW interrupt handlers. Additionally, to prevent SW
driver’s interrupt handler from being interrupted by the NW
Linux kernel, LDR dedicates one ARM core to handling secure
interrupts and excludes it from NW usage (Fig. 4, 3). Other
secure OS components can access the SW driver services by
directly calling its exported I/O and utility functions (Fig. 4,
4). Moreover, if developers allow the data captured by the

underlying device to be used by NW applications, the CPC
stubs are leveraged to retrieve the captured data and the session
manager coordinates the communication between the NW and
SW driver (Fig. 4, 5). Finally, when the SW driver invokes
a kernel subsystem function, the invocation is redirected to
the NW LDR Linux kernel proxy and the SW state variable
is synchronized with the NW state variable (Fig. 4, 6). We
elaborate on the SW state variable maintenance in §IV-F.

Linux Kernel Secure OS

NW State Variable

NW Driver LKM

VFS Interface Imp

Interrupt Handler

Li
n

u
x

K
er

n
e

l T
EE

 L
ib

I/O

Utility NW Stub

Peripheral
Device

Secure
OS Lib Funcs

SW State Variable

SW Driver LKM

Interrupt Handler
I/O

SW Init & Config

Utility SW Stub

Other SW
Components

Exported FunctionExported Function

I/OI/O InterruptInterrupt

4

3

1
1

1

2
Init & Config

Other NW LKMs

Linux Driver
Runtime

Symbol Manager

SW Driver
Loader

5

LDR Linux
Kernel Proxy

Subsystem
Functions

LDR Linux
Kernel Proxy

Subsystem
Functions

SW
Subsys Funcs

6

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

Driver Manager

Session Manager

Fig. 4: Workflow of SW Driver Execution. White and grey to
indicate NW and SW components respectively. Orange to indicate
LDR newly-added parts. Blue to highlight state variable. Note that
we exclude the security mechanisms to be discussed in §IV-E and
§IV-F to illustrate a clear workflow.

E. Driver Isolation

Since a third-party driver may be vulnerable, LDR confines
each SW driver inside an isolated execution environment in
order to prevent a SW driver from corrupting the secure OS
memory as well as other drivers’ memory regions. Addition-
ally, to defend against control flow hijacking attacks [24], LDR
intercepts each secure OS function invocation issued by SW
drivers, and checks its validity.

1) Isolated Execution Domain: LDR creates an isolated
execution domain (IED) for each SW driver. As shown in
Figure 5, a typical LDR memory layout consists of 1) the
secure OS, 2) trusted applications (TA), 3) several IEDs that

confine each SW driver, and 4) an IED gate that provides
an entry point for SW drivers to invoke secure OS functions
and for the secure OS to enter IEDs. Each IED provides the
resident driver with the necessary runtime execution context:
a dedicated IED heap for dynamic memory allocation and a
dedicated IED stack which is separated from the secure OS
stack and used by the SW driver during execution.

Based on the ARM DAC features, the memory region of
each LDR component is assigned a unique domain number.
With domain 0 and 1 originally assigned to the secure OS and
the TAs, the IED gate is assigned with domain 2 and each IED
occupies one remaining domain number. Even though ARM
DAC only supports 16 domains in total, leaving domain 3-15
to IEDs, existing research works like EPK [36] and VDom
[37] have proposed efficient ways to breakthrough the domain
number limitations. With such support, any number of IEDs
can be deployed inside LDR.

With DAC, strong memory access control policies are
enforced. In general, each IED is isolated from the secure OS
and from all the other IEDs while the IED gate is always
accessible to all IEDs. During execution, a SW driver can
only access memory regions belonging to its containing IED
as well as the IED gate. When the SW driver calls a secure
OS function F, such invocation is intervened by the IED gate
which saves the current IED context and opens access to
the secure OS. To prevent race conditions where two IEDs
are open simultaneously, the secure OS can only serve one
IED at a time and other IEDs except the calling one remain
inaccessible to defend against confused deputy attacks like
Boomerang [38]. During F’s execution, the IED heap and stack
are used. Since the secure OS is trusted, such arrangement will
not undermine the SW driver’s code integrity and data privacy.
On F return, the secure OS invokes the IED gate which restores
the IED context and closes access to the secure OS. We do
not allow inter-IED driver function invocation. Therefore, for
drivers depending on each other, they can be loaded into the
same IED and treated as a single isolation entity.

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

HEAPTX DT STACKHEAPTX DT STACK HEAPTX DT STACKHEAPTX DT STACKTX DT HEAP STACKTX DT HEAP STACK HEAPTX DT STACK HEAPTX DT STACKTX DT HEAP STACK

Dom 0 Dom 2 Dom 1Dom 3 Dom 4Dom 0 Dom 2 Dom 1Dom 3 Dom 4

Secure OS IED Gate IED 1 (SW Driver 1) IED 2 (SW Driver 2) TASecure OS IED Gate IED 1 (SW Driver 1) IED 2 (SW Driver 2) TA

Fig. 5: LDR SW Driver Isolation. TX stands for code. DT stands
for data.

2) Driver Dependency Function Call Validation: Another
key to LDR driver isolation is that each dependency function
call is mediated by the IED gate. An attacker may launch
control flow hijacking attacks, like ROP attacks [24], to bypass
the validation of the IED gate. Therefore, we propose a
dependency function call validation scheme to enforce forward
control flow integrity (CFI) by leveraging the IED gate to
verify all dependency function calls issued by SW drivers.

The basic idea is to hook every dependency function call to
the IED gate. During SW driver loading, the SW driver loader
links each dependency function call to the IED gate instead
of directly linking them to the corresponding dependency
function call, i.e., secure OS functions or Linux subsystem
functions. Meanwhile, each pair of callsite addresses and their
target callee addresses, i.e., ⟨callsite, callee⟩, is recorded in
the secure OS. After linking, .text segments of the SW

6

driver are mapped as non-writable. The SW driver cannot
change such memory access attributes via the page table,
since the page table locates in the secure OS (domain 0)
and is inaccessible from SW drivers. Once a dependency
function is invoked, the IED gate retrieves the target callee
address according to the recorded ⟨callsite, callee⟩ mapping
information and invokes the target callee if there is a valid
mapping. Such dependency function call validation scheme
ensures that every call to dependency functions is intercepted
and verified by the IED gate and for each callsite, the SW
driver can only invoke the corresponding function recorded
during driver linking but none else. We will discuss the security
of such dependency function call validation scheme and how
it prevents control flow hijacking attacks in §VII-B1.

F. Secure State Variable Maintenance

Since contents of the NW and SW state variable are
exchanged during the SW driver initialization and Linux kernel
subsystem call redirection, we need to differentiate which
fields are allowed to be passed to the NW, thereby protecting
the SW state variable. A SW driver’s state variable has to be
properly initialized before can be used and its contents need
to be properly synchronized with its NW counterpart before a
redirected Linux kernel subsystem function is called.

1) SW-exclusive Field Labeling: Recall that a SW driver’s
state variable consists of fields related to device configuration
information and subsystem data objects. And such fields can
be used by three types of functions: 1) Driver functions.
Fields are referenced by the SW driver’s own functions either
through direct reference or as function arguments; 2) Library
functions. Fields are used as arguments of the secure OS
library functions. 3) Linux kernel subsystem functions.
Fields are used as arguments of kernel subsystem functions
and they are redirected to the Linux kernel.

We refer to the subsystem data object fields as shareable
fields while the remaining fields as SW-exclusive fields. Only
the shareable fields can be passed to the NW while all other
fields are only used within the SW. Since the subsystem data
objects are used by the Linux kernel to manage the driver and
the corresponding devices, they do not contain any sensitive
information like device register mapping information. We can
pass them to the NW Linux kernel subsystem functions. For
other fields that are SW exclusive, LDR provides a mechanism
for developers to label these fields by specifying the SW-
exclusive field layout inside the SW state variable in form of a
bitmap. After compilation, the generated bitmap is attached to
the SW driver image as a dedicated data section. Such bitmap
is retrieved during SW driver loading and used to differentiate
the shareable fields and the SW-exclusive fields on the fly.

2) State Variable Initialization: For SW driver initializa-
tion, two functions are invoked, namely sw_init() and
sw_probe(). To begin with, the SW driver’s sw_init()
function is invoked to register the SW driver to the LDR driver
manager that records the SW driver’s state variable address
as well as the SW-exclusive field layout bitmap. Then, the
NW driver is loaded into the NW Linux kernel to initialize
the NW state variable with all its kernel data object fields
properly initialized by various Linux kernel subsystems. Next,
the NW driver notifies the SW driver via CPC to copy the

initialized NW state variable to the SW state variable and
used as the SW driver’s initial state. However, at this point,
the rest SW-exclusive fields are initialized by the Linux kernel
and still adhere to the Linux kernel’s semantics. Thus, the SW
driver’s sw_probe() is invoked to conduct SW-exclusive re-
definition on these fields so that their contents reflect the secure
OS semantics and can be used by secure OS functions.

3) State Variable Synchronization & Shadowing: LDR
provides a SW RPC stub for each subsystem function to
handle the state variable synchronization and the Linux kernel
subsystem call redirection. Before each redirected kernel sub-
system function call, SW RPC stub leverages the SW-exclusive
field layout bitmap to only synchronize the shareable fields
between the SW and NW state variable while shadowing SW-
exclusive fields from the NW. To prevent leaking SW-exclusive
information to the NW, only shareable fields of the SW state
variable are copied to the corresponding fields of the NW state
variable based on the SW-exclusive field layout bitmap. Then,
to invoke a Linux kernel subsystem function, the copied NW
shareable fields are used as arguments of the corresponding
subsystem function and their contents can be modified by that
function. Once the subsystem function returns, the SW RPC
stub synchronizes the modified NW shareable fields back to
SW state variable with all SW-exclusive fields intact.

V. IMPLEMENTATION

We implement an LDR prototype based on OP-TEE OS
3.10.0 [34]. In this section, we first show how to automatically
delete unnecessary functions from the original driver by lever-
aging GCC deadcode elimination features. Then, we introduce
how we provide dependency functions for SW drivers.

A. Automatic Function Removal

For function removal, we leverage the GCC deadcode
elimination feature to automatically remove VFS and Init &
Conf functions. Recall that a SW driver is generated based on
the corresponding original Linux driver by removing its unnec-
essary functions, namely the VFS functions and the original
Init & Conf functions. Since these functions are assigned to
fields of Linux kernel objects like platform_driver and
i2c_driver in form of function pointers, we can comment
out such function pointer field assignment statements and GCC
will automatically exclude the corresponding functions as well
as their callees recursively from the final object file using its
deadcode elimination optimization feature, which is enabled by
default (-O1). We implement a python script to help developer
pinpoint these assignment statements. Note that, since GCC
can only exclude internal functions without external callers,
we need to ensure that functions to be deleted are declared as
static functions.

B. Dependency Function Support

We provide 74 dependency functions to support drivers
shown in Table I. Recall that the symbol manager provides
three types of dependency function support, i.e., the kernel
library functions, the Linux kernel subsystem functions and
the LDR driver management functions. Among them, 39
existing OPTEE OS library functions or the GCC library
functions are wrapped to provide library function support. 7

7

functions related to clock management and time delay are
redirected back to the Linux kernel leveraging the OPTEE
thread_rpc_cmd() interface [34]. Then, we implement
the remaining 28 driver management functions of the LDR
driver manager from scratch. Additionally, we implement a SW
symbol exportation macro named TEE_EXPORT_SYMBOL()
to export secure OS functions. A SW driver loader is also
implemented to load SW driver LKMs and leverage the symbol
manager to resolve SW driver undefined symbols. The SW
driver loader links all driver dependency functions to the hook
functions (i.e. the IED gate) as discussed in §IV-E2.

VI. EVALUATION

In this section, we introduce the evaluation platform setup
and conduct various evaluations on the whole LDR system.
First, we evaluate the engineering efforts to generate SW
drivers. Next, we conduct system benchmarks and measure
the latency of Linux kernel subsystem function redirection and
the cross-world procedure call. Then, we conduct several case
studies using various devices to show that LDR is feasible
for real-world use cases. Finally, we compare LDR with other
two state-of-the-art TEE-based secure I/O approaches, namely
Driverlets[13] and MyTEE[16].

A. Evaluation Platform Setup

We evaluate LDR on an NXP IMX6Q SABRE-SD eval-
uation board, a powerful evaluation platform equipped with
4 ARM Cortex-A9 cores, 1 GB DRAM and a rich set of
peripherals. We use the sensors shown in Table I to evaluate
the feasibility of LDR.

TABLE I: Device List

Device Product Module
1 Barometer MPL3115A2
2 Magnetometer MAG3110
3 Accelerometer MMA8451
4 Ambient Light Sensor ISL29023
5 Thermal Sensor IMX6Q Thermal Sensor
6 Camera Sensor OV5640
7 Image Processing Unit IMX6Q Image Processing Unit

TABLE II: TCB Size Evaluation

TCB Component Original LoC Changed Added Removed
Secure Monitor 722 8 311 0

Secure OS 274,864 61 3,711 58
IED Gate 0 0 925 0

Total 275,586 69 4,947 58

B. TCB Size Evaluation

We first specify all LDR TCB components and then eval-
uate LDR TCB size increase in terms of LoC and binary
size. The LDR TCB consists of the secure monitor, the secure
OS and the IED gate. LDR excludes SW drivers from TCB
through sandboxing, as discussed in §II-A. LoC statistics are
summarized in Table II and the code counting is conducted
using cloc [39]. In total, the LoC increases by only 1.80%.
The original OPTEE OS image is 557.1KB and the LDR
image excluding padding for DAC alignment is 588.6KB. The
binary expansion is only 5.65%. Therefore, LDR introduces a
reasonably small TCB increase.

1.04 0.99 0.95 0.92
1.03

0.91
1.01

1.00
1.01

1.00
1.02 1.05

0.98
0.99 1.04 1.02

0.89
1.02

1.00 1.01 1.03 0.97 1.03
0.95 0.99 1.00 1.00

0.00
0.20
0.40
0.60
0.80
1.00

sy
sc

al
l(

)

re
ad

()

w
ri

te
()

st
at

()

fs
ta

t(
)

o
p

en
()

/c
lo

se
()

Se
le

ct
 o

n
 1

0
 f

d

Se
le

ct
 o

n
 1

0
0

 f
d

Se
le

ct
 o

n
 2

5
0

 f
d

Se
le

ct
 o

n
 5

0
0

 f
d

Se
le

ct
 o

n
 1

0
 t

cp

Se
le

ct
 o

n
 1

0
0

 t
cp

Se
le

ct
 o

n
 2

5
0

 t
cp

Se
le

ct
 o

n
 5

0
0

 t
cp

Si
gn

al
 h

an
d

le
r

P
ip

e
 I/

O

U
N

IX
 s

o
ck

 I/
O

fo
rk

()
+

ex
it

()

fo
rk

()
+

ex
e

cv
e

()

fo
rk

()
+

/b
in

/s
h

 -
c

P
ag

ef
au

lt
s

U
D

P
 I/

O

TC
P

 I/
O

U
N

IX
 s

o
ck

 I/
O

P
ip

e
 I/

O

re
ad

 I/
O

M
m

ap
 I/

O

latency bandwitdth

o
ve

rh
ea

d

Fig. 6: LMbench Results

C. Analysis of SW Driver Generation Efforts

Generating a SW driver mainly involves deleting unnec-
essary functions and adding new initialization functions as
well as CPC stubs if needed. Table III-(a) summarizes the
modification we make to the original Linux drivers. To begin
with, the VFS functions and the original Init & Conf functions
are deleted automatically. The new initialization functions are
responsible for register mapping, interrupt handler registration
as well as driver registration. These operations are straightfor-
ward and trivial compared to the original Init & Conf functions
which involves various Linux kernel subsystem calls. As for
the CPC SW stubs, they conduct argument unmarshalling
which is easy to be generated. In summary, most of the
original driver code are untouched and the SW driver can be
produced with reasonable engineering efforts. Furthermore, as
shown in Table III-(b), the number of SW driver dependency
functions are much less than those of the corresponding Linux
driver. Therefore, the development efforts for LDR can be
significantly reduced.

D. System Benchmarks

We perform two sets of system benchmarks to evaluate
the performance overhead introduced by LDR to both vanilla
Linux and the original OPTEE.

1) LMBench: We use vanilla Linux [40] and the original
OPTEE OS [34] 1 as the baseline setting. We perform LM-
bench 3.0 [41] on both the baseline setting and LDR. Results
show that despite the absence of one core, our LDR prototype
introduces little overhead to most NW Linux services, as
shown in Figure 6. This is because the LDR kernel subsystem
call proxy does not influence most kernel code path.

2) OPTEE xtest: We use xtest [42], a comprehensive test
suite shipped with OPTEE, to evaluate both the performance
(benchmark tests) and the functionality correctness (regression
tests) of the LDR OPTEE OS. We take the vanilla Linux kernel
and the original OPTEE OS with 4 cores available to the NW
as the baseline setting. We also conduct another experiment
with the baseline setting yet with only 3 cores. Finally, we run
xtest on our LDR prototype. For each experimental setting, we
run xtest for 10 times and we compute the geometric mean of
the elapsed time for each test as the result. Our LDR prototype
passes all tests without failures. The experiment results in
Figure 7 also show that the absence of one core introduces little
performance overhead to all test cases and LDR introduces
negligible performance overhead to the SW execution.

1Minor modifications are conducted to port the original OPTEE OS to our
evaluation board.

8

TABLE III: SW Driver Evaluation

(a) LoC Statistics

Device Original Driver SW Driver LoC SW Driver
Size (byte)LoC Size (byte) UNT DEL CHA ADD MOD rate

ipu 10,742 210,884 10,706 18 18 372 3.80% 114,896
isl29023 794 17,564 748 4 42 75 15.24% 9,720
mag3110 537 16,024 523 11 3 84 18.25% 9,996
mma8451 510 13,520 498 4 8 64 14.90% 9,296
mpl3115A2 325 10,668 312 5 8 85 30.15% 8,944
thermal 779 20,320 773 4 2 78 10.78% 11,376

(b) Dependency Function Number

Original
Dep Funcs

SW Driver Dep Funcs
Linux LDR Total

105 35 7 42
38 13 3 16
42 14 4 18
26 13 4 17
26 14 3 17
42 17 4 21

UNT: untouched code, DEL: deleted code, CHA: changed code, ADD: newly added code. MOD rate = (DEL+CHA+ADD)/(Original Driver LoC).

0.00
0.25
0.50
0.75
1.00

Tr
u

st
ed

 S
to

ra
ge

SH
A

A
ES

O
S

co
re

fe
at

u
re

s

N
e

tw
o

rk
 s

o
ck

et

C
ry

p
to

gr
ap

h
ic

al
go

ri
th

m
s

TE
E

In
te

rn
al

 A
P

I

G
lo

b
al

 P
la

tf
o

rm
A

P
I

Sh
ar

ed
M

em
o

ry
 &

…

K
ey

 D
e

ri
va

ti
o

n

m
b

e
d

TL
S

benchmark regression

o
ve

rh
ea

d

Original OPTEE with 4 cores Original OPTEE with 3 cores LDR

Fig. 7: OPTEE xtest Results

E. Micro Benchmarks

We measure the latency of the Linux subsystem function
redirection and the CPC. For each function, we measure the
elapsed time of 1,000 continuous calls for 4 rounds and take
the average value as the call latency for this function.

1) Linux Subsystem Function Redirection: To evaluate the
latency of a redirected Linux subsystem function call, we
prepare five functions with 0 to 4 parameters respectively. The
results show that the latency of an LDR redirected function
call is 11.14 µs, and this means that the LDR Linux func-
tion redirection mechanism introduces relatively low latency.
Figure 8-(a) also illustrates that the number of arguments has
negligible impact on the overall latency.

2) Cross-world Procedure Call (CPC) Mechanism: To
measure the CPC latency, we customize a LKM consisting
of empty functions with different parameters. We leverage
11 functions with 0 to 10 regular parameters respectively to
evaluate the influence of the number of parameters on the
call latency. Then, we leverage functions with parameters as
pointers to data chunks of different sizes, ranging from 32
bytes to 512 bytes, to evaluate the influence of the size of
parameters on the call latency.

Figure 8-(b) shows that the average latency for a CPC-
based function call without parameters is 117.78 µs. The
average latency for functions with parameters of regular values
and data pointers are 140.02 µs and 140.29 µs respectively.
Function calls without arguments take less time since the
function invocation metadata (e.g., function name) is passed
using registers, and for other functions their arguments are
passed through shared memory. The results also show that
the number or the size of parameters has little influence on
the CPC latency, and thus the parameter marshalling and
unmarshalling process introduces negligible overheads.

A further observation is that the CPC latency is approxi-
mately ten times that of a redirected subsystem function call.

Such difference originates from the more complex processes
involved in the CPC code path, including OPTEE thread
allocation, session establishment/teardown, etc. In comparison,
the code path of a redirected subsystem function call is more
lightweight as it employs the current OPTEE session. This
difference is the result of OPTEE’s internal implementation.

0.00

30.00

60.00

90.00

120.00

150.00

0 1 2 3 4 5 6 7 8 9

1
0

3
2

6
4

1
2

8

2
5

6

5
1

2

Argument Number Buffer Size

la
te

n
cy

(µ
s)

0.00

2.00
4.00

6.00

8.00

10.00

12.00

0 1 2 3 4
la

te
n

cy
(µ

s)

Argument Number

(a) (b)

Fig. 8: Latency of Linux Function Redirection and CPC Mechanism

F. Case Studies

We evaluate LDR through real-world case studies using
diverse sensor devices in Table I. Furthermore, we demonstrate
the robustness of our LDR and empirically verify the feasibil-
ity of the secure OS library function substitution approach.
First, we read the temperature data using the IMX6Q thermal
sensor from the SW. Then, we measure the sampling rate of
the barometer, the magnetometer, the accelerometer and the
ambient light sensor from the SW. Finally, we leverage the
camera sensor and the IMX6Q IPU to conduct evaluations on
use cases of image capturing and video streaming. All the
devices are driven by their corresponding SW drivers.

1) Temperature Capturing: For the case study on thermal
sensor, we focus on the temperature measurements and aim to
read the SoC temperature from the SW using the SW thermal
driver. We first export the temperature data reading function
of the SW thermal driver and then read the temperature data
inside the secure OS using the SW thermal driver. The results
show that the SW thermal driver can work properly inside
LDR with all the temperature data read correctly.

2) Environmental Data Sampling: We use four I2C-based
sensor drivers to show that LDR can support sensors with
bus I/Os inside the SW. Similar to the thermal sensor, we
export data reading functions of each SW driver and leverage a
greedy polling method to read data from the sensor by invoking
functions exported from the corresponding SW driver.

To evaluate the performance of the SW drivers, we set up
two sets of experiments as before and conduct 10 rounds of
data reading to measure their sampling rates with each round
lasting about 3 seconds. Since the sampling rate of MPL3115

9

is relatively low, its tests last 10 seconds for each round. The
default sampling rate and the measured sampling rate using
the LDR SW drivers are listed in Table IV. The results show
that the LDR SW drivers can fully exert the performance of
the devices without compromising sampling rate.

TABLE IV: Sensor Date Sampling Performance

Device Default
SR

LDR without IED LDR with IED
SR Difference SR Difference

MAG3110 80 83.56 +4.4% 84.82 +6.0%
MMA8451 800 809.61 +1.2% 800.03 +0.0%
ISL29023 11.1 11.47 +3.4% 11.17 +0.6%
MPL3115 1 1.09 +8.7% 1.05 +5.3%

3) Image Capturing & Video Streaming: An OV5640 cam-
era module is physically connected to an Image Processing
Unit (IPU) through a MIPI CSI interface on the evaluation
board. The IPU processes the captured image and inserts image
frames into the V4L2 video buffer. Consequently, in the case
study of image capturing and video streaming, we adapt an
IMX6Q IPU driver into LDR and leave the OV5640 camera
driver inside the Linux kernel. Moreover, since there is neither
image processing nor video codec libraries inside the SW,
we choose to transmit the captured image frames to the NW
applications which we assume to be protected from a malicious
NW kernel using techniques investigated in [43], [44], [45],
[46], [47].

We adapt an IMX6Q IPU driver into LDR. To begin
with, we first discard ipu_device.c from the IPU project
because it is concerned with VFS operations. Then, we replace
the init() and probe() functions of the SW IPU driver
with SW customized ones which create proper SW memory
mapping on the IPU registers, conduct SW exclusive initial-
ization on the SW state variable and register IPU interrupt
handlers. Additionally, as discussed in §IV-D, we exclude
the fourth core (#3) from NW usage and dedicate it to
handling interrupts issued from the IPU by setting the interrupt
affinity using the generic interrupt controller [48]. Finally,
as the IPU driver is required by another NW driver called
mxc_v4l2_capture, we create CPC stubs for the relevant
exported functions in both the NW and SW IPU drivers. These
stubs forward invocations to the SW IPU driver during runtime
for image frame retrieval.

Image Capturing. First, we evaluate the performance of the
SW IPU driver for image capturing with various resolutions
(480P, 720P, and 1080P). We use the image capturing tool,
i.e., v4l2-ctl, to grab images from the camera and store them
locally. For both the original IPU driver and the LDR IPU
driver, we take three cases of image capturing with 1 shot, 10
shots, and 100 shots, respectively. For each case, we conduct
10 rounds of image capturing experiments and the average
time is calculated. As illustrated in Figure 9, the results show
that the time differences among the original and the LDR IPU
driver are quite small, showing that LDR introduces negligible
latency overheads for image capturing.

Video Streaming. Finally, we evaluate the performance of
the SW IPU driver for video streaming. We use FFmpeg [49]
to stream the video using the RTP protocol [50] and the video
is encoded in x264 format. Since we implement pure-software
video codec without hardware-based multimedia acceleration,
the current LDR prototype can only support video streaming

0.000

1.500

3.000

4.500

6.000

1 shot 10
shots

100
shots

1 shot 10
shots

100
shots

1 shot 10
shots

100
shots

480P 720P 1080P

La
te

n
cy

(s
) Original

LDR

Fig. 9: Latency of Video Capturing under Different Resolution with
Both Original and LDR IPU Driver

under resolution of 480P and 720P [51]. Additionally, to get
a better streaming performance, we compile FFmpeg with
ARM Neon features enabled. For both IPU driver setups, we
take 10 rounds of video streaming with 400 frames for each
round and the resulting streaming statistics is collected, namely
FPS, duplicated frames per 100 frames, dropped frames per
100 frames and streaming speed. The streaming speed is an
indicator defined by FFmpeg to reflect video stream processing
performance like codec, etc. and the higher the streaming speed
is, the better performance is achieved. The video stream latency
is less than 1 second, and the average of each statistics is shown
in Table V. The results show that LDR introduces no speed
penalty to 480P streaming while only -2.43% speed downgrade
to 720P streaming, indicating that LDR is ready for most video
streaming tasks.

TABLE V: FFmpeg Streaming using OV5640 under Different
Resolution with Both Original and LDR IPU Driver

Res Driver FPS Dup F
per 100 F

Drop F
per 100 F

Stream
Speed

Speed
Penalty

480P Orginal 25 0 9 0.9999× -
LDR 25 0 9 0.9999× 0.00%

720P Orignal 24.6 0 19.5 0.9945× -
LDR 24 8.65 4.95 0.9703× -2.43%

G. LDR vs Other Secure I/O Systems

We compare LDR with other two state-of-the-art secure
I/O systems in terms of performance, security trade-offs and
engineering efforts.

1) LDR vs Driverlets: Both LDR and Driverlets[13] aim to
facilitate driver support inside TEEs yet take totally different
approaches.

Performance. Driverlets provides an Replayer that replays
pre-recorded I/O events to reproduce a device functionality.
Such approach introduces 11%-270% latency overhead for
frame capturing compared to the native Linux driver. In
contrast, by directly running compiled driver binary inside the
SW IED, LDR drivers can run in native speed as the original
drivers. As shown in §VI-F3, LDR outperforms Driverlets
with almost no extra latency for frame capturing. Additionally,
LDR can support smooth video streaming in 24 FPS, which
Driverlets is incapable of due to its heavy overhead.

Security Trade-offs. Driverlets runs completely inside the
TEE with no interactions with the NW. Though ensuring strong
security guarantees, such arrangement hinders efficient data
processing since the TEE is lack of sophisticated libraries.
For example, the SW has no image or video codec libraries

10

and thus cannot support efficient image encoding or video
streaming. Although LDR can fully support SW-closed data
processing, we also foresee more application diversity by
allowing data to be processed by NW applications after proper
encryption or digital signing. In effect, LDR is more preferred
being combined with widely-studied application protection
schemes [43], [44], [45], [46], [47] and secure data sharing
mechanisms [52], [53], [54], [55]. With the guarantee on the
integrity of data sources provided by LDR, data captured
by LDR drivers can be transmitted to a fortified NW user
application through a secure channel and get processed there,
realizing full-lifetime data protection as well as efficient and
diverse data processing.

Engineering Efforts. In general, Driverlets takes less engi-
neering efforts since its record & replay workflow is automated
and the generated I/O template is properly generalized for I/O
operations with similar behaviors. Nevertheless, since LDR
leverages automatic function removal and most driver code
remain untouched, the engineering efforts to generate a SW
driver is reasonably small.

2) LDR vs MyTEE: LDR and MyTEE [16] take different
approaches to reusing the existing Linux drivers to enable
secure I/O inside compact TEE OSes. Specifically, MyTEE
leaves NW drivers inside the NW Linux kernel and allows
them to access secure peripherals through temporary super-
vised privilege escalation while LDR enables native TEE
drivers by providing a driver runtime inside the SW.

We compare MyTEE with LDR in terms of engineering
efforts, security considerations and performance. Both MyTEE
and LDR require manual driver code analysis and modification
to driver code, and offer similar security guarantees by exclud-
ing drivers from the TCB as well as protecting drivers from
NW attacks. To investigate the potential performance overhead
introduced by MyTEE, we implement a sensor data reading
module inside the secure OS and reuse the corresponding
drivers inside the NW Linux kernel for device I/O following
MyTEE approaches of secure I/O. Since our evaluation board
(Cortex-A9) does not support virtualization extensions [56],
we build a hypothetical experiment setup where no privilege
escalation and I/O logging operations are involved. Note that
such experimental setup is only for performance evaluation
purposes and can reveal an optimized performance upper
bound of MyTEE approaches. We test the sampling rate (SR)
of sensors evaluated in §VI-F2 using the sensor data reading
module and the results are shown in Table VI. For sensors
with relatively low sampling rate (less than 100), MyTEE
introduces negligible performance. However, for MMA8451,
an accelerometer with high sampling rate, MyTEE can only
achieve a sampling rate of 610.19, 23.73% lower than the
sampling rate achieved by LDR. The reason is each MyTEE
I/O request involves 2 NW & SW switches as well as 2 Linux
kernel & hypervisor switches. A lower SR is expected if all
MyTEE security mechanisms including privilege escalation
and I/O logging are enabled, adding more overhead. In com-
parison, LDR avoids world switches on performance-critical
I/O path and thus gains better performance.

VII. SECURITY ANALYSIS

In this section, we first discuss how LDR protects SW
drivers from NW attacks. Then, we evaluate the effectiveness

TABLE VI: Sensor Data Sampling Rate (SR) Comparison with
MyTEE Approaches

Device Default SR LDR SR MyTEE SR MyTEE vs LDR
MMA8451 800 800.03 610.19 -23.73%
MAG3110 80 84.82 82.76 -2.43%
ISL29023 11.1 11.17 11.17 0.00%
MPL3115 1 1.05 1.10 4.76%

of LDR security mechanisms against attacks from untrusted
SW drivers.

A. Protecting SW Drivers from NW Attacks

LDR protects SW driver from NW attacks in both initial-
ization and execution phases.

1) Driver Initialization Phase: As discussed in §III, both
NW and SW drivers are loaded and initialized during the
system boot phase. The trusted/secure boot can ensure that the
states of the Linux kernel and the NW driver are trusted and
valid at boot time. By copying the trusted NW state variable
from the NW driver, the SW driver has a legal initial state.

2) Driver Execution Phase: During execution phase, the
SW state variable resides inside the SW and its SW-exclusive
fields are protected by LDR secure state variable maintenance
mechanisms as discussed in §IV-F. The potential attack sur-
faces introduced by redirected Linux subsystem calls can be
analyzed in terms of passed arguments, the function itself and
the return value. With the state variable synchronization &
shadowing mechanism, LDR ensures that only necessary Linux
kernel subsystem objects are synchronized to the NW driver
and used as parameters. Therefore, no security-critical driver
data is leaked to the NW on each redirected call and the SW
driver’s data security is enforced.

During execution, the Linux subsystem function cannot
access SW memory and thus cannot jeopardize the SW driver’s
code integrity and data security. Additionally, after the removal
of a driver’s VFS interface implementation functions and its
Init & Conf functions, there are minimum kernel subsystem
function calls inside the SW driver and the current LDR
prototype only needs to redirect 7 such calls, as discussed in
§V. These functions are involved with clock management and
time delay. A malicious Linux kernel may close the device’s
clock source or delay a driver operation, causing denial-of-
service, which we exclude in our threat model. Moreover, such
DoS attacks do not undermine the SW driver’s code integrity
and data security.

An attacker may try to craft malicious return values of the
redirected Linux kernel subsystem calls. To mediate malicious
return values, the LDR’s driver dependency function call
validation mechanism can be extended with proper return value
sanitizing and any violation against the Linux kernel subsystem
function specification will be recognized.

B. Protecting Secure OS from Untrusted SW Drivers

We first conduct theoretical security analysis on the effec-
tiveness of LDR security mechanisms against various attacks
issued from untrusted SW drivers. Then, we conduct a case
study on a vulnerable driver and show how LDR security
mechanisms mediates the corresponding exploits.

11

1) Theoretical Security Analysis: Since NW applications
can invoke SW driver services through CPC, an attacker
may exploit a SW driver’s vulnerabilities and tries to steal
or corrupt the secure OS data by launching various attacks,
including memory corruption, code injection, control flow
hijacking. 1) Memory Corruption. Our LDR leverages the
ARM DAC feature to create an isolated execution domain for
each SW driver. During execution, the SW driver can only
access memory belonging to its own domain, thus preventing
it from corrupting memory regions of the secure OS and
other SW drivers. 2) Code Injection. Since the SW driver’
data segments are mapped as non-executable and the .text
segments are non-writable, the attacker cannot launch code
injection attacks by dynamically injecting malicious code to
the SW driver. Additionally, since the page table resides in the
secure OS, the attacker cannot access the page table from the
SW driver. Therefore, the attacker is not able to convert the
memory attributes enforced by the page table. Furthermore,
the attacker may try to invoke memory mapping functions
(e.g. mprotect(), remap(), etc.) to change the page table
memory attributes. With the dependency function call valida-
tion scheme, every secure OS function call is mediated by the
IED gate and any attempted call to these memory attribute
manipulation functions is denied. 3) Control Flow Hijacking.
Due to the forward control flow integrity enforced by the
dependency function validation scheme, the attacker cannot
invoke any function other than the callee recorded during SW
driver linking from a particular dependency function callsite.
Additionally, since the IED gate is atomic, single-threaded
and it closes access to the secure OS before transferring
control to the SW driver, it is impossible for the attacker to
exploit the DACR manipulation ROP gadgets inside the IED
gate to revoke the DAC access control policies. Furthermore,
developer can be suggested to leverage static code scanning
tools to search for these ROP gadgets inside the SW driver
binary so that the binary itself does not contain any exploitable
DACR modification ROP gadgets.

2) CVE Case Studies: We conduct several case studies
to further evaluate the effectiveness of LDR security mech-
anisms. We create a SW driver containing a buffer overflow
vulnerability, as specified in multiple CVEs related with drivers
(2021-28972 [57], 2020-12653 [58], 2018-3580 [59]). We try
to exploit such vulnerability by launching memory corruption
and ROP attacks and verify whether LDR can defeat them.

Memory Corruption. We try to launch memory corruption
attacks from the vulnerable driver by leveraging the buffer
overflow vulnerability shown in Figure 10-(a). We design a
function named read status(), which reads from a device status
register (line 5) and then clears the status register (line 6).
The address of the device register, i.e., addr, is stored in the
driver’s state variable (line 3). The victim buffer buf is defined
at line 4. The function mem crp() contains a buffer overflow
vulnerability without boundary checking on input payload (line
8). An attacker can pass a malicious payload to mem crp()
and consequently overwrite addr with a malicious address,
i.e., mal_addr. When read status() is invoked afterwards, it
will read from and write to mal_addr, resulting in memory
corruption attacks. We point mal_addr to a secure OS object
as well as the state variable of another driver residing inside of
a different IED. LDR defeats these memory corruption attacks
with the DAC-based memory isolation mechanism, defeating

memory corruption attacks.

Return-oriented Programming. We try to launch ROP
attacks by leveraging the stack overflow vulnerability shown
in Figure 10-(b). Function read_data() has a local array
i.e., buf, which is allocated on the function stack frame
upon invocation. It also invokes Function rop() which con-
tains a stack overflow vulnerability at line 8 without bound-
ary checking. An attacker can pass a malicious payload to
read_data() and overwrite the return address stored on the
stack with a malicious function address i.e., mal_func. When
read_data() returns, mal_func will be invoked, resulting
in ROP attacks. We first point mal_func to a secure OS
function. Such attack fails since the secure OS is configured
as non-accessible during SW driver execution with the DAC-
based driver isolation mechanism. We then try to exploit the
IED gate by pointing mal_func to the IED gate entry. This
attack also fails since LDR prevents a function from being
called from an illegal callsite with the dependency function
call validation mechanism.

1. void read_data(char *payload, size_t s) {
2. char buf[4];
3. unsigned int reg1, reg2;
4. i2c_smbus_read_byte_data(client, reg1);
5. i2c_smbus_write_byte_data(client, reg2);
6. rop(buf, payload, s);
 }
7. void rop(char *buf, char *ptr, size_t s) {
8. memcpy(buf, ptr, s);
 }

AAAAAAAA[mal_func]1. struct drv_sv {
2. char buf[4];
3. unsigned int* addr;
 };
4. void read_status(void) {
5. int status = *drv_sv.addr;
6. *drv_sv.addr = STATUS_CLEAN;
 }

7. void mem_crp(char *ptr, size_t s) {
8. memcpy(buf, ptr, s);
 }

AAAA[mal_addr]

(a) Memory Corruption (b) Return-oriented Programming

D
u

m
m

y

D
u

m
m

y

Dummy

DummyFig. 10: Vulnerable Driver Code for Security Evaluation

VIII. DISCUSSION

In this section, we first analyze how LDR design choices
can be applied to 64-bit ARM processors. Then, we show
how more complex devices will influence the design consider-
ations. Finally, we discuss the limitations of the current LDR
prototype and future work.

A. LDR with AArch64 Platforms

LDR can be instantiated on 64-bit ARM, aka. AArch64,
platforms with minor modifications. Since DAC features have
been deprecated for AArch64 processors, debug watchpoints
[60] can be leveraged to realize IED on AArch64 platforms.
Specifically, before entering an IED, the IED gate configures
watchpoints to monitor memory regions belonging to the
secure OS, TAs and other IEDs. Any access beyond the current
IED memory region and the IED gate will trigger a watchpoint
exception, which is handled by the secure OS. On IED exit,
the IED gate resets the watchpoints before transferring control
to the secure OS.

B. LDR with more Complex Devices

Even though the current LDR prototype does not evaluate
more complex devices like GPUs or NICs, we believe that
LDR designs can be applied to these devices with additional
driver compartmentalization [61], [62]. Modern PCIe device
drivers exhibit sophisticated yet complicated internal structures
and consist of several intra-driver subsystems. For example, a
modern GPU driver involves its own task scheduler, memory
manager, components interacting with the Linux Direct Ren-
dering Manager (DRM), etc. Instead of adapting the entire

12

driver into LDR, we imagine that such driver be divided into
cooperative modules and only the security-critical modules
such as resource manager be adapted into LDR while leaving
modules responsible for user interaction and task scheduling
inside the NW Linux kernel. In fact, such design choices
have been investigated among GPUs [61], NICs [62] and
even middlewares like VMM [63], container managers [64],
etc. Considering the security-critical modules are more self-
contained, LDR can provide excellent runtime environment for
these security-critical modules.

C. LDR with TEEOS-native Drivers

We discuss the feasibility of another alternative design
named the TEEOS-native approach in which a Linux driver,
called the SW native driver, is directly embedded inside the
secure OS and no NW driver is involved. Compared with
LDR, such approach introduces more TCB increase. Without
NW drivers, the Linux subsystem fields of the SW native
driver need to be initialized through invoking multiple Linux
subsystem functions. Therefore, extra subsystem redirection
functions are needed for each driver as shown in Table VII. In
total, another 119 2 SW Linux subsystem functions need to be
supported in LDR. These functions can be supported inside
of the secure OS through either porting or redirection. On
one hand, porting these functions to the secure OS involves
a huge amount of engineering efforts and will introduce
significant TCB expansion [13] as discussed in §II-B since
these functions are tightly coupled with the Linux kernel.
As shown in Table VIII, it is estimated that such porting
will introduce 30 kLoC. On the other hand, if the TEEOS-
native approach redirects calls upon these functions to the
NW Linux kernel as LDR does (§IV-C), another 3,570 LoC is
introduced for function redirection stubs. Additionally, for each
subsystem function call, the TEEOS-native approach needs to
conduct point-to analysis to identify all related objects that
can be reached from the passed arguments [65], [17], [66]
and synchronize them upon each call. The resulting deep copy
[65] and synchronization code will further introduce several
thousands of LoC. It is estimated that such redirection will
introduce 15 kLoC, as shown in Table VIII.

In contrary, LDR avoids such TCB expansion by generating
new SW drivers and leveraging the NW driver as an assistant
driver. First, LDR generates a SW driver by removing unnec-
essary functions, namely Init & Conf and VFS functions, from
the original Linux driver (§IV-B), which significantly reduces
the number of required Linux subsystem functions. Conse-
quently, the current LDR prototype only needs to support 7
Linux subsystem functions implemented in 185 LoC. Second,
LDR leverages the NW driver as a helper driver to synchro-
nize subsystem call arguments. For each redirected subsystem
function, only a small number of driver state variable fields
need to be synchronized and all related data objects can be
found through the NW state variable §IV-F. Additionally, the
LDR design is scalable for all subsystem functions without
point-to analysis. Finally, LDR reuses KBuild to provide a
driver development environment familiar to system developers
and modularizes SW drivers for flexibility.

2Some subsystem functions are invoked by multiple drivers.

TABLE VII: Number of Extra Linux Subsystem Functions
Needed for Each Driver with the TEEOS-native Approach

IPU ISL MAG MMA MPL Thermal
of Subsys Funcs 67 25 28 15 16 25

TABLE VIII: Estimated Total LoC of the TEEOS-native
Approach and Comparison with LDR

TEEOS-native LDRPorting Redirection
Estimated Introduced LoC (kLoC) 30 15 5

D. Limitations

Our current LDR prototype has three limitations: 1) A
secure OS may not provide all library functions a driver needs.
For library functions that the secure OS does not originally
support, developers have to implement them. 2) The current
LDR prototype does not provide advanced Linux kernel utili-
ties like work queues, kernel threads, etc., therefore, we do not
support complex NIC or GPU drivers as discussed in §VIII-B.
However, we may delegate these scheduling work to the NW
Linux kernel as proposed in TruZ-View [67]. 3) We manually
analyse Linux drivers to identify their Init & Conf and VFS
functions. However, we believe such process can be automated
as investigated in CryptoMPK[68], PtrSplit[65], KSplit[17].
We plan to augment the current SW driver generation process
with automatic driver code analysis and generation.

IX. RELATED WORK

TrustZone-based Secure I/O. Many research projects
have proposed various approaches for TrustZone-based secure
I/O. SuiT [69] and TruZ-View [67] respectively propose trusted
user interface (TUI) mechanisms for a touch display screen
that allows users to input sensitive data into an application
inside the SW. Oath [11] also proposes a TUI mechanism
which can defend against physical memory disclosure attacks
using the on-chip RAM. TrustSAMP [12] proposes a solution
for an audio device to securely process copyrighted audio
data by decrypting and playing DRM-related audio inside
the SW. However, these systems have to port drivers for
the corresponding devices, which involves significant engi-
neering efforts. Driverlets [13] shares the same goal with
LDR. Compared to the “record and replay” emulated approach
employed by Driverlets, LDR runs compiled real-world driver
modules inside the secure OS and thus achieves a much better
performance. Meanwhile, LDR also confines drivers in ARM
DAC-based sandboxes to prevent potential vulnerabilities of
the SW drivers from compromising the TEE OS. MyTEE[16]
leverages ARMv8 virtualization extensions to enable isolation
primitives on platforms without common TrustZone extensions
like TZPC, TZASC, etc. Similar to LDR, MyTEE reuses
existing NW drivers inside the Linux kernel for secure I/O
through temporary privilege escalation. However, MyTEE may
incur heavy performance overhead for devices with freqeunct
I/O requests due to world switches as well as kernel-hypervisor
switches involved in each I/O operation.

Driver Isolation. The primary objective of most driver
isolation research [70], [71], [72], [73], [74], [75], [62] is
to confine potential driver crashes and vulnerabilities within
a restricted environment, preventing damage to other kernel

13

components while preserving all driver functionalities. Such
restricted environments can be established within user-space
processes [70], [71], [73], [74] or virtual machines [72], [75],
[62]. To ensure that driver services remain accessible to other
system components, glue code is generated to coordinate
communication and interaction between the isolated driver and
other system components outside the restricted environment.
These works assume that the Linux kernel is trusted. However,
our LDR design choices have an opposite assumption where
the NW including the Linux kernel is untrusted. Consequently,
LDR proposes multiple security mechanisms to protect SW
drivers from potential attacks issued from the NW. Moreover,
these works redirect all function calls to the Linux kernel while
LDR achieve better performance by reusing existing TEE OS
library functions whenever possible and redirecting the kernel
subsystem function calls to the Linux kernel in the NW.

Domain-based Sandboxing. Recently, several research
studies have explored efficient user-space sandboxing schemes
that leverage domain-based memory access control primi-
tives available on most commodity computer systems. ERIM
[76] implements a user-process data encapsulation mecha-
nism based on Intel memory protection key (MPK) through
carefully-designed call gates, binary inspection, and binary
rewriting. Hodor [77] proposes a new OS abstraction called
a protected library using MPK. Unlike ERIM, Hodor employs
debug registers to prevent the execution of unsafe MPK manip-
ulation instructions. Other research studies, such as EPK [78],
xMP [79], and SeCage [80], utilize hardware virtualization
support, namely extended page table (EPT) and VMFUNC, to
achieve efficient domain switching primitives similar to those
supported by MPK. Distinct from these projects, LDR employs
ARM DAC to create kernel-level sandboxes, providing secure
driver support within TEEs.

X. CONCLUSION

We present the Linux driver runtime (LDR), a driver
LKM execution environment inside TrustZone-based secure
OSes that facilitates secure and efficient TEE driver support.
We are the first to design and implement a driver execution
environment inside compact TEE OSes by reusing existing
TEE OS library functions and redirecting kernel subsystem
functions to the NW Linux kernel. Additionally, we create
a sandbox environment to confine SW drivers and prevent
attacks issued from the potentially vulnerable SW drivers. We
evaluate the feasibility of LDR on an NXP IMX6QSABRESD
board using various on-board devices and the experimental
results show that LDR introduces negligible overheads to
real-world applications. LDR is now available from: https:
//github.com/SparkYHY/Linux-Driver-Runtime.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments and suggestions that have helped us substantially
improve the quality of this paper. This research was sup-
ported in part by National Natural Science Foundation of
China Grant Nos. 62022024, 61972088, 62232004, 62072103,
62102084, 62072102, 62072098, 61972083, and 62132009,
by US National Science Foundation (NSF) Awards 1931871,
1915780, and US Department of Energy (DOE) Award DE-
EE0009152, Jiangsu Provincial Key Laboratory of Network

and Information Security Grant No. BM2003201, Key Lab-
oratory of Computer Network and Information Integration
of Ministry of Education of China Grant Nos. 93K-9, and
Collaborative Innovation Center of Novel Software Technology
and Industrialization. Any opinions, findings, conclusions, and
recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

[1] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptol. ePrint
Arch., p. 86, 2016.

[2] I. Advanced Micro Devices. (2023) Amd secure
encrypted virtualization (sev). [Online]. Available: https:
//www.amd.com/en/developer/sev.html#:∼:text=Usesonekeypervirtual,
guestoperatingsystemandhypervisor.

[3] A. Ltd. (2011) Arm architecture reference manual armv7-a and armv7-r
edition. [Online]. Available: https://developer.arm.com/documentation/
ddi0406/c/

[4] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song, “Key-
stone: an open framework for architecting trusted execution environ-
ments,” in Proceedings of the 15th European Conference on Computer
Systems, EuroSys, 2020.

[5] SAMSUNG. (2023) Stay connected, protected, and productive. discover
the knox security platform and business solutions. [Online]. Available:
https://www.samsungknox.com/en

[6] Linaro. (2023) Open portable trusted execution environment, optee.
[Online]. Available: https://www.op-tee.org/

[7] Sierraware. (2016) Sierratee for arm® trustzone® and mips. [Online].
Available: https://www.sierraware.com/open-source-ARM-TrustZone.
html

[8] F. Brasser, D. Gens, P. Jauernig, A. Sadeghi, and E. Stapf, “SANC-
TUARY: arming trustzone with user-space enclaves,” in Proceedings of
the 26th Annual Network and Distributed System Security Symposium,
NDSS, 2019.

[9] J. S. Jang, C. Choi, J. Lee, N. Kwak, S. Lee, Y. Choi, and B. B. Kang,
“Privatezone: Providing a private execution environment using ARM
trustzone,” IEEE Trans. Dependable Secur. Comput., vol. 15, no. 5, pp.
797–810, 2018.

[10] M. H. Yun and L. Zhong, “Ginseng: Keeping secrets in registers when
you distrust the operating system,” in Proceedings of the 26th Annual
Network and Distributed System Security Symposium, NDSS, 2019.

[11] D. Chu, Y. Wang, L. Lei, Y. Li, J. Jing, and K. Sun, “Ocram-assisted
sensitive data protection on arm-based platform,” in Proceedings of
the 24th European Symposium on Research in Computer Security,
ESORICS, 2019.

[12] Y. Li, L. Lei, Y. Wang, J. Jing, and Q. Zhou, “Trustsamp: Securing
streaming music against multivector attacks on ARM platform,” IEEE
Trans. Inf. Forensics Secur., vol. 17, pp. 1709–1724, 2022.

[13] L. Guo and F. X. Lin, “Minimum viable device drivers for arm
trustzone,” Proceedings of the 17th European Conference on Computer
Systems, EuroSys, 2022.

[14] QEMU. (2023) Qemu. [Online]. Available: https://www.qemu.org/
[15] Q. Wiki. (2023) Qemu supported machines. [Online]. Available:

https://wiki.qemu.org/Documentation/Platforms/ARM
[16] S. Han and J. Jang, “Mytee: Own the trusted execution environment

on embedded devices,” in Proceedings of the 30th Annual Network and
Distributed System Security Symposium, NDSS, 2023.

[17] Y. Huang, V. Narayanan, D. Detweiler, K. Huang, G. Tan, T. Jaeger, and
A. Burtsev, “Ksplit: Automating device driver isolation,” in Proceedings
of the 16th USENIX Symposium on Operating Systems Design and
Implementation, OSDI, 2022.

[18] Linaro. (2019) Imx6q mma8451 accelerometer sensor driver.
[Online]. Available: https://github.com/nxp-imx/linux-imx/blob/imx
4.14.98 2.3.0/drivers/hwmon/mxc mma8451.c

[19] ——. (2019) Imx6q image processing unit (ipu) driver. [Online].
Available: https://github.com/nxp-imx/linux-imx/tree/imx 4.14.98 2.3.
0/drivers/mxc/ipu3

14

[20] ——. (2019) Imx6q mag3110 magnetometer sensor driver. [Online].
Available: https://github.com/nxp-imx/linux-imx/blob/imx 4.14.98 2.
3.0/drivers/hwmon/mag3110.c

[21] ——. (2019) Imx6q thermal sensor driver. [Online].
Available: https://github.com/nxp-imx/linux-imx/blob/imx 4.14.98 2.
3.0/drivers/thermal/imx thermal.c

[22] R. Love, Linux Kernel Development, 3rd ed. Addison-Wesley Profes-
sional, 2010.

[23] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE:
secure linux containers with intel SGX,” in Proceeding of 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
2016.

[24] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 2:1–2:34, 2012.

[25] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Trusense:
Information leakage from trustzone,” in Proceedings of the 37th IEEE
Conference on Computer Communications, INFOCOM, 2018.

[26] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the 27th USENIX Security Symposium, USENIX Security, 2018.

[27] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Proceedings of
the 40th IEEE Symposium on Security and Privacy, S&P, 2019.

[28] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
toward snoop-based kernel integrity monitor,” in Proceedings of the 19th
ACM Conference on Computer and Communications Security, CCS,
2012.

[29] A. Markuze, A. Morrison, and D. Tsafrir, “True IOMMU protection
from DMA attacks: When copy is faster than zero copy,” in Proceedings
of the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2016.

[30] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest
we remember: cold-boot attacks on encryption keys,” Commun. ACM,
vol. 52, no. 5, pp. 91–98, 2009.

[31] A. Ltd. (2004) Arm trustzone protection controller.
[Online]. Available: https://developer.arm.com/documentation/
dto0015/a/about-the-trustzone-protection-controller#:∼:text=
TheTrustZoneProtectionController(TZPC,systeminaTrustZonedesign.

[32] Y. Cheng, X. Ding, and R. H. Deng, “Driverguard: Virtualization-based
fine-grained protection on I/O flows,” ACM Trans. Inf. Syst. Secur.,
vol. 16, no. 2, p. 6, 2013.

[33] Bootlin. (2019) Linux kernel source code v4.14.98. [Online]. Available:
https://elixir.bootlin.com/linux/v4.14.98/source

[34] Linaro. (2020) Imx optee os 3.10.0. [Online]. Available: https:
//github.com/nxp-imx/imx-optee-os/tree/imx 4.14.98 2.3.0

[35] Z. Ling, H. Yan, X. Shao, J. Luo, Y. Xu, B. Pearson, and X. Fu, “Secure
boot, trusted boot and remote attestation for ARM trustzone-based iot
nodes,” J. Syst. Archit., vol. 119, p. 102240, 2021.

[36] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: scalable and efficient
memory protection keys,” in Proceedings of the 2022 USENIX Annual
Technical Conference, USENIX ATC, 2022.

[37] Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren, “Vdom:
Fast and unlimited virtual domains on multiple architectures,” in Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS,
2023.

[38] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “BOOMERANG:
exploiting the semantic gap in trusted execution environments,” in Pro-
ceedings of the 24th Annual Network and Distributed System Security
Symposium, NDSS, 2017.

[39] AlDanial. (2023) Count lines of code. [Online]. Available: https:
//github.com/AlDanial/cloc

[40] Linaro. (2020) Imx linux 4.14.98. [Online]. Available: https:
//github.com/nxp-imx/linux-imx/tree/imx 4.14.98 2.3.0

[41] intel. (2018) lmbench 3.0. [Online]. Available: https://github.com/intel/
lmbench

[42] Linaro. (2019) Imx optee test. [Online]. Available: https://github.com/
nxp-imx/imx-optee-test/tree/imx 4.14.98 2.3.0

[43] J. Criswell, N. Dautenhahn, and V. S. Adve, “Virtual ghost: protecting
applications from hostile operating systems,” in Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2014.

[44] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: secure applications on an untrusted operating system,” in
Proceedings of the 18th International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS,
2013.

[45] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with ARM
trustzone,” in Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, MobiSys, 2017.

[46] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. S. Dwoskin, and D. R. K. Ports, “Overshadow:
a virtualization-based approach to retrofitting protection in commodity
operating systems,” in Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS, 2008.

[47] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding applications from
an untrusted cloud with haven,” in Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Implementation, OSDI,
2014.

[48] A. Ltd. (2013) Arm generic interrupt controller, v2.0. [Online].
Available: https://developer.arm.com/documentation/ihi0048/latest/

[49] FFmpeg. (2023) Ffmpeg. [Online]. Available: https://github.com/
FFmpeg/FFmpeg

[50] Wikipedia. (2023) Real-time transport protocol. [Online]. Available:
https://en.wikipedia.org/wiki/Real-time Transport Protocol

[51] N. Community. (2013) H-264-decoding-using-ffmpeg-
using-gpu-for-display-acceleration. [Online]. Avail-
able: https://community.nxp.com/t5/i-MX-Processors/
H-264-decoding-using-ffmpeg-using-GPU-for-display-acceleration/
m-p/291554

[52] J. S. Jang, S. Kong, M. Kim, D. Kim, and B. B. Kang, “Secret: Secure
channel between rich execution environment and trusted execution
environment,” in 22nd Annual Network and Distributed System Security
Symposium, NDSS, 2015.

[53] J. Jang and B. B. Kang, “Securing a communication channel for the
trusted execution environment,” Comput. Secur., vol. 83, pp. 79–92,
2019.

[54] ——, “Retrofitting the partially privileged mode for tee communication
channel protection,” IEEE Transactions on Dependable and Secure
Computing, vol. 17, no. 5, pp. 1000–1014, 2020.

[55] J. Wang, Y. Wang, L. Lei, K. Sun, J. Jing, and Q. Zhou, “Trustict:
an efficient trusted interaction interface between isolated execution
domains on ARM multi-core processors,” in Proceedings of the 18th
ACM Conference on Embedded Networked Sensor Systems, Sensys,
2020.

[56] A. Ltd. (2023) Arm cortex-a processor comparison table. [Online].
Available: https://developer.arm.com/documentation/102826/latest/

[57] NVD. (2023) Cve-2021-28972. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2021-28972

[58] ——. (2023) Cve-2020-12653. [Online]. Available: https://nvd.nist.
gov/vuln/detail/CVE-2020-12653

[59] ——. (2023) Cve-2018-3580. [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2018-3580

[60] A. Ltd. (2023) Arm architecture reference manual for a-profile
architecture, chapter d2.10 watchpoint exceptions. [Online]. Available:
https://developer.arm.com/documentation/ddi0487/ja

[61] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He,
J. Cao, and F. Zhang, “Strongbox: A GPU TEE on arm endpoints,” in

15

Proceedings of the 29th ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2022.

[62] V. Narayanan, A. Balasubramanian, C. Jacobsen, S. Spall, S. Bauer,
M. Quigley, A. Hussain, A. Younis, J. Shen, M. Bhattacharyya, and
A. Burtsev, “Lxds: Towards isolation of kernel subsystems,” in Pro-
ceedings of the 2019 USENIX Annual Technical Conference, USENIX
ATC, 2019.

[63] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “Twinvisor:
Hardware-isolated confidential virtual machines for arm,” in Proceed-
ings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP, 2021.

[64] Z. Hua, Y. Yu, J. Gu, Y. Xia, H. Chen, and B. Zang, “Tz-container:
protecting container from untrusted OS with ARM trustzone,” Sci.
China Inf. Sci., vol. 64, no. 9, 2021.

[65] S. Liu, G. Tan, and T. Jaeger, “Ptrsplit: Supporting general pointers
in automatic program partitioning,” in Proceedings of the 24th ACM
SIGSAC Conference on Computer and Communications Security, CCS,
2017.

[66] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and
S. Jha, “The design and implementation of microdrivers,” in Proceed-
ings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS, 2008.

[67] K. Ying, P. Thavai, and W. Du, “Truz-view: Developing trustzone
user interface for mobile OS using delegation integration model,” in
Proceedings of the 9th ACM Conference on Data and Application
Security and Privacy, CODASPY, 2019.

[68] X. Jin, X. Xiao, S. Jia, W. Gao, D. Gu, H. Zhang, S. Ma, Z. Qian, and
J. Li, “Annotating, tracking, and protecting cryptographic secrets with
cryptompk,” in Proceedings of the 43rd IEEE Symposium on Security
and Privacy, S&P, 2022.

[69] Y. Cai, Y. Wang, L. Lei, Q. Zhou, and J. Li, “Suit: Secure user interface
based on trustzone,” in Proceedings of the 53rd IEEE International
Conference on Communications, ICC, 2019.

[70] S. Boyd-Wickizer and N. Zeldovich, “Tolerating malicious device
drivers in linux,” in Proceedings of the 2010 USENIX Annual Technical
Conference, USENIX ATC, 2010.

[71] S. Butt, V. Ganapathy, M. M. Swift, and C. Chang, “Protecting
commodity operating system kernels from vulnerable device drivers,”
in Proceedings of the 25th Annual Computer Security Applications
Conference, ACSAC, 2009.

[72] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, M. Williamson
et al., “Safe hardware access with the xen virtual machine monitor,” in
Proceedings of the 1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure, OASIS, 2004.

[73] V. Ganapathy, A. Balakrishnan, M. M. Swift, and S. Jha, “Microdrivers:
A new architecture for device drivers,” in Proceedings of the 11th
Workshop on Hot Topics in Operating Systems HotOS, 2007.

[74] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Götz, C. Gray, L. Macpherson,
D. Potts, Y. Shen, K. Elphinstone, and G. Heiser, “User-level device
drivers: Achieved performance,” J. Comput. Sci. Technol., vol. 20, no. 5,
pp. 654–664, 2005.

[75] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz, “Unmodified device
driver reuse and improved system dependability via virtual machines,”
in Proceedings of the 6th Symposium on Operating System Design and
Implementation OSDI, 2004.

[76] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “Erim: Secure, efficient in-process isolation
with protection keys (mpk),” in Proceedings of 28th USENIX Security
Symposium, USENIX Security, 2019.

[77] M. Hedayati and S. Gravani, “Hodor: Intra-process isolation for high-
throughput data plane libraries,” in Proceedings of the 2019 USENIX
Annual Technical Conference, USENIX ATC, 2019.

[78] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “Epk: Scalable and efficient
memory protection keys,” in Proceedings of the 2022 USENIX Annual
Technical Conference, USENIX ATC, 2022.

[79] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xmp: Selective memory protection for kernel and user
space,” in Proceedings of the 41st IEEE Symposium on Security and
Privacy, S&P, 2020.

[80] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2015.

APPENDIX A
AN ILLUSTRATIVE EXAMPLE OF SECURE OS FUNCTION

CALL

We use an example where a SW driver is loaded into the
IED, initializes itself by invoking malloc() to acquire a
memory chuck from the IED heap and exits, to illustrate how
driver isolation is enforced during the SW driver execution.
First of all, the SW driver loader loads a SW driver into the
IED heap with its .text segments mapped as R-X and its
data segments mapped as RW-. Then, the SW driver loader
invokes the SW driver’s sw_init() function through the
IED gate (Fig. 11-(b)). The IED gate switches from the secure
OS stack to the IED stack and configures the secure OS and
TA as non-accessible by setting the corresponding DACR bits
as NA (Fig. 11-(c)). When the SW driver invokes malloc(),
such secure OS function call is hooked to the IED gate where
the invocation’s validity is checked. If the secure OS function
call is valid, the IED gate opens access to the secure OS and the
secure OS function still uses the IED stack to avoid complex
and heavy context switching. Then the secure OS allocates
a dynamic memory chuck on the IED heap and returns to
the IED gate (Fig. 11-(d)). Next, the IED gate closes access
to the secure OS and further returns to the SW driver (Fig.
11-(e)). Finally, the SW driver finishes its initialization and
returns back to the SW driver loader through the IED gate
which makes the secure OS accessible and switches back to
the secure OS stack (Fig. 11-(f)).

DACRSW Memory Layout

000102

(b)CL CLCLTX DT

R-X RW-

TX DT HEAP STACK

000102

(c)NA NACLTX DT HEAP STACK TX DT

000102

(d)CL CLCLSTACK TX DTTX DT HEAP

000102

(e)NA NACLTX DT HEAP STACK TX DT

000102

(a)CL CLCL

Domain 0 Domain 3 Domain 1
TX DT HEAP STACK

000102

(f)CL CLCLTX DTTX DT HEAP STACK

D
u

m
m

y

D
u

m
m

y

Dummy

Dummy

IED GateIED Gate IED HeapIED HeapSecure OSSecure OS SW DriverSW Driver IED StackIED StackTATA IED Gate IED HeapSecure OS SW Driver IED StackTA

03
CL

03
CL

03
CL

03
CL

03
CL

03
CL

Fig. 11: Workflow of Calling malloc() from IED. Regions
with thick boarder indicate regions that are currently activated and in
control. TX stands for code. DT stands for data. IED gate is assigned
to domain 2. IED is assigned to a new domain 3 and its memory
layout consists of the IED heap and the dedicated stack.

APPENDIX B
FUNCTION REDIRECTION DURING INTERRUPT HANDLING

We observe that the SW interrupt handler may invoke some
NW callback functions when handling the fast interrupt request
(FIQ) triggered by the underlying device. Since the OP-TEE
OS thread_rpc_cmd() interface cannot be used inside the
interrupt context, we implement a FIQ Linux callback (FLC)

16

method to facilitate such NW callback invocation during SW
FIQ handling.

The general FLC workflow is shown in Figure 12. To begin
with, the SW interrupt handler’s call to the Linux callback
is hooked to the FLC SW module during SW driver linking.
During runtime, the FLC SW module intercepts such call once
the Linux callback is invoked (Fig. 12, 1). The FLC SW
module retrieves the callback address as well as the arguments
and saves the current context of the FIQ handler (i.e. register
states). Next, the FLC SW module encapsulates the callback
address and the arguments into a shared memory buffer and
then issues a secure monitor call (SMC) to trap into the secure
monitor (SM) (Fig. 12, 2). The SM turns on our customized
FLC flag, saves the current NW state and jumps to the FLC
NW module’s entry point, i.e., ldr_fiq_callback(),
through ARM exception return mechanism [3] (Fig. 12, 3).
The FLC NW module decapsulates the arguments, invokes
the target callback (Fig. 12, 4) and saves the return value
back into the argument buffer. Then, it traps into the SM
through an SMC (Fig. 12, 5). Once taking control, the SM
clears the FLC flag, restores the NW back to its original
state and returns to the FLC SW module’s return point, i.e.
callback_ret_entry() (Fig. 12, 6). The FLC SW
module restores the FIQ handler context and saves the return
value of the callback in R0 to emulate a typical function
return (Fig. 12, 7). Finally, the interrupt handler resumes
and finishes what’s left for FIQ handling (Fig. 12, 8).

Peripheral Device

ldr_fiq_callback()

callback Info
address

arguments

Callback

Retrieved
Arguments Return

Value
invoke

return

Linux Kernel Secure OS

Secure Monitor

arrange args
ldr r6, #cb_addr
blx r6
smc #0 callback return inforet value

FLC SW Module

get cb info
save FIQ state
smc #0

callback_inv_hook()

get ret value
restore state
bx lr

callback_ret_entry()

Saved NW State

SW State Variable

SW Driver LKM

Interrupt Handler
... ...
ldr r5, #cb_hook
blx r5
... ...

SW State Variable

SW Driver LKM

Interrupt Handler
... ...
ldr r5, #cb_hook
blx r5
... ...

1

2

7 8

4

5

FLC flag on
save NW state
eret

sm_callback_inv()

3

FLC flag on
save NW state
eret

sm_callback_inv()

3

FLC flag cleared
restore NW state
eret

sm_callback_ret()

6

FLC flag cleared
restore NW state
eret

sm_callback_ret()

6

R0-R12 SP
SPSRLR

R0-R12 SP
SPSRLR

Saved
Handler
 State SPSR

R0-R12
LR
SP

SPSR

R0-R12
LR
SP

Saved
Handler
 State SPSR

R0-R12
LR
SP

FIQ

d
u

m
m

y

d
u

m
m

y

dummy

dummy

FLC NW Module

Fig. 12: FIQ Linux Callback (FLC) Method.

APPENDIX C
PERFORMANCE IMPLICATIONS OF LDR SECURITY

MECHANISMS ON MICRO BENCHMARKS

We investigate the performance implications of LDR se-
curity mechanisms on the latency of the Linux subsystem
function redirection and the cross-world procedure call.

A. Linux Subsystem Function Redirection

To evaluate how LDR security mechanisms influence the
latency of a redirected Linux subsystem function call, we
carry out three sets of experiments: 1) baseline. This set

is used as the comparison group and is aimed to measure
the basic function redirection latency without any security
mechanisms. 2) dependency function call validation. This
set enables the DAC-based driver isolation. We leverage drivers
without state variables to measure the net latency introduced
by dependency function call validation mechanism. 3) state
variable synchronization & shadowing. This set is used
to measure the latency introduced by state variable synchro-
nization & shadowing mechanism. The results show that the
latency of a basic redirected function call is 5.82 µs. When the
DAC-based isolation is enabled inside LDR, an extra latency
of 2.11 µs is introduced by the dependency function call
validation mechanism on average. Moreover, the state variable
synchronization mechanism introduces another latency of 3.21
µs.

0.00

3.00

6.00

9.00

12.00

Baseline Function
Validation

SV Sync &
Shadow

Without Isolation With Isolation

La
te

n
cy

(µ
s)

 0 arg

1 arg

2 arg

3 arg

4 arg

Fig. 13: Latency of Linux Function Redirection Mechanism

0.00

30.00

60.00

90.00

120.00

150.00

0 1 2 3 4 5 6 7 8 9 10 32 64 128 256 512

Argument Number Buffer Size

la
te

n
cy

(µ
s)

CPC without DAC CPC with DAC

Fig. 14: Latency of CPC Mechanism

B. Cross-world Procedure Call (CPC) Mechanism

As for the CPC latency, we conduct two sets of experiments
with one set to evaluate the basic CPC latency acting as
comparison group and the other set to evaluate the latency
introduced by LDR SW driver isolation mechanism. Figure
14 depicts that the average latency for a CPC-based function
call without parameters is 77.91 µs. The average latency for
functions with parameters of regular values and data pointers
are 100.71 µs and 99.16 µs respectively. The LDR SW driver
isolation mechanism introduces an extra 39.91 µs latency for
all kinds of CPC calls on average.

TABLE IX: FFmpeg Streaming using OV5640 with different core
and interrupt handling arrangements as well as security mechanisms.
The resolution is set to 480P.

IPU Driver
Arrangment FPS Dup F

per 100 F
Drop F

per 100 F
Stream
Speed

Speed
Penalty

Original (4 Cores) 24.9 0.00 1.80 0.9788× -0.00%
Original (3 Cores) 24.6 0.08 1.43 0.9770× -0.18%
LDR without IED 24.5 0.33 1.30 0.9771× -0.17%

LDR with IED 24.0 0.98 1.05 0.9747× -0.42%

17

0.00

1.00

2.00

3.00

4.00

5.00

1 shot 10 shots 100 shots

La
te

n
cy

(s
)

Original (4 Cores)
Original (3 Cores)
LDR without IED
LDR with IED

Fig. 15: Latency of video capturing with different core and interrupt
handling arrangements as well as security mechanisms. The resolution
is set to 480P.

APPENDIX D
PERFORMANCE IMPLICATIONS OF CORE ARRANGEMENT

AND LDR SECURITY MECHANISMS ON IPU DRIVER

As mentioned in Section §IV-D, we have to allocate
core exclusively for managing end-of-frame (EoF) interrupts
initiated by the IPU upon completing a frame transmission,
thus excluding it from NW usage. Consequently, we examine
the performance implications of this core allocation on both
image capture latency and video streaming performance. Ad-
ditionally, we also investigate the performance implications of
LDR security mechanisms, namely IEDs. We take 4 sets of
experiments with different core and interrupt handling setups,
which are 1) Original IPU driver with 4 cores. 2) Original
IPU driver with 3 cores. 3) LDR IPU driver without IED with
SW exclusive EoF handling. 4) LDR IPU driver with IED
with SW exclusive EoF handling. To emphasize the effects of
the core arrangement, we maintain a resolution of 480P for
all subsequent experiments. Specifically, for video streaming
experiments, we re-compile FFmpeg with ARM Neon features
disabled by passing “--disable-neon” option for compi-
lation.

For image capturing, the results displayed in Figure 15
reveals that the differences among various core and interrupt
handling arrangements are minimal. The time taken for a single
frame shot ranges from 1.30s to 1.32s, while for 10 shots, it
varies between 1.64s and 1.66s, and for 100 shots, it spans
from 4.95s to 4.98s.

For video streaming, the average of each statistic is pre-
sented in Table V. When disabling ARM Neon features, there
is an average streaming speed decrease of -2.32%. We use
the case where the original IPU driver is employed with four
cores available to the rich OS as the baseline. The other 3
arrangements result in streaming speed penalties ranging from
-0.42% to -0.17%. These findings demonstrate that reserving
one core for EoF interrupt handling causes a negligible overall
performance downgrade. Furthermore, the LDR security mech-
anisms have minimal impact on overall performance, with only
a -0.25% streaming speed decrease compared to the case where
LDR security features are disabled.

18

