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ABSTRACT 
The study of information cascade in multiplex networks where 
agents are connected by multiple linking types has received 
increasing interest. Comparing with the cascade in simplex 
networks, a noticeable characteristic of the cascade in multiplex 
networks is that information may be spread between multiple 
layers. Here, we focus on the cross-layers cascade which helps 
clarify two opposite opinions about the information cascade in 
multiplex networks: multiplexity can speed up or slow down 
information cascade. Two features of cross-layers cascade are 
proposed: the mapping relationship provides cross-layers paths; 
the vertical transfer coefficient quantifies the influences of agent 
varied in multiple layers. After generalizing the linear threshold 
model to multiplex networks, preconditions and reasons of 
seemingly paradoxical phenomena are discussed using three 
representative case studies and extensive simulations. It is found 
that the slow-down phenomenon emerges due to the obstruction 
of cross-layers cascade which connects the distributed shortest 
path in multiple layers. On the other hand, extra short paths or 
rapid spreading in one additional layer can respectively facilitate 
cascade process in existing networks. In conclusion, we think that 
the concept of cross-layers cascade may provide new insights 
into further study of information spreading in multiplex networks. 

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]: Multiagent Systems; J.4 [Computer 
Applications]: Social and Behavioral Sciences 

Keywords  
Information Cascade, Multiplex Networks, Linear Threshold 
Model, Multiagent Systems. 

1. INTRODUCTION 
Cascade is an interesting phenomenon referring to a global 
diffusive process of a local effect which is initialized by one or 
small fraction of nodes in a network [1] [2]. In social life, the 
adoptions of an innovation and social norms [3] [4], the 
propagations of behaviors and opinions [5] [6], and catastrophic 
spreading of failures and epidemics [7-10] are well-known 
cascade phenomena. These diffusive processes are often studied 

by the linear threshold model [2] [11-13], in which a node 
becomes active if the influences of active neighbors exceed a 
predefined value. Traditional studies generally analyzed cascade 
process in simplex networks where linking types between nodes 
are identical. Recently, more and more studies have realized that 
real social networks contain multiple-layer structures mainly 
because social agents are connected by multiple linking types [14-
18]. In multiplex networks, an agent can transfer information 
between layers besides spread information within each layer. For 
instance, a person can share topics in real life communication to 
online social networks or post his/her tweets (from Twitter) to 
Facebook. To the best of our knowledge, few studies have 
formally described the details of cross-layers cascade which helps 
to analyze the complicated effects of multiplexity on cascade 
processes. 

One general opinion is that multiplexity can speed cascade 
process up [18-21]. References [18] and [19] reveal the dramatic 
effect of conjoining two entirely different networks on the 
velocity and scale of information cascade. In [20], a 
superdiffusive behavior is concluded which means that cascade 
process in multiplex networks is faster than the cascade in any 
disjointed layers. Meanwhile, to control cascade process in 
multiplex networks, adding or removing sparse layers in existing 
multiple layers is proved to be a feasible way [21]. In a word, it is 
generally accepted that multiplexity provides more feasible paths 
for information cascade. Indeed, people receive vast amount of 
information quickly from multiple channels every day; and many 
new fashions in online social networks have become hot topics in 
real life. 

However, according to some real data, cascade processes always 
turn out slow as information spreads on the topologically 
inefficient path which means the propagation path is much longer 
than the shortest link between two randomly selected nodes in 
large scale networks [22-24]. It is known that the speeds of 
spreading information on distinct linking types are different [25] 
[26]. In real networks, information only flow easily on part of the 
edges, while cascade tends to be dampened in the rest part. For 
example, it is more natural to talk about a new washing machine 
with neighbors instead of members in physical training clubs if 
the advertisement is made on online social networks. Therefore, 
multiplexity may cause the slow-down phenomenon since 
information selectively propagates on networks and cannot be 
freely transferred from one layer to conjoining layers.  

In this paper, we focus on the cross-layers cascade to understand 
and explain how the cascade process in multiplex networks is 
slowed down or speeded up. Two features of cross-layers cascade 
are proposed: the mapping relationship conjoins multiple layers 
and provides the transfer paths; the vertical transfer coefficient 
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quantifies influences of node varied in multiple layers. The linear 
threshold model is generalized to multiplex networks, in which 
node becomes active if influences of active neighbors in any layer 
reach a predefined threshold [21]. Based on the cross-layers 
cascade, different cascade processes are scrutinized in three 
representative case studies and preconditions of seemingly 
paradoxical phenomena are discussed.  

In multiplex networks, the shortest path between two randomly 
selected nodes is distributed in multiple layers. When the cross-
layer cascade which connects the distributed shortest paths in two 
layers cannot be triggered, downstream nodes in the shortest path 
will be activated by the information spreading on the other 
topologically inefficient paths. As a result, slow-down 
phenomenon emerges comparing with the cascade process in 
simplex networks. Extra paths in additional layer which are 
shorter than existing propagation paths in other layers can 
facilitate the information spreading in multiplex networks. Large 
vertical transfer coefficient of additional layer causes the rapid 
cascade. What’s more, rapid cascade in tiny-scale layer which 
contains only one hundredth of nodes in multiplex networks can 
induce global cascade since cross-layers cascades trigger many 
concurrent cascades in other layers. The leverage of tiny-scale 
layer on cascade process complements previous studies on the 
facilitation of multiplexity. Different reasons of slow-down and 
speed-up phenomena are also validated using extensive 
simulations. We hope that the introducing of cross-layers cascade 
can provide new insights into the study of information cascade in 
multiplex networks. 

The rest of the paper is organized as follows. We outline the 
details of cascade across layers and cascade model in Section 2. 
In Section 3, we analyze the slow-down and speed-up phenomena 
in multiplex networks. Simulations results and analyses are 
presented in Section 4. In Section 5, we conclude our findings and 
point out the future outlook of our research. 

2. MODEL OUTLINE 
In this section, we first give the model of multiplex social 
networks and describe the features of cross-layers cascade. Then, 
we generalize the linear threshold model to multiplex networks. 

2.1 Multiplex Networks 
A network is always formulated as a graph G = (V, E), in which V 
is the set of nodes and E is the set of edges linking nodes [26]. 
Agent and node are interchangeable concepts in the following. In 
this paper, we assume that V is the set of all agents in multiplex 
networks. Multiple and parallel graphs are usually used to 
represent multiplex networks [20] [21]. According to the 
categories of linking types {l1, l2, ... ln} [26], multiplex networks 
contain n layers which are denoted by L1, L2…Ln, as shown in 
Figure 1.  

It is worth noting that there are two methods to generate multiplex 
networks: one is “splitting” [15] [26]; the other is “combining” 
[18] [19] [21]. Splitting method means that nodes and edges of G 
are distributed in L1, L2…Ln as realizing the diverse linking types 
of simplex network. Combining method indicates that L1, L2…Ln 
are conjoint by the relationships between nodes in different layers 
if one agent takes part in interdependent cascade processes in 
different networks.  

For simplicity, L1, L2…Ln also represent the set of agents in each 
layer. Meanwhile, ai and bi denote agents in L1 and L2. The letter i 

is the identification of agent. Agent has binary states: ai
1 (ai

s = 1) 
means ai is active and ai

0 (ai
s = 0) means current state is 

inactive.Ωai
L1 is the set of nodes linking to ai in L1 (ai ∈ L1, Ωai

L1 ⊆ L1). 

2.2 Cross-Layers Cascade 
2.2.1 Mapping Relationship 
Mapping relationship indicates the dependence of states between 
agents. We first define the mapping relationship of agents in 
single layer. The symbol “→” is used to represent the correlation 
between agents. Ωai

L1 → ai means the state of ai depends on the 
neighbors of ai. If ai → aj and aj → ai, then ai ↔ aj. In single 
layer, mapping relationship likes the directed edge in graph theory 
[27]. Then, the mapping relationships of agents between layers 
are given. 

Definition 2.1 bi is injective to ai, if ai ∈ L1, ∃! bi ∈ L2, such that 
bi → ai and bi is not corresponding to ai. 

Definition 2.2 If ai ∈ L1, ∃! bi ∈ L2, and bj ∈ L2, ∃! aj ∈ L1, such 
that ai ↔ bi and bj ↔ aj, then the mapping relationship between L1 
and L2 is bijective. 

Definition 2.3 The mapping relationship between L1 and L2 is 
multi-bijective, if ∀ ai ∈ L1, ∀ bj ∈ L2, and ∃ bi ∈ L2, ∃ aj ∈ L1, 
such that {bi …} → ai, {aj …} → bj. 

The injective relation is unidirectional and provides a foundation 
for other mapping relationships. The multi-bijection is the main 
characteristic of interdependent infrastructure systems. For 
example, one power station can supply several nodes in the 
Internet communication network and several power stations may 
communicate through one or more communication nodes [7] [19]. 
Many online social networks, email networks and mobile 
communication networks can be considered as bijective multiplex 
social networks. In this paper, we focus on the cascade process 
under bijective relationship between layers. The symbol Φ is 
introduced: Φai

L2 is the set of agents in L2 that are Φai
L2 ⊆ L2 and 

Φai
L2 → ai. For example, Φa1

L2 = {b1} in Figure 1.  

Mapping relationship conjoins multiple layers and provides the 
paths for cross-layers cascades. Figure 2 shows that the cascade 
process in multiplex networks consists of cascade across layers 
and cascade on each layer. At first, a1 and a4 are set as active. 
Then, cross-layers cascades take place: b1 and b4 are activated. In 
next time step, a2 is activated by a1 in L1 and b6 becomes active 
due to b4 in L2. At last, b2 and a6 are activated, although b2 is not 
linked to b1 and a6 is isolated from a4. Therefore, without the 
consideration of cross-layers cascade, cascade on each layer is 
difficult to analyze. 

In real multiplex social networks, it may take different times to 
transfer information between multiple layers. Time intervals of 
cross-layers cascades lead to asynchronous cascade processes [28] 

Figure 1 Illustration of Simplex and Multiplex Networks
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in multiple layers: when bi is activated by its neighbors in L2, its 
mapping agent ai in L1 has been in active state for several time 
steps. In this paper, time interval of cross-layers cascade is 
assumed to be zero for the sake of simplicity. Only a simple case 
study is given to describe how different time intervals of cross-
layers cascades further slow down cascade process in multiplex 
networks.  

2.2.2 Vertical Transfer Coefficient  
The vertical transfer coefficient proposed in this paper denotes the 
diverse influences of agent v in multiple layers. The symbol λ 
represents the vertical transfer coefficient and it is supposed that λ 
≥ 0. λbi

ai means the influence of bi in L2 transferred to ai in L1 if ai ∈ L1, bi ∈ L2 and ai
s ↔ bi

s. For example in Figure 2, the influence 
of b4 received by b6 is λa4

b4×b4
s. For simplicity, if ∀ ai ∈ L1 and 

Φai
L2 = {bi}, λbi

ai is identical, then λL2
L1 equals λbi

ai and represent 
the strength of L2 mapping to L1. Then, λLi is named as the vertical 
transfer coefficient of Li: 

i

j

iL
n

L
L

i j
λ λ

≠
=   

Some related studies have defined similar parameters in multiple 
networks. In [29], the content-dependent parameters indicate 
different weighted links in each layer. Vertical transfer coefficient 
means the weight of the mapping relationship between layers.  

2.3 Cascade Model 
In this section, we generalize the linear threshold model to 
multiplex networks, in which node activates if the influences of 
neighbors in any layer is larger than the threshold [21]. In the 
classical linear threshold model, node v randomly chooses a 
threshold θv from the interval [0, 1]. Node v is linked with positive 
weight edges the sum of which is less than 1. Node v becomes 
active if the sum of weight edges linking to active neighbor 
exceeds the threshold θv [11-13]. Watt’s threshold model [2] 
expands the linear threshold model and node v is activated if the 
fraction of active neighbors is larger than θv ignoring the weights 
of edges.  

The principle of linear threshold model is that the activation of 
node or the decision of people to diffuse certain information needs 
reinforcements from multiple neighbors [5]. In real life or in the 
online social networks, it may be impossible for a person to 
estimate the number of all neighbors and calculate the fraction of 
active linking agents due to different social ties, familiarities, or 
communication intervals. It is more feasible to estimate the sum 
of influences of interactive neighbors. Therefore, node v in 
simplex network becomes active if 

v vτ θ≥ . 

τv is the sum of influences of neighbors of node v. The magnitude 
of agent’s influence in simplex network is 1 unit. In multiplex 
networks, node v becomes active if 

( )
1,...,

iL
v v

i n
max τ θ
=

≥ . 

( )iiiL LL
v vτ λ= Ω . 

The item ∑ΩvLi indicates the number of active neighbors of node 
v in Li. With our generalized cascade model, agent can easily 
receive enough influences and widely spread its influence if the 
degree of agent is large. This assumption accords with reality. For 
example, if a person has many friends in Facebook or follows lots 
of people in Twitter, he/she will receive vast amount of 
information every day.  

Cascade process highly depends on thresholds of nodes. Many 
studies have found the critical thresholds of global cascades in 
several kinds of networks [18] [20] [21], but the reliable formulas 
of threshold distributions according to different kinds of collective 
human behaviors still remain unknown [5]. In this paper, 
thresholds are assumed to follow normal and uniform 
distributions while the cascade condition and critical threshold are 
not the main aims. 

3. ANALYSIS OF CASCADE PROCESS  
In this section, cascade processes in multiplex networks are 
briefly analyzed in three case studies with the aid of cross-layers 
cascade. The reasons and preconditions of slow-down and speed-
up phenomena are discussed.  

Simplex network G is supposed to be a complete graph on four 
vertices which are denoted by v1, v2, v3 and v4. Thresholds of v1 
and v2 are 1, while v3 and v4 become active if at least two 
neighbors are active. Node v1 is initialized as active state. It takes 
three time steps to reach global cascade in G and the propagation 
paths are all shortest, as shown in Figure 3.  

3.1 Case One 
In the first case study, simplex network is split into two-layer 
multiplex networks [15] [26] and slow-down phenomenon in 
multiplex networks emerges. λL2

L1 and λL1
L2 are both 1 unit. 

As shown in Figure 3, each layer contains part of edges in G and 
some agents cannot be activated in certain layer due to the 
isolation or lack of enough neighbors. For example, the 
activations of b2 and b4 depend on cross-layers cascades from a2 
and a4 which can both become active following the shortest paths 
in G. Meanwhile, a3 cannot be activated by neighbors in L1 which 

Figure 2 Illustration of Cascade Process in Multiplex 
Networks 

Figure 3 Illustration of Slow-down Phenomenon in 
Multiplex Networks 
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only contains the first part of shortest path to active v3 in G. The 
cross-layers cascade from a3 to b3 is obstructed since a3 is 
surrounded by insufficient active nodes in L1. One additional step 
is needed to activate b3 (a3, v3) after the activation of b4. However, 
v3 and v4 can be activated by v1 and v2 simultaneously in G.  

Therefore, the shortest path in simplex network is distributed in 
multiple layers and the obstruction of cross-layers cascade is the 
main reason of slow-down phenomenon. If intermediate agent 
lacks sufficient neighbors in one layer which contains the first 
part of the shortest path, cross-layers cascade from the 
intermediate agent cannot take place and information spreading 
on the shortest path is blocked. Then, downstream nodes will be 
activated by information spreading on other longer paths which 
are topologically inefficient. As a result, slow-down phenomenon 
of cascade process in multiplex networks emerges comparing with 
the information spreading in simplex network.  

With the consideration of time interval of cross-layers cascade, 
the global cascade will be further postponed. For example, if 
cascade from a2 to b2 falls behind cascade from a4 to b4, the 
activation of b3 will be delayed.  

It needs to be mentioned that traditional studies on social 
networks focused on the topology of agents’ interactions without 
the consideration of the types of interactions. In other words, the 
topologically inefficient path found in empirical data may be the 
most efficient path in the framework of multiplex networks. 
Taking the mobile communication network as instance [22] [23], 
mobile phone users constitute the underlying simplex network 
which can be split into multiplex networks according to different 
linking types (multi-relation) [15] [22]. Therefore, whom a person 
calls must be related to the topic. Then, the edges of shortest path 
(whom a person knows) between two randomly selected nodes are 
distributed in multiple layers and many paths of cross-layers 
cascades are added. In social life, people consciously block cross-
layers cascades just because people do not talk with every 
acquaintance about new fashions or share all new messages in 
online social networks.  

3.2 Case Two 
The second case study describes the facilitation of additional 
layer in multiplex networks, as shown in Figure 4. λL1, λL2 and λL3 
are all 1 unit. Comparing with the multiplex networks in Figure 3, 
the structure of underlying simplex network remains the same, but 
L3 provides an extra path to activate c3 which is shorter than the 
existing path in L2 and improves the speed of information cascade. 
By cross-layers cascade, mapping nodes in L1 and L2 are 
successively activated. However, the time to reach global cascade 
is still T3. 

It is worth noting that the acceleration of cascade process in 
multiplex networks emerges as compared with the case that the 

network contains disjoint multiple layers [18] [20]. Taking Figure 
4 as instance, global cascade will not appear in any layer if the 
three layers are disjoint. By conjoining different networks, the 
increases of nodes’ degrees and the structural changes in 
underlying simplex network are the probable reasons of speed-up 
phenomenon. Meanwhile, references [18] and [20] made no 
comparison between conjoint multiple layers and underlying 
simplex network.  

In [21], Watt’s threshold model is generalized to multiplex 
networks and node is activated if the proportion of active 
neighbors exceeds the threshold in any layer. The facilitation of 
multiplexity depends on the property of Watt’s threshold model. 
Single layer may be unsusceptible to global cascade due to the 
constraint of network connectivity: sparse network lacks global 
connectivity; and node is always surrounded by insufficient 
proportion of active neighbors in dense layer. By coupling 
together or splitting a sparse layer from a dense network, most 
nodes easily become active in the sparse layer and influences of 
active nodes are widely spread due to the high connectivity in the 
dense layer. 

3.3 Case Three 
The third case study shows the speed-up phenomenon in 
multiplex networks caused by rapid cascade in one layer (large 
transfer coefficient). λL2

L1 is set as 2 and λL1
L2 is still 1. In this case, 

the influence of a1 equals two active agents. Then, agents in L1 
are activated by a1 at T2 and agents in L2 become active because 
of cross-layers cascades simultaneously. The large value of 
transfer coefficient induces rapid cascade process in one layer and 
has positive effect on global cascade. 

The third case study is simple but shows an interesting and 
common phenomenon in daily life. It is supposed that L1 denotes 
Facebook or Twitter, L2 is the word of mouth communication 
network for acquaintances [18], and a1 represents a famous music 
star. Then, Figure 5 means that a2, a3 and a4 are “fans” of a1 but 
have no personal relationships with a1 (the music star is isolated 
in L2). If a1 uploads a new song in online social network, a2, a3 
and a4 know it immediately without talking to each other in L2. 
Indeed, new fashion spreads very fast and can become hot topic 
mostly due to the rapid cascade process in online social networks 
instead of the one in word of mouth communication.  

On the other hand, if vertical transfer coefficient of certain layer 
is much larger, cascade processes in other layers may be inhibited. 
In Figure 5, no nodes are activated in L2 as the active states are all 
vertically transferred from L1. However, if a3 is not the fan of a1 
in L1, b3 will know the new song from the conversations between 
b2 and b4. 

4. SIMULATION 
The cascade process in multiplex social networks has been 
simulated on a computer. According to many previous studies [18] 
[21] [22] [29], multiplex networks are constructed based on 

Figure 5 Illustration of Speed-up Phenomenon in 
Multiplex Networks 
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Erdős–Rényi model [30] and small-world model [31]. Thresholds 
of nodes follow normal and uniform distributions. 

Velocity and cascade size are two main parameters associated 
with the cascade process in networks. The velocity of cascade 
process in networks is evaluated by comparing the time to reach 
stationary state. The cascade size is measured by the average 
fraction of active nodes in stationary state. Each trial is performed 
with 100 replications. All the phenomena analyzed in three case 
studies are simulated. 

4.1 Which is Faster, Simplex or Multiplex? 
The main object of this section is to compare the cascade 
processes in simplex and multiplex networks. Layer structures 
and threshold distributions are varied in different trials. We 
assume that the influence of node in simplex network equals 1 
unit. The vertical transfer coefficients are constant to ensure that 
influences of node in multiple layers equal the one in simplex 
network.  

Based on the Erdős–Rényi model and small-world model, we first 
construct random simplex network and small-world simplex 
network both with 10000 nodes and average 20 neighbors. 
Meanwhile, in small-world simplex networks, the probability of 
interpolating between regular lattices is 0.1. Then, multiplex 
networks are generated: edges in simplex network are distributed 
to multiple layers according to given probabilities. There are three 
multiplex networks. Two-layer and three-layer (type I) multiplex 
networks indicate the multiplex networks in the first case study: 
each layer contains 1/2 and 1/3 of edges in simplex network and 
no edges are allocated twice. Three-layer (type II) multiplex 
networks represent the network model in the second case study: 
each layer contains half of edges in simplex network but edges 
can be allocated repeatedly. After that, one node is randomly 
initialized as active state. Then, information cascades are 
triggered in those simplex and multiplex networks independently. 
The results are shown from Figure 6 to Figure 9. The lower limit 
of uniform distribution is 0. 

From Figure 6 and Figure 7, it can be clearly found that cascade 
processes are slowed down in multiplex networks because the 

shortest paths in simplex network are distributed in different 
layers. When threshold of node is low, times to reach stationary 
states in different networks are nearly the same because node can 
be easily activated in any layer and cross-layers cascade rarely 
takes place. However, as thresholds of nodes increase, the slow-
down phenomenon in multiplex networks becomes more obvious. 
In this case, cross-layers cascade is more important because nodes 
with high thresholds become active only when enough neighbors 
are activated in other layers. 

Meanwhile, information cascade in three-layer (type I) multiplex 
networks is slower than the one in two-layer multiplex networks. 
Therefore, the more layers are split from simplex network, the 
slower information spreading in multiplex networks will be if 
each edge is allocated only once. With our cascade model, if the 
degree of a node is large, node is easier to receive enough 
influences from neighbors to activate. On the contrary, if average 
number of neighbors in one layer is comparatively small, 
activations rely more heavily on the cascades from other layers. 
Comparing with two-layer multiplex networks, one additional 
layer with the same average number of neighbors in three-layer 
(type II) multiplex networks provides extra paths of information 
propagation. Thus, cascade processes in three-layer (type II) 
multiplex networks are faster than in two-layer multiplex 
networks but still slower than in simplex networks.  

As shown in Figure 8 and 9, multiplexity also restricts the final 
scale of cascade process. Inhibition effect of multiplexity 
becomes more obvious when thresholds of nodes become larger. 
Meanwhile, if network models and threshold distributions are 
different, multiplexity shows diverse inhibition effects on cascade 
processes. The fraction of active nodes largely decreases in three-
layer (type I) multiplex networks with uniform threshold 
distribution. However, with normal threshold distributions, 
cascade size in Erdős–Rényi network is less than in small-world 
network. Probable reason is that small-world network can provide 
more reinforcements from neighbors due to the high local 
clustering coefficient [5].  

 

(a)                                                                       (b) 

Figure 6 Time to Reach Stationary State with Erdős–Rényi 
Model 

(a)                                                                       (b) 
Figure 7 Time to Reach Stationary State with Small-World 

Model.

Figure 8 Average Cascade Size with Erdős–Rényi Model 
(a)                                                                   (b) 

Figure 9 Average Cascade size with Small-World Model 
(a)                                                                   (b) 
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4.2 Effect of Vertical Transfer Coefficient 
The main object of this section is to show the effect of vertical 
transfer coefficient on cascade process as analyzed in the third 
case study. Layer structures and threshold distributions are 
constant in different trials. There are two layers in the simulated 
multiplex networks. To distinguish the two layers and avoid 
replications of simulations with same parameters, L1 is small-
world network with 10 neighbors and probability 0.1 of 
interpolating between regular lattices while L2 is Erdős–Rényi 
network with average 10 neighbors. λL2

L1 and λL1
L2 are both varied 

from 0.1 to 3.0. Each layer contains 10000 nodes and |V| = 10000. 
Thresholds of nodes follow N(2.5, 1) normal distribution and U(0, 
10) uniform distribution. The corresponding results are shown in 
Figure 10 and Figure 11.  

The surfaces in Figure 10 and Figure 11 are divided into three 
areas, according to the areas of parameter spaces in which 
different final scales of cascade processes are found. A-area 
means seldom nodes are activated and propagation dies out 
quickly. Low transfer coefficients of two layers restrict the 
cascade processes. The shape of A-area in Figure 10 shows that 
the critical vertical transfer coefficient of random layer between 
A-area and B-area is larger than the one of small-world layer if 
vertical transfer coefficient of conjoint layer is set as 0. 
Comparing with Erdős–Rényi network, clustering coefficient of 
small-world network is much larger and one agent in small-world 
network can receive more reinforcements if one active neighbor 
activates other agents [5]. It means that Erdős–Rényi network 
with normal threshold distributions is not suitable for information 
spreading. However, the shape of A-area in Figure 11 indicates 
that cascade processes in random network and small-world 
network are similar with uniform threshold distributions. 

As transfer coefficients of two layers increase, more nodes 
gradually become active and times to reach final prevalence 
achieve peaks rapidly and then decrease shapely. This parameter 
space is named as B-area which likes a fall in the graphs of 
fraction of active nodes and a ridge in the graphs of time to reach 

stationary state. Many cascade processes in reality belong to the 
B-area which is the transition region between global cascade and 
local popularity. In the B-area, multiplex networks contain many 
small groups of nodes which are susceptible to cascade process 
due to low thresholds but are separated by nodes with large 
thresholds. These separated groups of susceptible nodes mean that 
the sizes of final prevalence may be different if different nodes 
are initialized as active to trigger the cascade processes in the 
same multiplex networks.  

C-area means that global cascades emerge smoothly. As the third 
case study analyzed, the large value of vertical transfer coefficient 
leads to rapid cascade in one layer. Due to the cross-layers 
cascades, global cascade can take place in the multiplex networks 
even if the transfer coefficient of one layer is very small. Taking 
the online social network and word of mouth communication 
network as instance, new fashions become widely known mostly 
because of the rapid spreading in online social network. 

4.3 Leverage of Tiny-Scale Layer 
In this section, our aim is to present and discuss the leverage of 
tiny-scale layer on the global cascade in multiplex networks: 
largely increasing the fraction of active nodes in stationary state 
and reducing the time of cascade process.  

Multiplex networks contain two or three layers and |V| = 10000. 
L1 is small-world network with 10 neighbors and probability 0.1 
of interpolating between regular lattices while L2 is Erdős–Rényi 
network with average 10 neighbors. Each layer contains all nodes 
of V. 1% or 2% nodes are randomly selected from V and 
constitute L3 according to Erdős–Rényi model with average 3 or 6 
neighbors. Thus, the scale of L3 is very small and connectivity is 
also sparse. Vertical transfer coefficients are constant. Influences 
of nodes in L1 and L2 are set as 1 unit. The vertical transfer 
coefficient of tiny-scale L3 (λ

L3) are 5 unit as we want to analyze 
the effects of quick propagation in tiny-scale layer on other layers. 
L3 is only set as random layer because propagations in Erdős–
Rényi and small-world networks are similar (quick global 
cascading) when transfer coefficients are large as shown in 
Section 4.2. Threshold distributions are varied. One node is set as 
active state to trigger cascade processes in multiplex networks.  
As mentioned above, information spreads quickly in L3 because 
the influence of node is large in L3, while cascade processes in L1 
and L2 are much slower. The corresponding results are shown in 
Figure 12. It can be found that the final sizes of cascade processes 
are raised from local popularity to global cascade by adding L3 
into multiplex networks if thresholds of nodes follow normal N (3, 
1) and N (3.5, 1) distributions. As analyzed in the second case 
study, more layers added into multiplex networks can facilitate 
the cascade process more or less if additional layers can provide 
extra short paths for information cascade. However, L3 is sparse 
and the number of nodes activated in L3 makes up a very small 

(a)                                                                    (b) 

Figure 12 Leverage of Tiny-Scale Layer on Cascade 
Processes 

Figure 10 Normal Threshold Distribution: N (2.5, 1) 
(a)                                                                   (b) 

(a)                                                                     (b) 

Figure 11 Uniform Threshold Distribution: U (0, 10) 
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proportion of the final cascade size in multiplex networks. Global 
cascade takes place because separated but susceptible groups in L1 
and L2 can be activated and conjoint. When nodes in L3 are 
activated, relational mapping nodes in L1 and L2 are activated 
because of cross-layers cascades. Then, nodes in susceptible 
groups are activated and isolation caused by high threshold nodes 
gradually disappears. This facilitation effect is named as the 
leverage of tiny-scale layer on cascade processes in multiplex 
networks. 

However, if thresholds of nodes follow uniform distributions, the 
facilitation effect of rapid cascade in L3 is limited. When the 
upper limits of uniform threshold distributions are larger than 
average degrees of L1 and L2, many nodes cannot be activated 
even if all linking neighbors are active. Meanwhile, most nodes 
can be easily activated in two-layer multiplex networks if the 
upper limits of uniform threshold distributions are smaller than 
average degrees of L1 and L2. In spite of this, the percentage 
increment of fraction of active nodes by adding L3 is much larger 
than the scale of L3. 

The leverage of tiny-scale layer is a complement to the previous 
studies on the facilitation of multiplexity. In [21], Brummitt et al. 
suggest that cascade process in multiplex networks can be 
controlled by adding or removing sparse layer, but the sparse 
layer contains most part of nodes in dense layer and the simulated 
multiplex networks. Our work suggests that tiny-scale layer which 
contains only one hundredth of nodes in multiplex networks is 
also important. The superdiffusive behavior concluded in [20] 
means that cascade process in multiplex networks is faster than in 
any disjoining layers. In our work, fraction of active nodes in L3 
reaches stationary state much faster than in the multiplex 
networks. The scale of L3 is very small and information 
propagates quickly. Cascade processes in some susceptible groups 
in L1 and L2 will not take place until the information has been 
transferred from L3. In real social life, human behaviors always 
fall behind the cascade processes in online social networks. In 
spite of the time interval of cross-layers cascade, only prevailing 
information which has activated a large fraction of nodes in online 
social networks can become the hot topics in word of mouth 
network or even induce other collective behaviors such as panic 
buying and protest movement. The leverage of tiny-scale layer is 
also different from the effect of hub nodes in networks [10]. Hub 
nodes have much larger amount of neighbors than other nodes in 
networks. Nodes in L3 are randomly selected and have similar 
numbers of neighbors in the underlying simplex network.  

5. DISCUSSION AND FUTURE WORK 
In this paper, we focus on the role of cascade across layers in the 
information propagation in multiplex networks. Mapping 
relationship and vertical transfer coefficient are proposed to be the 
main features of cross-layers cascade: one conjoins multiple 
layers and provides the paths for information spreading between 
layers; the other one quantifies influences of one node varied in 
multiple layers. After giving the generalized linear threshold 
cascade model, we analyzed how multiplexity slows down or 
speeds up information cascades based on the cross-layers cascade.  

The main reason of slow-down phenomenon of information 
spreading is the obstruction of cross-layers cascade which 
connects the distributed shortest path in multiple layers. When the 
information spreading on the first part of shortest path in one 
layer cannot be transferred to the next intermediate nodes in other 
layers, downstream nodes can only be activated by the cascade 
processes on other topologically inefficient paths. As a result, 

time to reach global cascade in multiplex networks is longer than 
in simplex networks. However, the topologically inefficient path 
reported in the research of empirical data may be the most 
efficient in the framework of multiplex networks since 
information selectively propagates on networks. On the other 
hand, information can spread in a particular part of social agents 
more pertinently with the consideration of diverse linking types 
(multi-relation). For example, Google+ allows users to arrange 
neighbor nodes and share information in different “Circles” 
according to different relationships. “Circles” restrict the velocity 
and range of spreading information but help to protect privacy of 
users and avoid the troubles due to wide dissemination of 
information with no restriction. In other words, cross-layers 
cascade can be carefully controlled by users with the aid of these 
subjectively created “Circles”. 

Extra short paths and rapid spreading in the additional layer can 
both facilitate cascade processes in multiplex networks comparing 
with disjointed layers. The effect of popular online social 
networks on information spreading is similar to the one of 
additional layers conjoining to traditional communication 
networks, since users can make friends and share information 
with strangers conveniently in online social networks. The 
leverage of tiny-scale layer on global cascade indicates the 
difficulties of predicting or controlling cascade process in 
multiplex networks. Due to the cascade across layers, nodes 
activated in tiny-scale layer can trigger concurrent cascade 
processes in the conjoining large-scale layer if there are many 
susceptible but separated groups in multiplex networks.  

The issue of information cascade in multiplex social networks 
may provide a basis for further exploration in other multi-agent 
systems such as normative multi-agent systems [32] and trust 
systems [33] where the role of simplex network topologies has 
been widely investigated. Similar to the different speeds of 
information cascades in multiple layers, the rule of norm 
evolution or the time to reach convention in each layer of 
multiplex networks may also be different. Meanwhile, the trust 
path for the selection of trustworthy service analyzed in [33] is 
probably distributed in multiple layers and connected by many 
cross-layers paths. 

In future work, we would like to make a more detailed description 
of the cross-layers cascade and apply it to real multiplex networks. 
The effects of time interval of cross-layers cascade, threshold 
distribution and layer structure on cascade process will also be 
further analyzed since present simulations show threshold 
distribution and layer structure can influence cascade process. 
What’s more, formalized description of cascade process in 
multiplex networks depending on the cross-layers cascade is 
needed. The research of multiplex networks is attracting more and 
more attention, but the real field data of multiplex social networks 
is still rare. Main difficulties are how to judge social agents are 
conjoint in different networks and track the information spreading 
on and across networks together. We anticipate that the concept of 
cross-layers cascade can inspire further study of information 
spreading in multiplex networks. 
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