
Future Generation Computer Systems 86 (2018) 1513–1522

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

On the limitations of existing notions of location privacy
Kai Dong a,*, Taolin Guo a, Haibo Ye b, Xuansong Li c, Zhen Ling a

a School of Computer Science and Engineering, Southeast University, China
b College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
c School of Computer Science and Engineering, Nanjing University of Science and Technology, China

a r t i c l e i n f o

Article history:
Received 14 January 2017
Received in revised form 21 April 2017
Accepted 20 May 2017
Available online 15 July 2017

Keywords:
Location privacy
Differential privacy
Obfuscation

a b s t r a c t

In the context of a single report of location information, existing researches define location privacy by ad-
versary’s uncertainty, inaccuracy, or incorrectness of the estimation, or by geo-indistinguishability which
is a generalization of differential privacy. Each of these existing notions has problems in some specific
scenarios. In this paper we illustrate the limitations of existing notions by constructing such scenarios,
and introduce a formal definition on location privacy by quantifying the distance between the prior and
posterior distribution over the possible locations. Furthermore, we showhow to construct a near-optimal
obfuscationmechanism by solving an optimization problem.We compare our proposedmechanismwith
the Laplace noise based geo-indistinguishable mechanism, and Shokri’s optimal obfuscation mechanism,
using both our proposed privacymetric and the traditional metric based on the estimated distance errors.
The results show that our proposedmetric better describes location privacy and our proposedmechanism
makes a better tradeoff between privacy and utility.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

With the development of mobile computing and the wide
spread of mobile devices, mobile social network applications have
become increasingly prevalent across mobile users. These appli-
cations rely on various location based services (LBS) to make use
of users’ location information and thus can provide users person-
alized services. Without an adequate location privacy preserving
mechanism, users may be hesitant to use these applications.

Researchers have proposed a variety of location privacy pre-
serving mechanisms (LPPM) which allow users to make use of the
LBSwith reduced location information [1–4]. These LPPMs provide
different trade-offs between location privacy and LBS utility, offer-
ing alternatives to bettermeet individual requirements of different
users.

However the comparison between LPPMs can be tricky due
to a lack of reasonable privacy benchmark for location informa-
tion. For given datasets and adversary assumptions, many early
researches define user’s privacy [2] by the ‘‘’uncertainty’’ of the
adversary, which tells the probability that the adversary will make
a wrong estimate. Then ‘‘incorrectness’’, which is a combination of
uncertainty and ‘‘inaccuracy’’, is introduced as a better definition of
privacy [5], since privacy deals with not only the probability of an
error, but also the magnitude of this error. This notion of privacy is
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reasonable, however it is difficult to measure the error magnitude,
since no distancemetric can be used for all situations. For example,
onemay suggest using the Euclidean distance, and then hewill find
thatwith a same distance, the privacy that the real location and the
estimated location belong to a same region, can be different with
that they belong to two different regions.

In recent years, differential privacy [6] gains popularity since it
abstracts from the side information of the adversary. In the context
of location privacy, geo-indistinguishability is introduced and sup-
posed to be ‘‘independent of the prior’’. It defines privacy by the
maximum difference among the probability of reporting a location
from all possible real locations (and this difference decays with the
distance between two possible real locations). This definition can
be problematic if the prior is taken into account, and we prove
in this paper that geo-indistinguishability is not independent of
the prior, instead it is based on the assumption that the prior is
unknown.

In this paper, we propose DPLO (short for differentially private
location obfuscation) as a notion of location privacy by describing
the difference between the prior and the posterior knowledge of
the adversary. We distinguish the prior distribution over locations
before and that after the user decides to access LBS at some lo-
cation, and use the latter as the prior knowledge. This is because
the user decides to trade-off privacy for utility, and no matter
which LPPM is used, the decline of privacy is inevitable. Moreover,
we distinguish the posterior distribution over locations before
and that after the LPPM finally outputs some obfuscated location,
and use the former as the posterior knowledge. This is because
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our goal is not to quantify privacy for some specific outputs of
an LPPM, but to propose a general privacy metric for evaluating
LPPMs based on a probabilistic model. We study the problem of
optimizing theDPLOunder given quality constraints, and construct
a near-optimal obfuscation mechanism by solving a non-linear
optimization problem. Our proposed obfuscation mechanism is
evaluated by comparisonwith selected existingmechanisms based
on the same datasets used by other literatures.

2. Existing notions of location privacy

In situations when people do not have to disclose their lo-
cations, they can use security approaches such as encryption or
some other access control mechanism to ensure location privacy.
However, in most other situations, one has to trade-off between
location privacy and utility, e.g., when a user accesses an untrust-
worthy LBS. We focus on location privacy when such trade-offs
take place, which is so-called the computational location privacy
introduced by Krumm [7].

Since location privacy is computational, we can make compari-
son between different privacy preserving mechanisms. During the
last decade, a variety of privacy metrics have been proposed and
they mainly fall into three categories [4]: k-anonymity, expected
distance error, and differential privacy.

2.1. Uncertainty: k-anonymity and location entropy

k-anonymity [8] is a property of anonymized data in databases.
Briefly speaking, a table satisfying k-anonymity means that, for
each record in this table, there exist at least k − 1 other records
with exactly the same quasi-identifier (sensitive attribute) values.
To achieve k-anonymity, generalization techniques are often used.
This notion is widely adopted in early researches on location pri-
vacy. Gruteser et al. [1] introduce a cloaking based mechanism,
which employs a trusted anonymizer (or uses a peer-to-peer al-
gorithm to solve the one point of failure problem as in [9]), to
aggregate location reports from at least k users (or dummy users to
achieve a higher k in sparse regions as in [10]), and replace the loca-
tions with one generalized area to ensure k-anonymity. Beresford
et al. [2] introduce a confusion based mechanism. The idea behind
confusion is that if at least k users change their pseudonyms and
report a same generalized location at the same time (e.g., two cars
at a crossroad in path confusion [10]), they become indistinguish-
able since then. Other techniques like cache [11] may also be used
to better trade-off between location privacy and utility, while the
notion of privacy remains the same: location privacy is defined
as the uncertainty of adversary, and the more possible locations
there are, the higher location privacy will be.

2.2. Incorrectness: expected distance error

Suppose an LPPM which outputs obfuscated locations based
on user’s real locations. It is obvious that if the distance between
the real location and the obfuscated location is not large enough,
these two locations can belong to a same logical location, e.g., two
different locations in a hospital. In this case, the user’s location
privacy is not preserved. The minimal distance which ensures
two locations each belongs to a different logical location can vary
widely accordingly. It depends highly on the map information, the
scale of location, the type of application, the privacy requirement of
the user, and many other contextual information, and is too com-
plex to define. An intuitiveway to improveprivacy is tomake larger
the distance between the real location and the obfuscated location,
since the larger this distance is, the less likely the two locationswill
belong to a same logical location. In the meanwhile, this distance

contributes to the quality loss, so the complex problem of trading-
off between privacy and utility can be transformed to the problem
of deciding the distance error.

However, this notion of location privacy is still problematic. In
particular, a smart adversary may compute an estimated location
based on his knowledge of the obfuscation algorithm used by the
LPPM. So the expected distance error should measure the distance
between the real location and the estimated location, instead of
the reported one. Further more, a smart LPPM should consider the
adversary’s knowledge and capability to better trade-off between
privacy and utility. Shokri et al. [3,5] introduce a comprehensive
location privacy notion by completing the existing adversary’s
model based on the understanding that the privacy of users and
the success of the adversary are two sides of the same coin. Unlike
traditional k-anonymity based approaches, [5] measures location
privacy using so-called incorrectness, which is a combination of
the adversary’s uncertainty and inaccuracy on the estimated loca-
tions.

2.3. Differential privacy: geo-indistinguishability

Differential privacy [6] is a notion of privacy from the
area of statistical databases. It is introduced to protect against
deanonymization techniques which identify personal information
by linking two or more separately anonymized databases. It can be
used to measure location privacy in statistical databases [12,13].
However, location privacy in LBS scenarios is to some extent dif-
ferent, since most LBSs require specific location information of
a single user instead of some statistics on aggregate information
of multiple users. Dewri [14] proposes differential perturbation
which is a hybrid of differential privacy and k-anonymity. In this
approach, the k locations in an anonymity set are required to have
similar probabilities to report a same obfuscated location.

Geo-indistinguishability [4,15] proposed by Andrés and Bor-
denabe et al., has gained popularity in recent years. It relaxes
Dewri’s constraint of putting locations in anonymity sets. Multi-
variate Laplace noise is used by Andres et al. [4] to achieve ϵ-geo-
indistinguishability. Then in their later work, Bordenabe et al. [15]
propose an optimal geo-indistinguishable mechanism by solving a
linear optimization problem, which chooses obfuscation probabil-
ity distribution function f (·, ·) (i.e., to choose the noise distribution
instead of simply using Laplace noise), to minimize the service
quality loss.

Geo-indistinguishability is now widely adopted [16,17], and it
is also improved in recent approaches by considering the temporal
correlations of multiple locations [18,19].

3. Limitations of existing notions

The limitations of existing notions motivate this work. For bet-
ter understanding these limitations, we illustrate them in detail by
computing location privacy using the formal definitions of exist-
ing notions under the following scenario settings and adversary
assumptions. In Table 1, we summarize the main notations intro-
duced throughout this article.

3.1. Scenario description and adversary assumptions

The example scenario is as shown in Fig. 1. We focus on a
5 × 5 grid consisting of 25 square regions with each of which
represents a location. The symbol in the bottom left corner of
a region indicates whether this location is a real location r , an
obfuscated locations r ′ or an estimated locations r̂ . We use R to
represent the set of all possible real locations (it is obvious that
r̂ ∈ R, ifR is known by the adversary), andR′ to represent the set
of all possible obfuscated locations. The icon in the top right corner
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(a) User profile. (b) k-anonymity.

(c) Geo-indistinguishability. (d) Estimated distance error.

Fig. 1. Limitations of existing notions: (a) User profile, probability distribution on user’s location. (b) Two anonymity zones with the same k and the same location entropy
but not equally private. (c) With ϵ = 0, there is still a 4/9 chance of reporting r ′1 , r

′

2 , r
′

4 or r ′6 , each of which identifies user’s real location r . (d) When the estimated distance
error increases, the probability of identifying the real location can also increase (i.e., privacy can degrade).

Table 1
Summary of notations.

Symbol Meaning

r, r ′, r̂ Real location, obfuscated/reported location, estimated location
R,R′ The set of all real locations, the set of all obfuscated locations
ψ(r) User profile (probability of being at location r)
f (r ′|r) Obfuscation function (probability of reporting r ′)
h(r̂|r ′) Attack function (probability of estimating r̂ as real location)
Q (r ′|r) Utility of reporting r ′ instead of r
Qmin User’s minimum acceptable utility
A(r̂|r) Prior probability of estimating location r̂
B(r̂|r) Posterior probability of estimating location r̂
dA(r ′, r) Distortion function of two locations (considering utility)

of a region indicates its logical location, e.g., a restaurant, a gym or
a hospital, etc.

Suppose our target user u0 is now locating at r0 = C3, and his
profile can bemodeled by a prior distributionψ onR is as shown in
Fig. 1(a), with the grayness of a region shows the prior probability
that the user is located at this location. In our scenario, we have
ψ(C3) = 0.5, ψ(D4) = ψ(E2) = 0.25.

We assume the adversary is aware of the LPPM’s internal al-
gorithm and the user profile (the adversary can accumulate this
knowledge with repeated observations/eavesdropping). Base on
these assumptions, we show the gap between the existing notions
of location privacy, and what privacy naturally is.

3.2. Limitations of k-anonymity

By applying Shannon’s classic measure of entropy, Beresford
et al. [2] define location privacy as location entropy:

Privacy = −
∑
r

Pr(r)log2Pr(r) (1)

where Pr(r) represents the probability that location r is the real
location in the adversary’s estimate. Ideally, k = 2b locations with
exactly the sameprobability result in a location entropy that equals
to b.

The limitations to this notion includes:

1. k-anonymity suffers from homogeneity attacks and back-
ground knowledge attacks [20].

2. Uncertainty of the adversary does not always mean privacy
of the users [5].

These limitations of k-anonymity have been widely discussed,
here we give a simple example for illustration. As shown in
Fig. 1(b), four users u0, . . . , u3 locate at r0, . . . , r3 respectively. To
achieve 2-anonymity, r1 and r2 are aggregated and generalized
to zone Z1, while r0 and r3 are aggregated and generalized to
zone Z2. Although users in both zones have the same location
entropy (k = 2), location privacy in zone Z2 is obviously preserved
much better than in Z1. In our example, since locations of two
anonymous users are close to each other (r1 and r2), adversary can
deduce that both users locate at a logical location (the gym at D2)
by performing a homogeneity attack. Moreover, if the adversary
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is aware of u0’s profile, he can deduce that u0 locates at C3 by
performing a background knowledge attack.

3.3. Limitations of geo-indistinguishability

Geo-indistinguishability is a generalization of differential
privacy in the context of location privacy. In [4], ϵ-geo-
indistinguishability is defined as

dP (f (r ′|r), f (r ′|r̂)) ≤ ϵdR(r, r̂) (2)

where r , r ′ and r̂ are arbitrary locations, f (r ′, ·) is a probabilistic
function for selecting the obfuscated location r ′, and dP (·, ·) mea-
sures the supremumof distance between twodistributions, dR(·, ·)
measures distance between two locations.

The limitations to this notion of location privacy include:

1. ϵ-geo-indistinguishability as a notion of location privacy
may be problematic, since privacy is not always enhanced
with ϵ decreases.

2. ϵ-geo-indistinguishability does not perform well for loca-
tion traces, since privacy degrades rapidly when traces be-
come longer. Some recent approaches introduce notions of
location privacy considering temporal correlations [18,19].
However we are only interested in location privacy at a
single time-stamp in this paper, and we leave the extension
of location privacy for traces as future work.

In Formula (2), dR(·, ·) is a metric measuring the distance be-
tween two locations. In the vanilla geo-indistinguishability [4], the
euclidean distance is used; and in optimal geo-indistinguishability
[15], this metric is defined accordingly in various applications.
Suppose the following distance metric,

dR(r1, r2) =
{
0 if r1 ∈ Grid3×3(r2)
∞ otherwise (3)

where Grid3×3(r2) is a r2-centered, 3 × 3 grid consisting of 9
regions. As in Fig. 1(c), the dotted-line square can be represented
as Grid3×3(r). This metric is reasonable for many LBSs, e.g., which
provides a user with nearby geographic information based on his
location r . If the reported location r ′ is within an area, i.e., r ′ ∈
Grid3×3(r), the utility of the LBS can be ensured, so the distance is
set to 0. Otherwise, the information obtained by the user may be
completely useless, so the distance is set to∞.

With this metric, we can construct a simplemechanism satisfy-
ing 0-geo-indistinguishability as follows:

f (r ′|r) = 1/9, ∀r ∈ R, r ′ ∈ Grid3×3(r). (4)

Note that in statistical databases, 0-differential privacy means
‘‘complete privacy’’ since it ensures that the personal informa-
tion will never be identified. However a 0-geo-indistinguishability
mechanismmay performpoorly in privacy. For example the 0-geo-
indistinguishability mechanism in Eq. (4), the user will have a 4/9
chance to report an obfuscated location r ′1, r

′

2, r
′

4 or r
′

6, and reporting
any of these locations leads to disclosure of user’s real location.

Even if we use some other distance metric such as the Eu-
clidean distance, and use some complicated noise distribution
such as Laplace noise as in [4] to construct some other geo-
indistinguishability mechanism, there is still great difference be-
tween location privacy and geo-indistinguishability.

One may argue that geo-indistinguishability, just like differen-
tial privacy, is designed for situations when priors are unknown.
This statement is true for the differential privacy in statistical
databases, since it guarantees that the posterior probability is as
much as the prior probability, so we say it is ‘‘independent of
the prior’’. However, there is a misunderstanding for the geo-
indistinguishability, since it is no independent of the prior, instead
it makes a strong hypothesis that the prior cannot be known.

3.4. Limitations of optimal geo-indistinguishability

Now let us move on to the optimal geo-indistinguishability
proposed in [15]. It employs the definition of vanilla geo-
indistinguishability [4] as the notion of location privacy, and
is essentially a better trade-off between utility and geo-
indistinguishability.

Since geo-indistinguishability is problematic, we can also con-
clude that the optimal geo-indistinguishability is also problematic.
Back to our example shown in Fig. 1(c). We can prove that the
only mechanism achieves ϵ = 0 is the mechanism we pro-
posed in Eq. (4), so this mechanism is also an optimal 0-geo-
indistinguishable mechanism, and we have already proven this
mechanism performs poorly in privacy.

3.5. Limitations of expected distance error

Using the estimated distance error, location privacy is defined
as:

Privacy(ψ, f , h, dP ) =
∑
r,r ′,r̂

ψ(r)f (r ′|r)h(r̂|r ′)dP (r̂, r) (5)

where ψ(r) represents the prior probability (i.e., the user profile)
that the user locates at location r , f (r ′|r) represents the probability
that the LPPM outputs an obfuscated location r ′ based on an real
location r , h(r̂|r) represents the probability that the adversary
guesses the user’s location to be r̂ based on a reported location r ′,
and dP (r̂, r) represents the distance between locations r̂ and r .

In [3], Shokri introduces an optimal strategy for location privacy
by solving a linear program, which chooses LPPM’s obfuscation
probability distribution function f (·, ·), to maximize the location
privacy defined in Eq. (5), subject to service quality constraints
which give an upper bound on the distance between real location
r and obfuscated location r ′. This approach is optimal with this
notion, however, there still remain two limitations:

1. It relies on the modeling of adversary’s side information,
meaning that it suffers from background knowledge attacks.

2. The real location privacy is not always enhanced with esti-
mated distance error increases.

With this notion, if no location is reported, the expected dis-
tance error can be computed based on the user profile as:

PrivacyPrior =
∑
r̂∈R

ψ(r̂)d(r, r̂) ≈ 0.91,

where d(·, ·) here is the euclidean distance.
Assume a mechanism outputs some obfuscated location to re-

port (e.g., when f (D2|C3) is relatively high), and finally makes the
adversary estimates a posterior distribution as shown in Fig. 1(d):
Pr(C3) = 0.5, Pr(E2) = 0.45 and Pr(D4) = 0.05. The expected
distance error can be computed as:

PrivacyPosterior =
∑
r̂∈R

Pr(r̂)d(r, r̂) ≈ 1.08.

It is weird that the privacy increases with this location report.
Shokri [3] uses Eq. (5) to compute the averagedminimumposterior
privacy on all locations r ∈ R, so the privacy with posterior is
always lower than the privacy with only prior. However, for a
single user’s single access to an LBS, the case as in our example can
happen occasionally.

This problembecomes especially pronounced ifwe take into ac-
count other side information. Suppose the user reports his location
at lunch time, the adversary can deduce that this user is unlikely to
be at location E2, since E2 is a gym and nobody will do strenuous
exercises after a meal. With only user profile, the adversary has a
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2/3 chance to identify user’s real location; while with posterior as
shown in Fig. 1(d), the chance increases to 10/11. This example
shows that privacy is not always enhanced with the estimated
distance error increases, and also the importance of independence
of the prior.

4. DPLO: differentially private location obfuscation

We have shown the limitations of using uncertainty, inaccu-
racy, incorrectness, and geo-indistinguishability as the notion of
location privacy. Our goal is to provide a formal notion of location
privacy according to the common understanding that privacy is
‘‘the ability of an individual to seclude information about himself’’.
In access to an LBS, the user has to trade-off between location
privacy and utility, and report some obfuscated location informa-
tion. In this context, complete privacymeans ‘‘adversary knows no
additional information from the obfuscated location’’. Based on this
understanding, we introduce differentially private location obfus-
cation (DPLO) as a formal notion of location privacy, by quantifying
the additional knowledge probably disclosed by the obfuscation.
Some important notations are listed in Table 1.

4.1. Assumptions

Let R be a set of points of interest, including all possible real
locations of a given user, and R′ be a set of locations, including all
possible reported locations. Suppose the user locates at location
r ∈ R, he uses an obfuscation mechanism to protect his location.
This obfuscation mechanism chooses a pseudo-location r ′ ∈ R′ by
sampling from a probability distribution f (r ′|r).

The adversary knows the obfuscation function f (·, ·), and he
also knows in prior the user profile ψ(ri), i.e., the probability dis-
tribution of user’s real location. Based on any obfuscated location
r ′ he obtains, he will estimate a location r̂ ∈ R as the user’s
real location. The attack function he uses can be represented as
h(r̂|r ′). Typically, a Bayesian adversary uses Bayesian inference
attack on the obfuscation mechanism, thus he can estimate r̂ for
each observed r ′, with prior information ψ:

h(r̂|r ′) =
Pr(r̂, r ′)
Pr(r ′)

=
f (r ′|r̂)ψ(r̂)∑
r f (r ′|r)ψ(r)

. (6)

Note that, due to utility reasons, r ′ is always around r , so h(r̂|r ′) is
always no less than ψ(r̂).

4.2. Quality metric

The quality of the LBS for a user locating at r reports r ′ can be
computed as:

Q (r ′, r) = e−dR(r ′|r) (7)

where the distance function dR(·, ·) can be defined as different
metrics accordingly. For example, the Euclidean distance dE(·, ·)
between the locations is a typical metric.

For any given real location r , the LPPM should ensure that the
utility of reporting an obfuscated location r ′, so we have:

Q (r ′, r) ≥ Qmin. (8)

4.3. Definition of posterior distribution

For a given real location r , the probability that the adversarywill
guess that the location to be r̂ is:

B(r̂|r) =
∑
r ′

f (r ′|r)h(r̂|r ′). (9)

Typically for a Bayesian adversary, we have

B(r̂|r) =
∑
r ′

f (r ′|r)f (r ′|r̂)ψ(r̂)∑
ri
f (r ′|ri)ψ(ri)

. (10)

4.4. Definition of prior distribution

The definition on ‘‘prior distribution’’ worth taking up analysis.
We start with the clarification of two different moments. The first
moment is the time before the user decides to use the LBS. The
probability distribution prior to this moment is no doubtψ(r). The
secondmoment is the time after the user has decided to use the LBS
at some real location r , but before he really report some location r ′.
At thismoment, the user has decided to trade-off privacy for utility,
and the privacy will definitely degrade if the utility is considered,
no matter what obfuscation mechanism is used. So the probability
distribution prior to thismoment is no longer the user profileψ(r),
and we use A(r̂|r) to denote this prior, which can be computed as
follows:

A(r̂|r) =
dA(r̂, r)ψ(r̂)∑
ri
dA(ri, r)ψ(ri)

, (11)

where dA is anothermetric different from dR. If the distancemetric
dR is defined by the Euclidean distance dE , we can compute dA as:

dA(r̂|r) = e−dR(r̂|r)/2. (12)

No matter which obfuscation mechanism is chosen, we have
that A(r̂|r) is an upper bound (but not necessarily a supremum)
of location privacy in case that utility is ensured. For better un-
derstanding the difference between the prior ψ and A, we give
an example: Suppose a user’s real location is somewhere in Los
Angeles, and his profile shows that there is a 50% chance that he
is in Los Angeles, and another 50% chance in San Francisco. The
overall priorψ is a distribution mapping from all locations in both
cities, and we have

∑
r∈LAψ(r) =

∑
r∈SFOψ(r) = 0.5. Now this

user accesses an LBS,which requires city-level accuracy of location,
so he can only report some pseudo-location in the same city. In
this case, the function A indicates the prior distribution ensuring
utility whichmaps from the locations in only one city, andwe have∑

r∈LAA(r) = 1 and
∑

r∈SFOA(r) = 0. This is because the user has
to trade-off privacy for utility, and at the time he decides to report
a location for some utility, his location privacy degrades.

4.5. Definition of DPLO

We define ϵ-DPLO, which is short for ‘‘differentially private
location obfuscation’’, as the notion of privacy by quantifying the
difference between the prior and the posterior of the adversary.

Definition 1 (DPLO). Let ϵ be a positive real number, a location
obfuscation mechanism f (·|·) satisfies ϵ-DPLO iff for all r , r̂:

e−ϵ ≤
A(r̂|r)
B(r̂|r)

≤ eϵ (13)

where A(r̂|r) represents the prior distribution which is a constant
for any given pair of r and r̂ and is defined in Eq. (11), and B(r̂|r)
represents the posterior distribution which is a function of f (·|·)
defined in Eq. (9).
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4.6. Examples on computing ϵ-DPLO

In Fig. 1 we provide several sample obfuscation mechanisms
to illustrate the limitations of existing notions of location privacy.
Here, we compute the ϵ-DPLO that each of these mechanisms
satisfies.

For all the cases, we assume a Bayesian adversary to compute
the posterior distribution by Eq. (10), and suppose the user profile
ψ(r) is as shown in Fig. 1(a):ψ(C3) = 0.5,ψ(D4) = ψ(E2) = 0.25.
The distortion metric dA(·, ·) can be computed from the distance
metric dR(·,·) we assumed in Eq. (3), so we have:

dA(r1, r2) =
{
1 if r1 ∈ Grid5×5(r2)
0 otherwise

where Grid5×5(r2) is a r2-centered, 5 × 5 grid. The prior distri-
bution A(r̂|r) can be computed by Eq. (11), so we have A(r̂|C3) =
A(r̂|D4) = A(r̂|E2) = ψ(r̂), for all r̂ ∈ R.

Now we can compute ϵ for each sample mechanism. For the
k-Anonymity Mechanism we assumed in Section 3.2, it satisfies
∞-DPLO; for the 0-Geo-IndistinguishableMechanismwe assumed
in Section 3.3 (Eq. (4)), it satisfies 1.35-DPLO; for the estimated
distance error based mechanism we assumed in Section 3.5, it
satisfies 1.61-DPLO.

Suppose an obfuscation mechanism fopt(D3|r) = 1, for all r ∈
R. We have fopt(·|·) satisfies 0-DPLO. This is reasonable, since the
adversary will obtain no extra knowledge from this obfuscation,
and we say this mechanism is optimal, since it ensures utility and
privacy simultaneously.

5. Near-optimal DPLO mechanism

In the previous section,we introduceDPLO as the notion of loca-
tion privacy, and show via case study how to compute the ϵ-DPLO
that various obfuscationmechanism can satisfy. In this section, we
propose a method of constructing a near-optimal mechanism by
solving an optimization problem.

5.1. Problem statement

Given the distortion function dR(·, ·), and the user profile ψ(·)
on a set of locations R as prior knowledge, the problem is find-
ing the obfuscation function f (·, ·) that minimizes the chance of
identifying the real locations, i.e., minimizes ϵ as in Definition 1.
The solution must consider that the adversary is aware of the
obfuscated location r ′ and the obfuscation function f (·, ·).

5.2. Optimal mechanism

With inequality constraint (15) inDefinition 1,we can construct
an optimal obfuscation mechanism for a given setR of all possible
real locations and a given set R′ of all possible reported locations,
by solving a nonlinear optimization problem:

Choose f (r ′|r) in order to

Min ϵ (14)

s.t. e−ϵ ≤
A(r, r̂)
B(r, r̂)

≤ eϵ, ∀r, r̂ ∈ R (15)

Σr ′ f (r ′|r) = 1, ∀r ∈ R (16)
f (r ′|r) ≥ 0, ∀r ′ ∈ R′, r ∈ R (17)
ϵ ≥ 0, (18)

e−dR(r ′|r)
≥ Qmin, if f (r ′|r) > 0,∀r ′ ∈ R′, r ∈ R. (19)

The inequality constraint (15) and (18) can be combined and
transformed to:

(lnA(r, r̂)− lnB(r, r̂))2 ≤ ϵ2.

Algorithm 1: Find Near-Optimal Mechanism
Input: loop
Output: f
ygmin ←∞;
x, x′ ← zeros(|R′|, |R|);
for a = 0; a < loop; a++ do

for b in Range(x) do
xb ← Random();

end
Compute y(x) by function 21;
Compute argminx y(x), ylmin by sub-gradient method;
if ylmin < ygmin then

ygmin ← ylmin;
x′ ← x;

end
end
Compute f (x′) by Equation 20;
return f ;

Minimizing ϵ while ϵ ≥ 0 is equivalent to minimizing

max
r,r̂

(lnA(r, r̂)− lnB(r, r̂))2.

By doing so, the variable ϵ is reduced.
For any given r and r̂ , A(r, r̂) is a constant, and B(r, r̂) is a

function of variables f (·|·). These variables are non-independent,
e.g., f (r ′1|r) and f (r ′2|r) subject to equality constraint (16). We
assume a set of independent non-negative integers xi,j with i ∈
R′, j ∈ R, and let

fx(r ′, r) ≜ xr ′,r/
∑

i

xi,r . (20)

So we have fx(r ′, r) = f (r ′|r). Using fx(·, ·) to replace f (·|·) in
B(·|·), the optimal mechanism can be constructed by solving the
following optimization problem:

Choose xi,j in order to

Min y(x) = max
r,r̂

(
lnA(r, r̂)− ln

∑
r ′∈R′

fx(r ′, r)fx(r ′, r̂)ψ(r̂)∑
k∈R fx(r ′, k)ψ(k)

)2

(21)

s.t. (e−dR(r ′|r)
− Qmin) · xr ′,r ≥ 0, ∀r ′ ∈ R′, r ∈ R (22)

xr ′,r ≥ 0 ∀r ′ ∈ R′, r ∈ R. (23)

5.3. Near-optimal mechanism

This optimization may have many local minimums. To find the
approximate global minimum, a typical way is to find several local
minimums with random initialization of independent variables
by sub-gradient method as shown in Algorithm 2, and treat the
smallest local minimum as the approximate global minimum as
shown in Algorithm 1. The algorithm takes loop different random
initialization, and finds x that leads to the smallest local minimum,
and finally construct the near-optimal mechanism. The larger loop
is, the more likely that the near-optimal mechanism is optimal.

6. Experiment and evaluation

In this section, we evaluate our near-optimal mechanism and
compare it to some existing LPPMs.
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Fig. 2. Priors considered.

Algorithm 2: Sub-Gradient Method
Input:∆ = 0.0001, x, y(x)
Output: xopt , ylmin
flag ← true;
xopt ← x;
while flag do

flag ← false;
for i in Range(x) do

xL, xR ← xopt ;
xLi ← xLi −∆;
xRi ← xRi +∆;
if y(xL) < y(xopt ) then

xopti ← xopti −∆;
flag ← true;

end
else

if y(xR) < y(xopt ) then
xopti ← xopti +∆;
flag ← true;

end
end

end
end
return xopt , y(xopt );

6.1. Experimental method

The selected compared LPPMs and benchmarks are as follows.
Compared LPPMs. We choose two mechanisms for comparison.

• Shokri’s optimal obfuscation mechanism presented in [3].
Here optimal means it achieves the maximum estimated
distance error.
• Andrés’ geo-indistinguishable mechanism presented in [4].

This mechanism adds the Laplace noise to the location. We
do not use the optimal geo-indistinguishable mechanism
presented in [15], since it assumes the adversary is aware
of the user profile, and under this assumption, some other
mechanism performs better in privacy, e.g., the previous
mechanism.

Comparison with simple cloaking/obfuscation mechanisms is
meaningless, since they are proven to perform poorly according
to [3,4].

Datasets. Two datasets are used.

• The simulated data in [4], which considers three different
profiles. Simulation on this data is simple and also straight-
forward.

• The GeoLife GPS Trajectories dataset [21], which contains
17,621 trajectories of 182 users from April 2007 to August
2012. The majority of the data was created in Beijing, China.

Privacy metrics. Two privacy metrics are used.

• The estimated distance error as defined in Eq. (5), thismetric
is used by most of the recent location privacy literatures.
• DPLO by Definition 1, our proposed metric.

6.2. Experiments on simulated profiles

The simulated user profiles are as shown in Fig. 2, in each case,
the probability distribution is accumulated in the regions in the
gray area, and distributed uniformly over them.

We use the same settings of Andrés’ mechanism as in [4], and
the quality loss is 107.30 m.1 This quality loss value comes from a
simple cloaking mechanismwith a fixed quality loss which always
reports the center of 3 × 3 anonymity zone. We fix this value
for all our selected compared mechanisms, and especially we let
ϵ = 0.0162 for Andrés’ mechanism under this experiment setting.

When we use the estimated distance error as the location pri-
vacy metric, the results are shown in Fig. 3. With this metric, our
proposed near-optimal method achieves better privacy than the
Andrés’ mechanism, but worse than Shokri’s optimal obfuscation
mechanism (this is reasonable since this mechanism takes the
maximum estimated distance error as the optimized object).

When we use DPLO as the location privacy metric, the results
are shown in Fig. 4. With this metric, our proposed near-optimal
method achieves much better privacy than the other two mecha-
nisms. This means that with our proposed method, the adversary
will obtain the least extra knowledge.

6.3. Experiments on geolife dataset

Using latitude–longitude geographic coordinate system, most
user locations are within an area ranges from (116.295E, 39.965N)
to (116.355E, 40.015N) in Beijing. We divide the map of this area
into 50 × 50 regions as shown in Fig. 5(a). The latitudinal and
longitudinal extent of each region is 0.005, i.e., about 426.6 m ×
556.6 m in size. We focus on the top 20 regions with the highest
density, as shown in Fig. 5(b). We treat the set of these 20 regions
as R, and compute location privacy with both metrics for all
compared methods as shown in Fig. 6.

For the estimated distance error, Shokri’s mechanism performs
the best since it takes the maximum estimated distance error as
the optimized object, however this does not always mean better
privacy according to our discussion in Section 3.4. Our proposed

1 In [4], this value is said to be 107.03 m which is mistaken but of no great
importance.
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(a) For profile (a). (b) For profile (b). (c) For profile (c).

Fig. 3. Estimated distance error (higher is better).

(a) For profile (a). (b) For profile (b). (c) For profile (c).

Fig. 4. ϵ-DPLO (lower is better).

Fig. 5. Geolife user profile in Beijing: (a) Spatial histogram showing the density of users per region in log scale. (b) Top 20 regions with the highest density.

(a) Estimated distance error (higher is
better).

(b) ϵ-DPLO (lower is better).

Fig. 6. Location privacy.

methodperforms reasonably and a little bitworse than Shokri’s op-
timal mechanism using this metric. Andrés’ mechanism performs
much worse than the other two mechanisms, since it is the only
mechanism which assumes the user profile to be unknown and
makes noprofit from this prior knowledge.More over, it seems that
Andrés’ mechanism performsmuch worse in real profile (Fig. 6(a))
than in simulated profile (Fig. 3), this contrast mainly comes from
the difference between the continuity of the Laplace noise function

(also that of the distribution of the simulated profile), and the
irregularity and sparsity of real user locations.

For the ϵ-DPLO, our proposed near-optimal method achieves
much smaller ϵ than the other compared mechanisms. This means
that with our proposedmethod, the adversary will obtain the least
extra knowledge. With our definition, it means better privacy.

7. Discussion and future work

The near-optimal algorithm we use (Algorithm 2, and Algo-
rithm 1) does have high complexity, and it takes about 1–2 h to
compute a result for a user’s profile with 20 different locations
in our experiments. The experiments are performed by 7 python
programs running in parallel on a desktop in Ubuntu 14.04, with
7.7 GB memory and 8 i7-4770 CPUs. This algorithm cannot be
directly applied on mobile devices to compute an obfuscation in
real-time, but it can be performed offline by a powerful server
and finally generates a personal privacy rule for any given user
profilewhich performs like a guide on how to hide his location. The
privacy rule describes the probability distribution of reporting any
obfuscating location with any given real location. With this rule,
the obfuscation can be generated on a mobile device in real-time
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(within several milliseconds). We believe there are ways to opti-
mize the gradient process by applying some general optimization
method like [22]. We leave it as our future work.

8. Conclusion

In this paper, we survey on existing notions of location privacy
and make detailed analysis on their limitations. We introduce a
new notion of privacy, by quantifying the difference between the
prior and posterior knowledge of adversary. With this notion, we
show that an optimal obfuscation mechanism can be constructed
by solving a non-linear optimization problem. We propose a near-
optimal mechanism, and compare it with the state-of-the-art ob-
fuscation mechanisms, using both our proposed metric and the
estimated distance error. The results show that under the same
quality constraints, our proposed mechanism can achieve better
privacy.
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